• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    内蒙古中部乌拉盖复式岩体古生代两期岩浆成因:古亚洲洋板块从前进式到后撤式俯冲-增生的岩浆响应

    姜冠哲 李舢 朱俊宾 郭东海 邱志毅 万雪

    姜冠哲, 李舢, 朱俊宾, 郭东海, 邱志毅, 万雪, 2025. 内蒙古中部乌拉盖复式岩体古生代两期岩浆成因:古亚洲洋板块从前进式到后撤式俯冲-增生的岩浆响应. 地球科学, 50(4): 1443-1469. doi: 10.3799/dqkx.2024.002
    引用本文: 姜冠哲, 李舢, 朱俊宾, 郭东海, 邱志毅, 万雪, 2025. 内蒙古中部乌拉盖复式岩体古生代两期岩浆成因:古亚洲洋板块从前进式到后撤式俯冲-增生的岩浆响应. 地球科学, 50(4): 1443-1469. doi: 10.3799/dqkx.2024.002
    Jiang Guanzhe, Li Shan, Zhu Junbin, Guo Donghai, Qiu Zhiyi, Wan Xue, 2025. Genesis of Paleozoic Two-Stage Magmatism of Wulagai Pluton in Central Inner Mongolia: Response to Tectonic Switch from Advancing to Retreating Subduction of Paleo-Asian Ocean Plate. Earth Science, 50(4): 1443-1469. doi: 10.3799/dqkx.2024.002
    Citation: Jiang Guanzhe, Li Shan, Zhu Junbin, Guo Donghai, Qiu Zhiyi, Wan Xue, 2025. Genesis of Paleozoic Two-Stage Magmatism of Wulagai Pluton in Central Inner Mongolia: Response to Tectonic Switch from Advancing to Retreating Subduction of Paleo-Asian Ocean Plate. Earth Science, 50(4): 1443-1469. doi: 10.3799/dqkx.2024.002

    内蒙古中部乌拉盖复式岩体古生代两期岩浆成因:古亚洲洋板块从前进式到后撤式俯冲-增生的岩浆响应

    doi: 10.3799/dqkx.2024.002
    基金项目: 

    国家自然科学基金项目 42161144007

    中科院人才项目择优支持 E3ER0401A2

    详细信息
      作者简介:

      姜冠哲(1998-),男,硕士研究生,构造地质学专业. ORCID:0009-0003-8214-5544. E-mail:80526026@qq.com

      通讯作者:

      李舢(1983-),男,教授,从事岩石大地构造研究. ORCID: 0000-0003-2639-3212. E-mail: lishan@ucas.ac.cn

    • 中图分类号: P581

    Genesis of Paleozoic Two-Stage Magmatism of Wulagai Pluton in Central Inner Mongolia: Response to Tectonic Switch from Advancing to Retreating Subduction of Paleo-Asian Ocean Plate

    • 摘要: 俯冲带是壳幔物质相互作用的重要场所,并伴随着不同时期和性质的岩浆活动.理解不同俯冲过程(例如前进式俯冲和后撤式俯冲)中的岩浆作用特征对深入认识造山带演化历史具有重要意义.对内蒙古中部东乌旗地区乌拉盖复式岩体内古生代侵入岩开展了锆石U-Pb年代学、全岩主-微量元素地球化学、全岩Sr-Nd同位素和锆石Hf同位素特征研究.LA-ICP-MS锆石U-Pb定年结果显示,岩体内辉长闪长岩形成时代为早奥陶世(~480 Ma);花岗质岩石年龄为348~344 Ma,为早石炭世岩浆活动的产物.早奥陶世辉长闪长岩(SiO2=51.27%~53.39%)相对富集轻稀土元素和Rb、Th、U等大离子亲石元素,亏损Nb、Ta等高场强元素,具有正的全岩εNdt)值(+3.3~+3.5)和锆石εHft)值(+7.3~+13.3)的特征,指示岩浆来源于受到俯冲板片流体交代的亏损岩石圈地幔部分熔融.早石炭世花岗质岩石根据地球化学性质可进一步分为两组.第1组主要为正长花岗岩,具有高的SiO2含量(76.19%~77.52%),高稀土总量,强Eu负异常,高10 000 Ga/Al值(3.90~5.95)和锆饱和温度(平均965℃)的特征,显示出A型花岗岩的特征;第2组主要为花岗斑岩和黑云母二长花岗岩,发育少量角闪石,其SiO2含量相对第1组偏低(70.67%~76.42%),且与P2O5呈负相关关系,铝饱和指数为0.97~1.1,显示出Ⅰ型花岗岩的特征.早石炭世两组花岗质岩石具有相似的Nd-Hf同位素特征(第1组εNdt)=+5.8~+6.3,εHft)=+11.8~+15.5;第2组εNdt)=+4.9~+5.1,εHft)= +11.6~+15.4),表明其岩浆可能源自于相似的新生地壳的部分熔融,但是经历了不同的岩浆演化过程.结合区域岩浆性质和演化特征,认为早古生代期间内蒙古中部地区为古亚洲洋板块的前进式俯冲,其至少在晚寒武世已俯冲至南蒙古地块南缘,如发育乌拉盖复式岩体内辉长闪长质弧岩浆岩;该前进式俯冲过程造成一系列弧地体拼贴到南蒙古地块南缘,晚志留世与南蒙古地块发生弧-陆碰撞.在晚泥盆世-早石炭世随着古亚洲洋板片回撤诱发弧后伸展,导致贺根山洋打开并形成了研究区内早石炭世早期的Ⅰ型和A型花岗质岩石.

