Origin of the Overpressure and Hydrocarbon Accumulation Characteristics of Bedrock Buried Hills in the Deepwater Area, Qiongdongnan Basin
-
摘要: 海洋深水区是当今全球油气勘探的热点,随着深水油气勘探的不断推进,基岩潜山逐渐成为重要的接替领域. 近年来,琼东南盆地深水区基岩潜山气藏获得了重大突破,展现了潜山重要的勘探潜力. 但是基岩潜山普遍存在高压,超压如何影响规模成藏是亟需解决的一个重要问题.基于此,以陵水32-1基岩潜山为例,通过已钻井岩心、薄片观察、温压场模拟、流体包裹体等综合分析,揭示潜山内部存在两个压力系统,上部压力系数为1.68,下部压力系数为1.76~1.85. 10.48 Ma时凹陷内烃类流体压力传导至潜山,潜山开始发育超压;3.02 Ma时潜山压力系数达1.7,进入强超压阶段. LS32-1-A井分别在3.0~1.9 Ma和1.8 Ma~现今经历两期油气充注,充注时间与潜山超压形成时间一致. 研究表明:(1)潜山储层可分为砂砾质带、风化带、致密带、内幕裂缝带,以潜山内幕裂缝、基底断裂及垂向微裂隙为天然气运移的主要通道;(2)超压成因主要为早期欠压实和生烃增压,晚期受烃类流体侧向压力传导控制;(3)强超压形成时间与烃类流体充注时间匹配性好,生烃凹陷内的压力演化以及流体向潜山的充注过程控制着潜山大型油气藏形成;(4)陵水32-1构造具有“近源供烃,优势充注;超压传导,内幕成储;超压封盖,规模保存”的成藏模式. 研究为琼东南盆地深水区基岩潜山油气藏的进一步勘探提供了重要依据.Abstract: Deepwater reservoirs are the hotspot of global oil and gas exploration. With the continuous development of deepwater exploration, overpressure bedrock buried hills have gradually become an important successor field. The breakthrough of Lingshui 32-1 buried hill gas reservoir in the western deepwater area of the Qiongdongnan Basin reveals the insider fracture reservoir as well as the formation of large gas fields, and demonstrates the exploration potential of Lingnan Low Uplift buried-hills. However, overpressures are prevalent in buried hills, and how overpressure affects gas reservoir accumulation is a vital issue that needs to be solved urgently. To explore the overpressure characteristics, development mechanism of overpressure, and the relationship between overpressure and hydrocarbon accumulation, the drilled cores, thin-section observation, numerical simulation, and fluid inclusions analyses were utilized, revealed the two pressure systems, with an upper pressure coefficient of 1.68 and a lower pressure coefficient of 1.76 to 1.85, and two phases of gas filling from 3.0 to 1.9 Ma and from 1.8 Ma to the present day, respectively, and the gas filling process is consistent with the overpressure formation. Lingshui 32-1 buried hill consists of gravelly reservoirs, weathered crust reservoirs, tight interval, and internal fracture reservoirs. The fracture, basement fault, and vertical microfracture are the main channels for natural gas migration. The overpressure mechanism of Lingshui 32-1 buried hill is mainly due to disequilibrium compaction and hydrocarbon pressurization in the early stage, and lately controlled by lateral transmission of fluids pressure. The timing of strong overpressure formation matches well with the gas filling. The overpressure within the depression and the gas filling process into the buried hills control the gas reservoir accumulation. Eventually, an accumulation model of overpressure-controlled hydrocarbon generation, transmission, filling, and preservation developed. This study provides an important basis for further exploration of bedrock buried hill reservoirs in the deepwater area of the Qiongdongnan Basin.