       

    • 图  1  中亚造山带简图(a);中亚造山带东段构造简图(b);内蒙古中部地区构造单元图(c)

      EB.额尔古纳地块;XAT.兴安增生地体;SAT.松辽增生地体;JB.佳木斯地块;KB.兴凯地块;NAT.那丹哈达增生地体;XXS.新林-喜贵图缝合带;HHS.贺根山-黑河缝合带;MMS.牡丹江-依兰缝合带;SXCYS.索伦-西拉木伦-长春-延吉缝合带.图a据Şengör et al.(1993)修改;图b据Liu et al.(2021)修改;图c据Xiao et al.(2003)Song et al.(2015)修改

      Fig.  1.  Simplified geological sketch map of the central asian orogenic belt (a); simplified tectonic map of eastern central asian orogenic belt (b); simplified map of central Inner Mongolia showing the main tectonic subdivisions (c)

      图  2  乌拉盖复式岩体及周围地区地质图

      据内蒙古自治区地质局(1978)1∶20万额仁高壁公社幅地质图和内蒙古自治区地质局(1977)1∶20万乌拉盖幅地质图修改. 年龄数据引自:李红英等(2016)杨泽黎等(2018)Hu et al.(2020)杨泽黎等(2020)那福超等(2022)胡飞等(2023)

      Fig.  2.  Geological sketch map of the Wulagai pluton and surrounding area

      图  3  乌拉盖复式岩体古生代侵入岩显微照片

      a.辉长闪长岩;b.正长花岗岩;c.花岗斑岩;d.黑云母二长花岗岩. Af.碱性长石;Bt.黑云母;Cpx.单斜辉石;Hb.角闪石;Pl.斜长石;Q.石英

      Fig.  3.  Photomicrographs for Paleozoic intrusions of the Wulagai pluton

      图  4  乌拉盖复式岩体古生代侵入岩锆石阴极发光图像和U-Pb年龄谐和图

      红圈为U-Pb同位素分析点位,黄圈为Hf同位素分析点位

      Fig.  4.  Representative cathodoluminescence (CL) images of the dated zircons and zircon U-Pb concordia diagrams for Paleozoic intrusions of the Wulagai pluton

      图  5  乌拉盖复式岩体古生代侵入岩主量元素特征

      a.(Na2O+K2O)-SiO2图解;b. A/NK-A/CNK图解;c. K2O-SiO2图解;d.(FeOT/(FeOT+MgO))-SiO2图解. 兴安增生地体早石炭世花岗质岩石数据来自: Zhang et al.(2018)Zhou et al.(2018b)Ma et al.(2019)Li et al.(2020)

      Fig.  5.  Major element diagrams for Paleozoic intrusions of the Wulagai pluton

      图  6  乌拉盖复式岩体古生代侵入岩球粒陨石标准化稀土元素配分图(a, c, e)和原始地幔标准化微量元素蛛网图(b, d, f)

      标准化值据Sun and McDonough(1989). 兴安增生地体早石炭世花岗质岩石数据来自:Zhang et al.(2018)Zhou et al.(2018b)Ma et al.(2019)Li et al.(2020)

      Fig.  6.  Chondrite-normalized REE patterns (a, c, e) and primitive mantle-normalized trace element spider diagrams (b, d, f) for Paleozoic intrusions of the Wulagai pluton

      图  7  乌拉盖复式岩体古生代侵入岩全岩εNd(t)-年龄图解(a)和锆石εHf(t)-年龄图解(b)

      内蒙古中部古生代中酸性岩浆岩数据来引自:Chen et al.(2016)Shi et al.(2016)杨泽黎等(2017)唐建洲等(2018)Zhou et al.(2018b)李梦瞳等(2020)Yuan et al.(2022)

      Fig.  7.  Whole-rock εNd(t) vs. age diagram (a) and zircon εHf(t) vs. age diagram (b) for Paleozoic intrusions of the Wulagai pluton

      图  8  区域内古生代岩浆岩年龄直方图

      年龄数据来源见附表5

      Fig.  8.  Age histograms of Paleozoic magmatic rocks in the region

      图  9  兴安增生地体及邻近地区古生代岩浆岩分布

      Liu et al.(2021)修改

      Fig.  9.  Paleozoic magmatic rock distribution map in Xing'an accretionary terrane and adjacent areas

      图  10  Rb/Y-Nb/Y图解(a);Nb/Zr-Th/Zr图解(b);Sm/Yb-Sm图解(c);Sm/Yb-La/Sm图解(d);Th/Yb-Nb/Yb图解(e);Hf-Th-Ta图解(f)

      图c和图d中的数字为熔融程度;图f中,A.N-MORB;B.E-MORB和板内拉斑玄武岩;C.板内碱性玄武岩;D.弧玄武岩. 图a据Kepezhinskas et al.(1997);图b据Kepezhinskas et al.(1997);图c和图d据Aldanmaz et al.(2000);图e据Pearce(2014)

      Fig.  10.  Rb/Y vs. Nb/Y diagram (a); Nb/Zr vs. Th/Zr diagram (b); Sm/Yb vs. Sm diagram (c); Sm/Yb vs. La/Sm diagram(d); Th/Yb vs. Nb/Yb diagram (e); Hf vs. Th vs. Ta diagram (f)

      图  11  乌拉盖复式岩体古生代侵入岩哈克图解

      Fig.  11.  Haker diagrams for Paleozoic intrusions of the Wulagai pluton

      图  12  乌拉盖复式岩体花岗质岩石类型判别图解

      图a~d据Whalen et al.(1987);图e~f据Eby(1992)

      Fig.  12.  Rock type discrimination diagrams for granitoids of the Wulagai pluton

      图  13  内蒙古中部地区古生代构造演化简图

      Xiao et al.(2015)Yuan et al.(2022)修改

      Fig.  13.  Sketch map of geodynamic evolution during Paleozoic in central Inner Mongolia

    • Aldanmaz, E., Pearce, J. A., Thirlwall, M. F., et al., 2000. Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1-2): 67-95. https://doi.org/10.1016/S0377-0273(00)00182-7
      Beltrando, M., Hermann, J., Lister, G., et al., 2007. On the Evolution of Orogens: Pressure Cycles and Deformation Mode Switches. Earth and Planetary Science Letters, 256(3-4): 372-388. https://doi.org/10.1016/j.epsl.2007.01.022
      Bonin, B., 2007. A-Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos, 97(1/2): 1-29. https://doi.org/10.1016/j.lithos.2006.12.007
      Cawood, P. A., Kröner, A., Collins, W. J., et al., 2009. Accretionary Orogens through Earth History. In: Cawood, P. A., Kröner, A., eds., Earth Accretionary Systems in Space and Time. Geological Society, London, Special Publications, 318(1): 1-36. https://doi.org/10.1016/b0-08-043751-6/03016-4
      Chappell, B. W., 1999. Aluminium Saturation in Ⅰ- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3): 535-551. https://doi.org/10.1016/S0024-4937(98)00086-3
      Chappell, B. W., White, A. J. R., 1992. Ⅰ- and S-Type Granites in the Lachlan Fold Belt. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1-2): 1-26. https://doi.org/10.1017/s0263593300007720
      Chen, B., Jahn, B. M., Tian, W., 2009. Evolution of the Solonker Suture Zone: Constraints from Zircon U-Pb Ages, Hf Isotopic Ratios and Whole-Rock Nd-Sr Isotope Compositions of Subduction- and Collision-Related Magmas and Forearc Sediments. Journal of Asian Earth Sciences, 34(3): 245-257. https://doi.org/10.1016/j.jseaes.2008.05.007
      Chen, B., Jahn, B. M., Wilde, S., et al., 2000. Two Contrasting Paleozoic Magmatic Belts in Northern Inner Mongolia, China: Petrogenesis and Tectonic Implications. Tectonophysics, 328(1-2): 157-182. https://doi.org/10.1016/S0040-1951(00)00182-7
      Chen, Y., Zhang, Z. C., Li, K., et al., 2016. Geochemistry and Zircon U-Pb-Hf Isotopes of Early Paleozoic Arc-Related Volcanic Rocks in Sonid Zuoqi, Inner Mongolia: Implications for the Tectonic Evolution of the Southeastern Central Asian Orogenic Belt. Lithos, 264: 392-404. https://doi.org/10.1016/j.lithos.2016.09.009
      Chen, Y., Zhang, Z. C., Qian, X. Y., et al., 2020. Early to Mid-Paleozoic Magmatic and Sedimentary Records in the Bainaimiao Arc: An Advancing Subduction-Induced Terrane Accretion along the Northern Margin of the North China Craton. Gondwana Research, 79: 263-282. https://doi.org/10.1016/j.gr.2019.08.012
      Cheng, Y. H., Li, Y. F., Li, M., et al., 2014. Geochronology and Petrogenesis of the Alkaline Pluton in Dong Ujimqi, Inner Mongolia and Its Tectonic Implications. Acta Geologica Sinica, 88(11): 2086-2096(in Chinese with English abstract).
      Cheng, Y. H., Teng, X. J., Li, Y. F., et al., 2014. Early Permian East-Ujimqin Mafic-Ultramafic and Granitic Rocks from the Xing'an-Mongolian Orogenic Belt, North China: Origin, Chronology, and Tectonic Implications. Journal of Asian Earth Sciences, 96: 361-373. https://doi.org/10.1016/j.jseaes.2014.09.027
      Clemens, J. D., Holloway, J. R., White, A. J. R., 1986. Origin of an A-Type Granite: Experimental Constraints. American Mineralogist, 71(3-4): 317-324.
      Collins, W. J., 2002. Hot Orogens, Tectonic Switching, and Creation of Continental Crust. Geology, 30(6): 535-538. https://doi.org:10.1130/0091-7613(2002)030<0535:Hotsac>2.0.Co;2 doi: 10.1130/0091-7613(2002)030<0535:Hotsac>2.0.Co;2
      Collins, W. J., Beams, S. D., White, A. J. R., et al., 1982. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200. https://doi.org/10.1007/BF00374895
      Collins, W. J., Belousova, E. A., Kemp, A. I. S., et al., 2011. Two Contrasting Phanerozoic Orogenic Systems Revealed by Hafnium Isotope Data. Nature Geoscience, 4: 333-337. https://doi.org/10.1038/ngeo1127
      Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641-644. https://doi.org/10.1130/0091-7613(1992)0200641:csotat>2.3.co;2 doi: 10.1130/0091-7613(1992)0200641:csotat>2.3.co;2
      Feng, Z. Q., Li, W. M., Liu, Y. J., et al., 2018. Early Carboniferous Tectonic Evolution of the Northern Heihe-Nenjiang-Hegenshan Suture Zone, NE China: Constraints from the Mylonitized Nenjiang Rhyolites and the Moguqi Gabbros. Geological Journal, 53(3): 1005-1021. https://doi.org/10.1002/gj.2940
      Finzel, E. S., Trop, J. M., Ridgway, K. D., et al., 2011. Upper Plate Proxies for Flat-Slab Subduction Processes in Southern Alaska. Earth and Planetary Science Letters, 303(3-4): 348-360. https://doi.org/10.1016/j.epsl.2011.01.014
      Fu, D., Huang, B., Peng, S. B., et al., 2016. Geochronology and Geochemistry of Late Carboniferous Volcanic Rocks from Northern Inner Mongolia, North China: Petrogenesis and Tectonic Implications. Gondwana Research, 36: 545-560. https://doi.org/10.1016/j.gr.2015.08.007
      Ge, M. C., Zhou, W. X., Yu, Y., et al., 2011. Dissolution and Supracrustal Rocks Dating of Xilin Gol Complex, Inner Mongolia, China. Earth Science Frontiers, 18(5): 182-195(in Chinese with English abstract).