-
Key words:
- overpressure /
- bedrock buried-hills /
- gas filling /
- deepwater /
- Qiongdongnan Basin /
- petroleum geology
-
图 3 LS32-1-A井潜山天然气成因判识(图版自戴金星等, 2017)
Fig. 3. Natural gas origin identification of well LS32-1-A(from Dai et al., 2017)
图 4 LS32-1-A井储层显微特征及壁心特征
a. 4 096 m中性侵入岩(低石英)风化产物(岩屑样,正交光);b. 4 102 m花岗岩,长石普遍风化较深(岩屑样,正交光);c. 4 140 m,石英二长岩,多组裂缝(岩屑样,单偏光);d. 4 167 m,花岗岩闪长岩(岩屑样,单偏光);e. 4 200 m碎裂花岗岩,裂缝被较细小的碎基充填(岩屑样,正交光);f. 4 210 m二长花岗岩,微裂缝均被粘土质、黄铁矿充填(岩屑样,正交光);g. 4 239 m花岗闪长岩(岩屑样,正交光);h. 4 268 m二长花岗岩(岩屑样,正交光);i. 内幕裂缝带壁心特征图,具孔洞、裂缝特征
Fig. 4. Reservoir microscopic and core features of well LS32-1-A
图 6 琼东南盆地关键界面压力系数分布图
据杜浩(2022)修改
Fig. 6. Distribution of pressure coefficient key interfaces of the Qiongdongnan Basin
图 7 琼东南盆地单井压力结构特征
a. YC35-1-A双层压力结构图;b. LS25-1-A单层压力结构图(井位见图 1a)
Fig. 7. Drilling pressure structure of the Qiongdongnan Basin
图 9 乐东-陵水凹陷及陵南低凸起压力演化特征
a. YC36-2-A井压力剖面(现今);b. YC36-2-A井压力系数分布;c. LS32-1-A-LS26-1-A井压力剖面(现今);d. LS32-1-A-LS26-1-A井压力系数分布;剖面位置见图 1a中B-B’和C-C’
Fig. 9. Pressure evolution characteristics in Ledong-Lingshui Sag and Lingnan Low Uplift
表 1 琼东南盆地实测压力统计表
Table 1. Measured pressure statistics of the Qiongdongdong Basin
区带 井号 层位 实测深度(m) 地层压力
(MPa)流动性
(mD/cP)地层压力系数 地层温度
(℃)压力类型 乐东-陵水凹陷及周缘 LS18-1-A 莺歌海组二段 2 812.30 29.61 159.82 1.09 46.51 常压 LS17-2-A 黄流组 3 301.50 39.00 6.01 1.22 67.00 常压 LS17-2-B 黄流组一段 3 331.30 38.69 978.00 1.20 62.00 常压 LS17-2-C 黄流组一段 3 228.50 38.45 1 687.93 1.23 55.50 常压 LS25-1-A 黄流组一段 3 712.40 46.79 3.46 1.29 117.32 常压 LS25-1W-A 莺歌海组二段 3 485.00 47.27 40.95 1.39 98.48 超压 LS26-3E-A 梅山组一段 3 718.00 49.75 33.72 1.38 86.30 超压 LS25-1-A 黄流组 4 180.50 71.71 26.30 1.76 125.38 强超压 LS26-1-A 中生界 3 607.00 62.62 58.50 1.78 113.18 强超压 YC36-2-A 梅山组二段 4 688.40 95.65 0.33 2.09 162.20 强超压 崖南低凸起 YC23-1-1 崖城组三段 4 418.75 96.97 2.69 2.25 170.60 强超压 陵南低凸起 LS31-1-A 黄流组 2 973.40 36.69 1.00 1.27 30.00 常压 LS32-1-A 中生界 4 290.50 73.37 0.20 1.75 149.20 强超压 松南低凸起 YL8-1-A 三亚组 2 873.50 30.33 1 848.20 1.09 49.86 常压 YL8-1-B 梅山组 2 966.10 31.00 212.42 1.08 53.90 常压 表 2 LS32-1-A井不同期次包裹体特征统计表
Table 2. Characteristics of reservoir fluid inclusion in different periods of well LS32-1-A
期次 包裹体类型 成因 产状 形态 大小
(μm)气液比
(%)相态 均一温度(℃) 冰点温度
(℃)盐度
(%)第一期 盐水包裹体 次生 石英内裂纹 方形 17 6 气液两相 133.5 -2.6 4.3 盐水包裹体 次生 石英内裂纹 三角形 6 6 气液两相 132.5 -1.9 3.2 盐水包裹体 次生 石英内裂纹 条形 24 7 气液两相 133.1 -1.9 3.2 盐水包裹体 次生 石英内裂纹 椭圆形 6 6 气液两相 132.4 -1.4 2.4 盐水包裹体 次生 石英内裂纹 长方形 11 6 气液两相 131.5 -3.7 6.0 第二期 盐水包裹体 次生 石英内裂纹 无规则 22 7 气液两相 132.2 -1.7 2.9 盐水包裹体 次生 穿石英愈合裂纹 三角形 16 7 气液两相 152.1 -1.6 2.7 盐水包裹体 次生 石英内裂纹 条形 10 7 气液两相 153.8 -2.4 4.0 盐水包裹体 次生 石英内裂纹 椭圆形 21 7 气液两相 152.4 -0.9 1.6 盐水包裹体 次生 石英内裂纹 无规则 30 6 气液两相 152.8 -3.0 5.0 -