      Ge, W. C., Wu, F. Y., Zhou, C. Y., et al., 2007. Metallogenic Age of Porphyry Cu and Mo Deposits in the Eastern Part of Xingmeng Orogenic Belt and Its Geodynamic Significance. Chinese Science Bulletin, 52(20): 2407-2417(in Chinese). doi: 10.1360/csb2007-52-20-2407
      Gerya, T. V., Fossati, D., Cantieni, C., et al., 2009. Dynamic Effects of a Seismic Ridge Subduction: Numerical Modelling. European Journal of Mineralogy, 21(3): 649-661. https://doi.org/10.1127/0935-1221/2009/0021-1931
      Guo, F., Fan, W. M., Li, C. W., et al., 2009. Early Paleozoic Paleo-Asian Ocean Subduction: Chronological and Geochemical Evidence from Dashizhai Basalt in Inner Mongolia. Science in China (Series D (Earth Sciences)), 39(5): 569-579(in Chinese).
      Gutscher, M. A., Spakman, W., Bijwaard, H., et al., 2000. Geodynamics of Flat Subduction: Seismicity and Tomographic Constraints from the Andean Margin. Tectonics, 19(5): 814-833. https://doi.org/10.1029/1999TC001152
      Han, B. F., Zhang, C., Zhao, L., et al., 2010. A Preliminary Study of Granitoids in Western Inner Mongolia. Acta Petrologica et Mineralogica, 29(6): 741-749(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2010.06.011
      He, Y., Xu, B., Zhang, L. Y., et al., 2018. Discovery of a Late Devonian Retroarc Foreland Basin in Sunid Zuoqi, Inner Mongolia and Its Tectonic Implications. Acta Petrologica Sinica, 34(10): 3071-3082(in Chinese with English abstract).
      Hou, K. J., Li, Y. H., Zou, T. R., et al., 2007. Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications. Acta Petrologica Sinica, 23(10): 2595-2604(in Chinese with English abstract).
      Hu, F., Huang, W., He, X., et al., 2023. Geochronology and Geochemistry of Hailesitai Pluton in East Ujimqin Banner of Inner Mongolia and Their Geological Significance. Geological Review, 69(1): 199-218(in Chinese with English abstract).
      Hu, F., Huang, W., Yang, Z. L., et al., 2020. Geochemistry and Zircon U-Pb-Hf Isotopes of the Mante Aobao Granite Porphyry at East Ujimqin Banner, Inner Mongolia: Implications for Petrogenesis and Tectonic Setting. Geological Magazine, 157(7): 1068-1086. https://doi.org/10.1017/s0016756819001274
      Huang, B., Fu, D., Li, S. C., et al., 2016. The Age and Tectonic Implications of the Hegenshan Ophiolite in Inner Mongolia. Acta Petrologica Sinica, 32(1): 158-176(in Chinese with English abstract).
      Jara, J. J., Barra, F., Reich, M., et al., 2021. Episodic Construction of the Early Andean Cordillera Unravelled by Zircon Petrochronology. Nature Communications, 12(1): 4930. https://doi.org/10.1038/s41467-021-25232-z
      Jian, P., Kröner, A., Windley, B. F., et al., 2012. Carboniferous and Cretaceous Mafic–Ultramafic Massifs in Inner Mongolia (China): A SHRIMP Zircon and Geochemical Study of the Previously Presumed Integral "Hegenshan Ophiolite". Lithos, 142: 48-66. https://doi.org/10.1016/j.lithos.2012.03.007
      Jian, P., Liu, D. Y., Kröner, A., et al., 2008. Time Scale of an Early to Mid-Paleozoic Orogenic Cycle of the Long-Lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for Continental Growth. Lithos, 101(3-4): 233-259. https://doi.org/10.1016/j.lithos.2007.07.005
      Jiang, Y. H., Wang, G. C., Qing, L., et al., 2017. Early Jurassic A-Type Granites in Southeast China: Shallow Dehydration Melting of Early Paleozoic Granitoids by Basaltic Magma Intraplating. Journal of Geology, 125(3): 351-366. https://doi.org/10.1086/691242
      Kemp, A. I. S., Hawkesworth, C. J., Collins, W. J., et al., 2009. Isotopic Evidence for Rapid Continental Growth in an Extensional Accretionary Orogen: The Tasmanides, Eastern Australia. Earth and Planetary Science Letters, 284(3-4): 455-466. https://doi.org/10.1016/j.epsl.2009.05.011
      Kepezhinskas, P., McDermott, F., Defant, M. J., et al., 1997. Trace Element and Sr-Nd-Pb Isotopic Constraints on a Three-Component Model of Kamchatka Arc Petrogenesis. Geochimica et Cosmochimica Acta, 61(3): 577-600. https://doi.org/10.1016/S0016-7037(96)00349-3
      King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391. https://doi.org/10.1093/petroj/38.3.371
      Li, H. Y., Zhou, Z. G., Li, P. J., et al., 2016. Geochemical Features and Significance of Late Ordovician Gabbros in East Ujimqin Banner, Inner Mongolia. Geological Review, 62(2): 300-316(in Chinese with English abstract).
      Li, M. T., Tang, J., Wang, Z. W., et al., 2020. Geochronology and Geochemistry of the Early Carboniferous Volcanic Rocks in Sonid Zuoqi, Inner Mongolia: Implication for the Carboniferous Tectonic Evolution and Crustal Nature of the Eastern Central Asia Orogenic Belt. Acta Petrologica Sinica, 36: 799-819. https://doi.org/10.18654/1000-0569/2020.03.10
      Li, M. T., Tang, J., Wang, Z. W., et al., 2020. Geochronology and Geochemistry of the Early Carboniferous Volcanic Rocks in Sonid Zuoqi, Inner Mongolia: Implication for the Carboniferous Tectonic Evolution and Crustal Nature of the Eastern Central Asia Orogenic Belt. Acta Petrologica Sinica, 36(3): 799-819(in Chinese with English abstract).
      Li, S. Z., Suo, Y. H., Li, X. Y., et al., 2019. Mesozoic Tectono-Magmatic Response in the East Asian Ocean-Continent Connection Zone to Subduction of the Paleo-Pacific Plate. Earth-Science Reviews, 192: 91-137. https://doi.org/10.1016/j.earscirev.2019.03.003