Chen, W. L., Zhou, W., 2012. Important Exploration Areas in Petaliferous Basins: The Basement Hydrocarbon Reservoirs. Journal of Southwest Petroleum University (Science & Technology Edition), 34(5): 17-24(in Chinese with English abstract). Dai, J. X., Ni, Y. Y., Huang, S. P., et al., 2017. Genetic Types of Gas Hydrates in China. Petroleum Exploration and Development, 44(6): 837-848(in Chinese with English abstract). Du, H., 2022. Efficient Natural Gas Transportation System and Its Influence on Gas Hydrate Enrichment in the Qiongdongnan Basin (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). Fan, T., Niu, T., Fan, H. J., et al., 2021. Geological Model and Development Strategy of Archean Bureid Hill Reservoir in BZ19-6 Condensate Field. China Offshore Oil and Gas, 33(3): 85-92(in Chinese with English abstract). Gan, J., Ji, H. Q., Liang, G., et al., 2022. Gas Accumulation Model of Mesozoic Buried Hill in Qiongdongnan Basin. Geoscience, 36(5): 1242-1253(in Chinese). Gan, J., Zhang, Y. Z., Liang, G., et al., 2018. On Accumulation Process and Dynamic Mechanism of Natural Gas in the Deep Water Area of Central Canyon, Qiongdongnan Basin. Acta Geologica Sinica, 92(11): 2359-2367(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2018.11.011 Gan, J., Zhang, Y. Z., Liang, G., et al., 2019. Deposition Pattern and Differential Thermal Evolution of Source Rocks, Deep Water Area of Qiongdongnan Basin. Earth Science, 44(8): 2627-2635(in Chinese with English abstract). He, Y. L., Liang, J. Q., Shi, W. Z., et al., 2022. Influencing Factors and Accumulation Modes of Gas Hydrate in South Low Uplift and Its Surrounding Area of Qiongdongnan Basin. Earth Science, 47(5): 1711-1727(in Chinese with English abstract). Hou, M. C., He, X. H., Jin, Q. Y., et al., 2023. Factors Controlling the Formation and Distribution of Mesozoic Buried Hill Reservoirs in the Qiongdongnan Basin. Oil & Gas Geology, 44(3): 637-650(in Chinese with English abstract). Huang, H. T., Huang, B. J., Huang, Y. W., et al., 2017. Condensate Origin and Hydrocarbon Accumulation Mechanism of the Deepwater Giant Gas Field in Western South China Sea: A Case Study of Lingshui 17-2 Gas Field in Qiongdongnan Basin, South China Sea. Petroleum Exploration and Development, 44(3): 380-388(in Chinese with English abstract). Jiang, Y. L., Wang, X., Yu, Q. Q., et al., 2016. Pressure Field Characteristics of Petroliferous