      Li, H. Y., Zhou, Z. G., Li, P. J., et al., 2016a. Ordovician Intrusive Rocks from the Eastern Central Asian Orogenic Belt in Northeast China: Chronology and Implications for Bidirectional Subduction of the Early Palaeozoic Palaeo-Asian Ocean. International Geology Review, 58(10): 1175-1195. https://doi.org/10.1080/00206814.2015.1135762
      Li, S., Chung, S. L., Wilde, S. A., et al., 2016b. Linking Magmatism with Collision in an Accretionary Orogen. Scientific Reports, 6: 25751. https://doi.org:10.1038/srep25751
      Li, S., Chung, S. L., Wilde, S. A., et al., 2017a. Early-Middle Triassic High Sr/Y Granitoids in the Southern Central Asian Orogenic Belt: Implications for Ocean Closure in Accretionary Orogens. Journal of Geophysical Research: Solid Earth, 122(3): 2291-2309. https://doi.org:10.1002/2017jb014006
      Li, Y. L., Brouwer, F. M., Xiao, W. J., et al., 2017b. Late Devonian to Early Carboniferous Arc-Related Magmatism in the Baolidao Arc, Inner Mongolia, China: Significance for Southward Accretion of the Eastern Central Asian Orogenic Belt. Geological Society of America Bulletin, 129(5/6): 677-697. https://doi.org/10.1130/b31511.
      Li, S., Wang, T., Xiao, W. J., et al., 2023. Tectono-Magmatic Evolution from Accretion to Collision in the Southern Margin of the Central Asian Orogenic Belt. Acta Petrologica Sinica, 39(5): 1261-1275(in Chinese with English abstract).
      Li, Y., Xu, W. L., Tang, J., et al., 2020. Late Paleozoic Igneous Rocks in the Xing'an Massif and Its Amalgamation with the Songnen Massif, NE China. Journal of Asian Earth Sciences, 197: 104407. https://doi.org/10.1016/j.jseaes.2020.104407
      Li, Y., Xu, W. L., Wang, F., et al., 2018. Early-Middle Ordovician Volcanism along the Eastern Margin of the Xing'an Massif, Northeast China: Constraints on the Suture Location between the Xing'an and Songnen-Zhangguangcai Range Massifs. International Geology Review, 60(16): 2046-2062. https://doi.org/10.1080/00206814.2017.1402378
      Li, Y. L., Zhou, H. W., Brouwer, F. M., et al., 2011. Tectonic Significance of the Xilin Gol Complex, Inner Mongolia, China: Petrological, Geochemical and U-Pb Zircon Age Constraints. Journal of Asian Earth Sciences, 42(5): 1018-1029. https://doi.org/10.1016/j.jseaes.2010.09.009
      Lin, M., Ma, C. Q., Xu, L. M., et al., 2019. Geological Characteristics of Subduction-Accretionary Complexes in Hellestein District, Inner Mongolia and Its Discovery Significance. Earth Science, 44(10): 3279-3296(in Chinese with English abstract).
      Liu, B., Jin, S. K., Ma, M., et al., 2023. Petrogenesis of the Baoligaomiao Volcanic Rocks in the Abaga Banner, Inner Mongolia: Implications for Evolution of the Eastern Paleo Asian Ocean. Earth Science, 48(9): 3312-3326(in Chinese with English abstract).
      Lister, G., Forster, M., 2009. Tectonic Mode Switches and the Nature of Orogenesis. Lithos, 113(1-2): 274-291. https://doi.org/10.1016/j.lithos.2008.10.024
      Liu, J. F., Li, J. Y., Chi, X. G., et al., 2013. A Late-Carboniferous to Early Early-Permian Subduction-Accretion Complex in Daqing Pasture, Southeastern Inner Mongolia: Evidence of Northward Subduction beneath the Siberian Paleoplate Southern Margin. Lithos, 177: 285-296. https://doi.org/10.1016/j.lithos.2013.07.008
      Liu, Y. J., Li, W. M., Ma, Y. F., et al., 2021. An Orocline in the Eastern Central Asian Orogenic Belt. Earth-Science Reviews, 221: 103808. https://doi.org/10.1016/j.earscirev.2021.103808
      Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434-010-3052-4
      Lu, L., Qin, Y., Zhang, K. J., et al., 2020a. Petrogenesis of Post-Collisional Magmatism at the Carboniferous-Permian Boundary in Central Inner Mongolia, NE China: Insights into When the Hegenshan Ocean Closed? International Geology Review, 62(16): 2013-2038. https://doi.org/10.1080/00206814.2019.1683767
      Lu, L., Qin, Y., Zhang, K. J., et al., 2020b. Provenance and Tectonic Settings of the Late Paleozoic Sandstones in Central Inner Mongolia, NE China: Constraints on the Evolution of the Southeastern Central Asian Orogenic Belt. Gondwana Research, 77: 111-135. https://doi.org/10.1016/j.gr.2019.07.006
      Ma, Y. F., Liu, Y. J., Wang, Y., et al., 2019. Geochronology and Geochemistry of the Carboniferous Felsic Rocks in the Central Great Xing'an Range, NE China: Implications for the Amalgamation History of Xing'an and Songliao-Xilinhot Blocks. Geological Journal, 54(1): 482-513. https://doi.org/10.1002/gj.3198
      McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3-4): 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
      Miao, L. C., Fan, W. M., Liu, D. Y., et al., 2008. Geochronology and Geochemistry of the Hegenshan Ophiolitic Complex: Implications for Late-Stage Tectonic Evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China. Journal of Asian Earth Sciences, 32(5-6): 348-370. https://doi.org/10.1016/j.jseaes.2007.11.005
      Na, F. C., Wu, Y., Song, W. M., et al., 2022. Geochronology, Petrogenesis, and Tectonic Implications of Early Paleozoic Intermediate-Basic Complex of East Ujimqin Banner Area. Acta Petrologica Sinica, 38(9): 2762-2780(in Chinese with English abstract).
      Norrish, K., Hutton, J. T., 1969. An Accurate X-Ray Spectrographic Method for the Analysis of a Wide Range of Geological Samples. Geochimica et Cosmochimica Acta, 33(4): 431-453. https://doi.org/10.1016/0016-7037(69)90126-4
      Patiño Douce, A. E., 1997. Generation of Metaluminous A-Type Granites by Low-Pressure Melting of Calc-Alkaline Granitoids. Geology, 25(8): 743. https://doi.org/10.1130/0091-7613(1997)0250743:gomatg>2.3.co;2 doi: 10.1130/0091-7613(1997)0250743:gomatg>2.3.co;2
      Pearce, J. A., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. In: Thorpe, R. S., ed., Orogenic Andesites and Related Rocks. John Wiley and Sons, Chichester, 528-548.
      Pearce, J. A., 2014. Immobile Element Fingerprinting of Ophiolites. Elements, 10(2): 101-108. https://doi.org/10.2113/gselements.10.2.101
      Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Heinrich, D. H., Karl, K. T., eds., Treatise on Geochemistry. Elsevier, Amsterdam. https://doi.org/10.1016/b0-08-043751-6/03016-4
      Şengör, A. M. C., Natal'in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299-307. https://doi.org/10.1038/364299a0
      Shi, G. H., Liu, D. Y., Zhang, F. Q., et al., 2003. SHRIMP Zircon U-Pb Geochronology of Xilinguole Complex in Inner Mongolia, China and Its Significance. Chinese Science Bulletin, 48(20): 2187-2192(in Chinese).
      Shi, Y. R., Jian, P., Kröner, A., et al., 2016. Zircon Ages and Hf Isotopic Compositions of Ordovician and Carboniferous Granitoids from Central Inner Mongolia and Their Significance for Early and Late Paleozoic Evolution of the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 117: 153-169. https://doi.org/10.1016/j.jseaes.2015.12.007
      Shi, Y. R., Liu, D. Y., Zhang, Q., et al., 2004. SHRIMP Dating of Diorites and Granites in Southern Suzuoqi, Inner Mongolia. Acta Geologica Sinica, 78(6): 789-799(in Chinese with English abstract).
      Shi, Y. R., Liu, D. Y., Zhang, Q., et al., 2007. SHRIMP U-Pb Zircon Dating of Triassic A-Type Granites in Sonid Zuoqi, Central Inner Mongolia, China, and Its Tectonic Implications. Geological Bulletin of China, 26(2): 183-189(in Chinese with English abstract).
      Song, S. G., Wang, M. M., Xu, X., et al., 2015. Ophiolites in the Xing'an-Inner Mongolia Accretionary Belt of the CAOB: Implications for Two Cycles of Seafloor Spreading and Accretionary Orogenic Events. Tectonics, 34(10): 2221-2248. https://doi.org/10.1002/2015TC003948
      Spencer, C. J., Roberts, N. M. W., Santosh, M., 2017. Growth, Destruction, and Preservation of Earth's Continental Crust. Earth-Science Reviews, 172: 87-106. https://doi.org/10.1016/j.earscirev.2017.07.013
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Tang, J. Z., Zhang, Z. C., Chen, Y., et al., 2018. Geochronology, Geochemistry and Zircon Hf Isotope of Early Paleozoic Igneous Rocks in Sonid Zuoqi, Central Inner Mongolia and Their Tectonic Significances. Acta Petrologica Sinica, 34(10): 2973-2994(in Chinese with English abstract).
      Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford
      Thompson, R. N., Morrison, M. A., 1988. Asthenospheric and Lower-Lithospheric Mantle Contributions to Continental Extensional Magmatism: An Example from the British Tertiary Province. Chemical Geology, 68(1-2): 1-15. https://doi.org/10.1016/0009-2541(88)90082-4
      Tian, D. X., Yang, H., Ge, W. C., et al., 2018. Petrogenesis and Tectonic Implications of Late Carboniferous Continental Arc High-K Granites in the Dongwuqi Area, Central Inner Mongolia, North China. Journal of Asian Earth Sciences, 167: 82-102. https://doi.org/10.1016/j.jseaes.2018.07.010
      Tong, Y., Jahn, B. M., Wang, T., et al., 2015. Permian Alkaline Granites in the Erenhot-Hegenshan Belt, Northern Inner Mongolia, China: Model of Generation, Time of Emplacement and Regional Tectonic Significance. Journal of Asian Earth Sciences, 97: 320-336. https://doi.org/10.1016/j.jseaes.2014.10.011
      Turner, S. P., Foden, J. D., Morrison, R. S., 1992. Derivation of Some A-Type Magmas by Fractionation of Basaltic Magma: An Example from the Padthaway Ridge, South Australia. Lithos, 28(2): 151-179. https://doi.org/10.1016/0024-4937(92)90029-X
      Wang, Q., Zhao, Z. H., Xiong, X. L., 2000. The Ascertainment of Late-Yanshanian A-Type Granite in Tongbai-Dabie Orogenic Belt. Acta Petrrologica et Mineralogica, 19(4): 297-306, 315(in Chinese with English abstract).
      Wang, X. S., Klemd, R., Gao, J., et al., 2021. Early Devonian Tectonic Conversion from Contraction to Extension in the Chinese Western Tianshan: A Response to Slab Rollback. GSA Bulletin, 133(7-8): 1613-1633. https://doi.org/10.1130/b35760.1
      Wang, Z. G., Li, K., Zhang, Z. C., et al., 2022. Carboniferous to Early Permian Magmatism in the Uliastai Continental Margin (Inner Mongolia) and Its Correlation with the Tectonic Evolution of the Hegenshan Ocean. Lithos, 414: 106635. https://doi.org/10.1016/j.lithos.2022.106635
      Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012-821X(83)90211-X
      Wei, R. H., Gao, Y. F., Xu, S. C., et al., 2018. Carboniferous Continental Arc in the Hegenshan Accretionary Belt: Constrains from Plutonic Complex in Central Inner Mongolia. Lithos, 308: 242-261. https://doi.org/10.1016/j.lithos.2018.03.010
      Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202
      Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47. https://doi.org/10.1144/0016-76492006-022
      Wu, F. Y., Li, X. H., Yang, J. H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6): 1217-1238(in Chinese with English abstract).
      Wu, F. Y., Sun, D. Y., Ge, W. C., et al., 2011. Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30. https://doi.org/10.1016/j.jseaes.2010.11.014
      Wu, G., Chen, Y. C., Sun, F. Y., et al., 2015. Geochronology, Geochemistry, and Sr-Nd-Hf Isotopes of the Early Paleozoic Igneous Rocks in the Duobaoshan Area, NE China, and Their Geological Significance. Journal of Asian Earth Sciences, 97: 229-250. https://doi.org/10.1016/j.jseaes.2014.07.031
      Xiao, W. J., Song, D. F., Windley, B. F., et al., 2019. Research Progress on Accretion Orogeny and Mineralization in Central Asia. Scientia Sinica (Terrae), 49(10): 1512-1545(in Chinese).
      Xiao, W. J., Windley, B. F., Han, C. M., et al., 2018. Late Paleozoic to Early Triassic Multiple Roll-Back and Oroclinal Bending of the Mongolia Collage in Central Asia. Earth-Science Reviews, 186: 94-128. https://doi.org/10.1016/j.earscirev.2017.09.020
      Xiao, W. J., Windley, B. F., Hao, J., et al., 2003. Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics, 22(6): 1069. https://doi.org/10.1029/2002tc001484
      Xiao, W. J., Windley, B. F., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43: 477-507. https://doi.org/10.1146/annurev-earth-060614-105254
      Xu, B., Charvet, J., Chen, Y., et al., 2013. Middle Paleozoic Convergent Orogenic Belts in Western Inner Mongolia (China): Framework, Kinematics, Geochronology and Implications for Tectonic Evolution of the Central Asian Orogenic Belt. Gondwana Research, 23(4): 1342-1364. https://doi.org/10.1016/j.gr.2012.05.015
      Xu, B., Charvet, J., Zhang, F. Q., 2001. Primary Study on Petrology and Geochrononology of Blueschists in Sunitezuoqi, Northern Inner Mongolia. Chinese Journal of Geology (Scientia Geologica Sinica), 36(4): 424-434(in Chinese with English abstract).
      Xu, B., Chen, B., Shao, J. A., 1996. Sm-Nd, Rb-Sr Isotopic Dating of Xilinguole Complex in Inner Mongolia. Chinese Science Bulletin, 41(2): 153-155(in Chinese).
      Xu, B., Zhao, G. C., Li, J. H., et al., 2017. Ages and Hf Isotopes of Detrital Zircons from Paleozoic Strata in the Chagan Obo Temple Area, Inner Mongolia: Implications for the Evolution of the Central Asian Orogenic Belt. Gondwana Research, 43: 149-163. https://doi.org/10.1016/j.gr.2016.08.004
      Xue, H. M., Guo, L. J., Hou, Z. Q., et al., 2009. The Xilingeie Complex from the Eastern Part of the Central Asian-Mongolia Orogenic Belt, China: Products of Early Variscan Orogeny Other than Ancient Block: Evidence from Zircon SHRIMP U-Pb Ages. Acta Petrologica Sinica, 25(8): 2001-2010(in Chinese with English abstract).
      Yang, J. H., Wu, F. Y., Chung, S. L., et al., 2006. A Hybrid Origin for the Qianshan A-Type Granite, Northeast China: Geochemical and Sr-Nd-Hf Isotopic Evidence. Lithos, 89(1-2): 89-106. https://doi.org/10.1016/j.lithos.2005.10.002
      Yang, Z. L., Hu, X. J., Wang, S. Q., et al., 2020. Geochronology, Geochemistry and Geological Significance of Early Paleozoic Volcanic Rocks in Northern East Ujimqin Banner, Inner Mongolia. Acta Petrologica Sinica, 36(4): 1107-1126(in Chinese with English abstract).
      Yang, Z. L., Wang, S. Q., Hu, X. J., et al., 2017. Petrogenesis of the Early Paleozoic Jiergalangtu Pluton in Inner Mongolia: Constraints from Geochronology, Geochemistry and Nd-Hf Isotopes. Geological Bulletin of China, 36(8): 1369-1384(in Chinese with English abstract).
      Yang, Z. L., Wang, S. Q., Hu, X. J., et al., 2018. Geochronology and Geochemistry of Early Paleozoic Gabbroic Diorites in East Ujimqin Banner of Inner Mongolia and Their Geological Significance. Acta Petrologica et Mineralogica, 37(3): 349-365(in Chinese with English abstract).
      Yu, Y., Chen, Z. B., Zhou, W. X., et al., 2017. Tectonic Background and Deposition Epoch of the Tongshan Formation in Wayao Area of Dong Ujimqin Banner, Inner Mongolia. Geological Bulletin of China, 36(10): 1814-1822(in Chinese with English abstract).
      Yuan, L. L., Zhang, X. H., Yang, Z. L., 2022. The Timeline of Prolonged Accretionary Processes in Eastern Central Asian Orogenic Belt: Insights from Episodic Paleozoic Intrusions in Central Inner Mongolia, North China. GSA Bulletin, 134(3-4): 629-657. https://doi.org/10.1130/b35907.1
      Zhang, J. M., Xu, B., Yan, L. J., et al., 2020. Evolution of the Heihe-Nenjiang Ocean in the Eastern Paleo-Asian Ocean: Constraints of Sedimentological, Geochronological and Geochemical Investigations from Early-Middle Paleozoic Heihe-Dashizhai Orogenic Belt in the Northeast China. Gondwana Research, 81: 339-361. https://doi.org/10.1016/j.gr.2019.11.006