Depressions and Its Relationship with Hydrocarbon Enrichment in Bohai Bay Basin. Acta Petrolei Sinica, 37(11): 1361-1369(in Chinese with English abstract). doi: 10.7623/syxb201611004 Kang, B., 2014. Cenozoic Subsidence and Thermal History Modelling of Qiongdongnan Basin(Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). Li, H. Y., Niu, C. M., Xu, P., et al., 2021. Discovery of Bozhong 13-2 Archean Large Monoblock Volatile Buried Hill Oilfield and Its Oil and Gas Exploration Significance. Natural Gas Industry, 41(2): 19-26(in Chinese with English abstract). Li, J. S., Liu, X. Q., Wang, Y., et al., 2021. Geochemical Characteristics and Hydrocarbon Generation Potential Evaluation of Source Rocks in the Deepwater Area of Qiongdongnan Basin. Journal of Mining Science And Technology, 6(2): 166-175(in Chinese with English abstract). Li, S. Y., Hu, L., Gan, J., et al., 2021. Accumulation Conditions of Buried-Hill Hydroca. rbon Reservoirs on the Lingnan Low Uplift in the Deep Water Areas of Qiongdongnan Basin. Marine Geology Frontiers, 37(7): 68-75(in Chinese with English abstract). Li, X. S., Ou, B. T., Li, Q., et al., 2005.3D Geopressure Field and Hydrocarbon Migration in Yinggehai and Qiongdongnan Basins. Geological Science and Technology Information, 24(3): 70-74(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2005.03.014 Li, X., You, L., Zhan, Y. P., et al., 2023. A Study on Hydrocarbon Sources and Accumulation Time in the Northern Fault Zone, Songnan-Baodao Sag of Qiongdongnan Basin. Earth Science, 48(8): 3007-3020(in Chinese with English abstract). Li, Y. M., Shi, X. B., Xu, H. L., et al., 2012. Temporal and Spatial Distribution of Tectonic Subsidence and Discussion on Formation Mechanism of Anomalous Post-Rift Tectonic Subsidence in the Qiongdongnan Basin. Journal of Jilin University(Earth Science Edition), 42(1): 47-57, 65(in Chinese with English abstract). Liu, Y. H., Wang, X., 2011. Remarks on Condition of Hydrocarbon Accumulation in Petroliferous Basin under the Overpressure Background. Fault-Block Oil & Gas Field, 18(1): 55-58(in Chinese with English abstract). Shi, H. S., Gao, Y. D., Liu, J., et al., 2022. Characteristics of Hydrocarbon Source-Migration-Accumulation in Huizhou 26 Sag and Implications of the Major Huizhou 26-6 Discovery in Pearl River Mouth Basin. Oil & Gas Geology, 43(4): 777-791(in Chinese with English abstract). Song, A. X., Yang, J. H., Hu, B., et al., 2021. Distribution Patterns of Fracture Reservoirs in the Buried-Hills in Deep Water Areas of Qiongdongnan Basin and Prediction of Favorable Areas for Hydrocarbon Exploration. Marine Geology Frontiers, 37(7): 60-67(in Chinese with English abstract). Su, L., Zheng, J. J., Wang, Q., et al., 2012. Formation Mechanism and Research Progress on Overpressure in the Qiongdongnan Basin. Natural Gas Geoscience, 23(4): 662-672(in Chinese with English abstract). Wang, M. F., 2003. The Character of Overpressure and Its Relationship with the Distribution of Oil and Gas, QiongDongNan Basin. Offshore Oil, 23(1): 15-22(in Chinese with English abstract). Wang, Y. H., Gan, J., Liang, G., et al., 2022. Composite Fault-Sand Body-Buried Hill Migration Systems and Accumulation Models of Natural Gas: A Case Study of the Deep-Water Area in Qiongdongnan Basin. Fault-Block Oil & Gas Field, 29(3): 319-324(in Chinese with English abstract). Wang, Z. S., Liu, Z., Wang, Z. F., et al., 2014. Distribution Characteristics of Abnormal Pressure in Central Depression Belt, Deepwater Area, Qiongdongnan(Southeast Hainan) Basin. Acta Geoscientica Sinica, 35(3): 355-364(in Chinese with English abstract). Wu, W. T., Gao, X. Z., Liu, X. Z., et al., 2014. Formation and Distribution of Basement Rock Reservoir. Geological Science and Technology Information, 33(1): 106-113(in Chinese with English abstract). Xia, Q. S., Huang, C. G., Lu, J., 2019. Response Relationship Between Hydrocarbon Charging and Diagenesis of Reservoirs in Sedimentary Basin. Journal of Earch Sciences and Environment, 41(2): 185-196(in Chinese with English abstract). doi: 10.3969/j.issn.1672-6561.2019.02.005 Xie, H., Zhou, D., Shi, H. C., et al., 2021. Comparative Study on the Cenozoic Tectonic and Sedimentary Evolution in the Deep Water Areas of the Zhujiang River Estuary Basin and the Qiongdongnan Basin. Haiyang Xuebao, 43(3): 48-61(in Chinese with English abstract). Xie, Y. H., Tong, C. X., Fan, C. W., et al., 2015. Characteristics and Evolution of Fault System in Qiongdongnan Basin. Geotectonica et Metallogenia, 39(5): 795-807(in Chinese with English abstract). Xu, S. L., You, L., Mao, X. L., et al., 2019. Reservoir Characteristics and Controlling Factors of Granite Buried Hill in Songnan Low Uplift, Qiongdongnan Basin. Earth Science, 44(8): 2717-2728(in Chinese with English abstract). Yao, Z., Wang, Z. F., Zuo, Q. M., et al., 2015. Critical Factors for the Formation of Large-Scale Deepwater Gas Field in Central Canyon System of Southeast Hainan Basin and Its Exploration Potential. Acta Petrolei Sinica, 36(11): 1358-1366(in Chinese with English abstract). doi: 10.7623/syxb201511005 Yi, J., Li, H. Y., Dan, X. L., et al., 2022. Division and Identification of Vertical Reservoir Units in Archaeozoic Metamorphic Buried Hill of Bozhong Sag, Bohai Bay Basin, East China. Petroleum Exploration and Development, 49(6): 1107-1118(in Chinese with English abstract). You, L., Qu, X., Zhong, J., et al., 2020. Physical Simulation Experiments on Pore Evolution in High-Temperature and Overpressure Reservoirs. Natural Gas Industry B, 7(1): 30-39. 10.1016/j. ngib. 2019.07.001 doi: 10.1016/j.ngib.2019.07.001 Zhai, P. Q., Chen, H. H., Xie, Y. H., et al., 2013. Modelling of Evolution of Overpressure System and Hydrocarbon Migration in Deepwater Area of Qiongdongnan Basin, South China Sea. Journal of Central South University (Science and Technology), 44(10): 4187-4201(in Chinese with English abstract). Zhang, G. C., Feng, Y. W., Qu, H. J., 2022. Characteristics of Petroleum Geology of Global Five Deep-Water Basin Belts. China Petroleum Exploration, 27(2): 11-26(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2022.02.002 Zhang, Q. M., Dong, W. L., 2000. Overpressure System of Hydrocarbon-Bearing Basins in China. Acta Petrolei Sinica, 21(6): 1-11, 127(in Chinese with English abstract). Zhou, J., Yang, X. B., Yang, J. H., et al., 2019. Structure-Sedimentary Evolution and Gas Accumulation of Paleogene in Songnan Low Uplift of the Qiongdongnan Basin. Earth Science, 44(8): 2704-2716(in Chinese with English abstract). Zhu, J. J., Zhang, X. B., Zhang, G. C., et al., 2011. A Study of Abnormal Pressure Distribution and Formation Mechanism in Qiongdongnan Basin. Acta Petrolei Sinica, 22(2): 324-330(in Chinese with English abstract). Zhu, W. L., 2010. Petroleum Geology in Deepwater Area of Northern Continental Margin in South China Sea. Acta Petrolei Sinica, 31(4): 521-527(in Chinese with English abstract). Zhu, W. L., Zhong, K., Li, Y. C., et al., 2012. Characteristics of Hydrocarbon Accumulation and Exploration Potential of the Northern South China Sea Deepwater Basins. Chinese Science Bulletin, 57(24): 3121-3129. https://doi.org/10.1007/s11434-011-4940-y 陈文玲, 周文, 2012. 含油气盆地重要勘探领域——基岩油气藏. 西南石油大学学报(自然科学版), 34(5): 17-24. 戴金星, 倪云燕, 黄士鹏, 等, 2017. 中国天然气水合物气的成因类型. 石油勘探与开发, 44(6): 837-848. 翟普强, 陈红汉, 谢玉洪, 等, 2013. 琼东南盆地深水区超压演化与油气运移模拟. 中南大学学报, 44(10): 4188-4199. 杜浩, 2022. 琼东南盆地高效天然气输导系统及其对天然气水合物富集的影响(硕士学位论文). 武汉: 中国地质大学. 范廷恩, 牛涛, 范洪军, 等, 2021. 渤中19-6凝析气田太古界潜山储层地质模式及开发策略. 中国海上油气, 33(3): 85-92. 甘军, 季洪泉, 梁刚, 等, 2022. 琼东南盆地中生界潜山天然气成藏模式. 现代地质, 36(5): 1242-1253. 甘军, 张迎朝, 梁刚, 等, 2018. 琼东南盆地深水区天然气成藏过程及动力机制研究. 地质学报, 92(11): 2359-2367. doi: 10.3969/j.issn.0001-5717.2018.11.011 甘军, 张迎朝, 梁刚, 等, 2019. 琼东南盆地深水区烃源岩沉积模式及差异热演化. 地球科学, 44(8): 2627-2635. doi: 10.3799/dqkx.2019.202 何玉林, 梁金强, 石万忠, 等, 2022. 琼东南盆地南部低凸起及其周缘区天然气水合物富集影响因素和成藏模式. 地球科学, 47(5): 1711-1727. doi: 10.3799/dqkx.2021.207 侯明才, 何小胡, 金秋月, 等, 2023. 琼东南盆地中生代潜山成储主控因素及分布规律. 石油与天然气地质, 44(3): 637-650. 黄合庭, 黄保家, 黄义文, 等, 2017. 南海西部深水区大气田凝析油成因与油气成藏机制——以琼东南盆地陵水17-2气田为例. 石油勘探与开发, 44(3): 380-388. 蒋有录, 王鑫, 于倩倩, 等, 2016. 渤海湾盆地含油气凹陷压力场特征及与油气富集关系. 石油学报, 37(11): 1361-1369. doi: 10.7623/syxb201611004 康波, 2014. 琼东南盆地新生代沉降—热演化模拟(博士学位论文). 武汉: 中国地质大学. 李慧勇, 牛成民, 许鹏, 等, 2021. 渤中13-2大型整装覆盖型潜山油气田的发现及其油气勘探意义. 天然气工业, 41(2): 19-26. 李金帅, 李贤庆, 王元, 等, 2021. 琼东南盆地深水区烃源岩地球化学特征和生烃潜力评价. 矿业科学学报, 6(2): 166-175. 李胜勇, 胡林, 甘军, 等, 2021. 琼东南盆地深水区陵南低凸起古潜山油气成藏条件. 海洋地质前沿, 37(7): 68-75. 李兴, 尤丽, 詹冶萍, 等, 2023. 琼东南盆地松南-宝岛凹陷北部断阶带油气来源与成藏时间. 地球科学, 48(8): 3007-3020. doi: 10.3799/dqkx.2023.131 李绪深, 欧本田, 李强, 等, 2005. 莺-琼盆地三维压力场和油气运移. 地质科技情报, 24(3): 70-74. doi: 10.3969/j.issn.1000-7849.2005.03.014 李亚敏, 施小斌, 徐辉龙, 等, 2012. 琼东南盆地构造沉降的时空分布及裂后期异常沉降机制. 吉林大学学报(地球科学版), 42(1): 47-57, 65. 刘玉华, 王祥, 2011. 含油气盆地超压背景下油气成藏条件述评. 断块油气田, 18(1): 55-58. 施和生, 高阳东, 刘军, 等, 2022. 珠江口盆地惠州26洼"源-汇-聚"特征与惠州26-6大油气田发现启示. 石油与天然气地质, 43(4): 777-791. 宋爱学, 杨金海, 胡斌, 等, 2021. 琼东南盆地深水区古潜山裂缝性储层展布特征及有利区含油气性预测. 海洋地质前沿, 37(7): 60-67. 苏龙, 郑建京, 王琪, 等, 2012. 琼东南盆地超压研究进展及形成机制. 天然气地球科学, 23(4): 662-672. 王敏芳, 2003. 琼东南盆地超压特征及超压体与油气分布的关系. 海洋石油, 23(1): 15-22. 王耀华, 甘军, 梁刚, 等, 2022. 断裂-砂体-潜山复式天然气输导体系及成藏模式——以琼东南盆地深水区为例. 断块油气田, 29(3): 319-324. 王子嵩, 刘震, 王振峰, 等, 2014. 琼东南盆地深水区中央坳陷带异常压力分布特征. 地球学报, 35(3): 355-364. 吴伟涛, 高先志, 刘兴周, 等, 2014. 基岩油气藏的形成与分布. 地质科技情报, 33(1): 106-113. 夏青松, 黄成刚, 陆江, 2019. 沉积盆地中油气充注与储集层成岩作用的响应关系. 地球科学与环境学报, 41(2): 185-196. 谢辉, 周蒂, 石红才, 等, 2021. 珠江口盆地-琼东南盆地深水区新生代构造沉积演化对比分析. 海洋学报, 43(3): 48-61. 谢玉洪, 童传新, 范彩伟, 等, 2015. 琼东南盆地断裂系统特征与演化. 大地构造与成矿学, 39(5): 795-807. 徐守立, 尤丽, 毛雪莲, 等, 2019. 琼东南盆地松南低凸起周缘花岗岩潜山储层特征及控制因素. 地球科学, 44(8): 2717-2728. doi: 10.3799/dqkx.2019.186 姚哲, 王振峰, 左倩媚, 等, 2015. 琼东南盆地中央峡谷深水大气田形成关键要素与勘探前景. 石油学报, 36(11): 1358-1366. 衣健, 李慧勇, 单玄龙, 等, 2022. 渤海湾盆地渤中凹陷太古宇变质岩潜山储集层垂向结构单元划分与识别. 石油勘探与开发, 49(6): 1107-1118. 张功成, 冯杨伟, 屈红军, 2022. 全球5个深水盆地带油气地质特征. 中国石油勘探, 27(2): 11-26. 张启明, 董伟良, 2000. 中国含油气盆地中的超压体系. 石油学报, 21(6): 1-11. 周杰, 杨希冰, 杨金海, 等, 2019. 琼东南盆地松南低凸起古近系构造-沉积演化特征与天然气成藏. 地球科学, 44(8): 2704-2716. doi: 10.3799/dqkx.2019.104 朱伟林, 2010. 南海北部深水区油气地质特征. 石油学报, 31(4): 521-527. 祝建军, 张晓宝, 张功成, 等, 2011. 琼东南盆地异常压力分布与形成机理探讨. 天然气地球科学, 22(2): 324-330. -
dqkxzx-50-2-433-附表.xls
-