      Zhang, S. H., Zhao, Y., Ye, H., et al., 2014. Origin and Evolution of the Bainaimiao Arc Belt: Implications for Crustal Growth in the Southern Central Asian Orogenic Belt. Geological Society of America Bulletin, 126(9-10): 1275-1300. https://doi.org/10.1130/b31042.1
      Zhang, X. R., Zhao, G. C., Han, Y. G., et al., 2019. Differentiating Advancing and Retreating Subduction Zones through Regional Zircon Hf Isotope Mapping: A Case Study from the Eastern Tianshan, NW China. Gondwana Research, 66: 246-254. https://doi.org/10.1016/j.gr.2018.10.009
      Zhang, Y., Pei, F. P., Wang, Z. W., et al., 2018. Late Paleozoic Tectonic Evolution of the Central Great Xing'an Range, Northeast China: Geochronological and Geochemical Evidence from Igneous Rocks. Geological Journal, 53(1): 282-303. https://doi.org/10.1002/gj.2891
      Zhang, Z. C., Li, K., Li, J. F., et al., 2015. Geochronology and Geochemistry of the Eastern Erenhot Ophiolitic Complex: Implications for the Tectonic Evolution of the Inner Mongolia-Daxinganling Orogenic Belt. Journal of Asian Earth Sciences, 97: 279-293. https://doi.org/10.1016/j.jseaes.2014.06.008
      Zhao, C., Qin, K. Z., Song, G. X., et al., 2019. Early Palaeozoic High-Mg Basalt-Andesite Suite in the Duobaoshan Porphyry Cu Deposit, NE China: Constraints on Petrogenesis, Mineralization, and Tectonic Setting. Gondwana Research, 71: 91-116. https://doi.org/10.1016/j.gr.2019.01.015
      Zhao, L. G., Ran, H., Zhang, Q. H., et al., 2012. Discovery of Ordovician Pluton in Abaga Banner, Inner Mongolia and Its Geological Significance. Global Geology, 31(3): 451-461(in Chinese with English abstract).
      Zhao, Z., Chi, X. G., Pan, S. Y., et al., 2010. Zircon U-Pb LA-ICP-MS Dating of Carboniferous Volcanics and Its Geological Significance in the Northwestern Lesser Xing'an Range. Acta Petrologica Sinica, 26(8): 2452-2464(in Chinese with English abstract).
      Zhao, Z. H., Qu, H., Li, C. L., et al., 2014. Zircon U-Pb Ages, Geochemical Characteristics and Tectonic Implications of the Early Paleozoic Granites in Huolongmen Area, Heilongjiang Province. Geology in China, 41(3): 773-783(in Chinese with English abstract).
      Zheng, R. G., Li, J. Y., Zhang, J., 2022. Juvenile Hafnium Isotopic Compositions Recording a Late Carboniferous-Early Triassic Retreating Subduction in the Southern Central Asian Orogenic Belt: A Case Study from the Southern Alxa. Geological Society of America Bulletin, 134(5-6): 1375-1396. https://doi.org/10.1130/B35991.1
      Zhou, H. S., Ma, C. Q., Zhang, C., et al., 2008. Yanshanian Aluminous A-Type Granitoids in the Chunshui of Biyang, South Margin of North China Craton: Implications from Petrology, Geochronology and Geochemistry. Acta Petrologica Sinica, 24(1): 49-64(in Chinese with English abstract).
      Zhou, H., Zhao, G. C., Han, Y. G., et al., 2018a. Geochemistry and Zircon U-Pb-Hf Isotopes of Paleozoic Intrusive Rocks in the Damao Area in Inner Mongolia, Northern China: Implications for the Tectonic Evolution of the Bainaimiao Arc. Lithos, 314: 119-139. https://doi.org/10.1016/j.lithos.2018.05.020
      Zhou, W. X., Zhao, X. C., Fu, D., et al., 2018b. Geochronology and Geochemistry of the Carboniferous Ulann Tolgoi Granite Complex from Northern Inner Mongolia, China: Petrogenesis and Tectonic Implications for the Uliastai Continental Margin. Geological Journal, 53(6): 2690-2709. https://doi.org/10.1002/gj.3104
      程银行, 李艳锋, 李敏, 等, 2014. 内蒙古东乌旗碱性侵入岩的时代、成因及地质意义. 地质学报, 88(11): 2086-2096.
      葛梦春, 周文孝, 于洋, 等, 2011. 内蒙古锡林郭勒杂岩解体及表壳岩系年代确定. 地学前缘, 18(5): 182-195.
      葛文春, 吴福元, 周长勇, 等, 2007. 兴蒙造山带东段斑岩型Cu, Mo矿床成矿时代及其地球动力学意义. 科学通报, 52(20): 2407-2417.
      郭锋, 范蔚茗, 李超文, 等, 2009. 早古生代古亚洲洋俯冲作用: 来自内蒙古大石寨玄武岩的年代学与地球化学证据. 中国科学(D辑: 地球科学), 39(5): 569-579.
      韩宝福, 张臣, 赵磊, 等, 2010. 内蒙古西部呼伦陶勒盖地区花岗岩类的初步研究. 岩石矿物学杂志, 29(6): 741-749.
      贺跃, 徐备, 张立杨, 等, 2018. 内蒙古苏尼特左旗晚泥盆世弧背前陆盆地的发现及构造意义. 岩石学报, 34(10): 3071-3082.
      侯可军, 李延河, 邹天人, 等, 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用. 岩石学报, 23(10): 2595-2604.
      胡飞, 黄蔚, 何翔, 等, 2023. 内蒙古东乌珠穆沁旗海勒斯台岩体的年代学和地球化学特征及其地质意义. 地质论评, 69(1): 199-218.
      黄波, 付冬, 李树才, 等, 2016. 内蒙古贺根山蛇绿岩形成时代及构造启示. 岩石学报, 32(1): 158-176.
      李红英, 周志广, 李鹏举, 等, 2016. 内蒙古东乌珠穆沁旗晚奥陶世辉长岩地球化学特征及其地质意义. 地质论评, 62(2): 300-316.
      李梦瞳, 唐军, 王志伟, 等, 2020. 内蒙中部苏左旗早石炭世火山岩年代学与地球化学研究: 对中亚造山带东部石炭纪构造演化和地壳属性的制约. 岩石学报, 36(3): 799-819.
      李舢, 王涛, 肖文交, 等, 2023. 中亚造山带东南缘从俯冲-增生到碰撞的构造-岩浆演化记录. 岩石学报, 39(5): 1261-1275.
      林敏, 马昌前, 徐立明, 等, 2019. 内蒙古海勒斯台俯冲增生混杂岩地质特征及发现的意义. 地球科学, 44(10): 3279-3296. doi: 10.3799/dqkx.2019.200
      刘博, 靳胜凯, 马明, 等, 2023. 内蒙古阿巴嘎旗地区宝力高庙组火山岩特征及对古亚洲洋东段演化的制约. 地球科学, 48(9): 3312-3326. doi: 10.3799/dqkx.2022.381
      那福超, 伍月, 宋维民, 等, 2022. 东乌旗地区早古生代中-基性杂岩锆石U-Pb年代学及地球化学特征. 岩石学报, 38(9): 2762-2780.
      施光海, 刘敦一, 张福勤, 等, 2003. 中国内蒙古锡林郭勒杂岩SHRIMP锆石U-Pb年代学及意义. 科学通报, 48(20): 2187-2192.
      石玉若, 刘敦一, 张旗, 等, 2004. 内蒙古苏左旗地区闪长-花岗岩类SHRIMP年代学. 地质学报, 78(6): 789-799.
      石玉若, 刘敦一, 张旗, 等, 2007. 内蒙古中部苏尼特左旗地区三叠纪A型花岗岩锆石SHRIMP U-Pb年龄及其区域构造意义. 地质通报, 26(2): 183-189.
      唐建洲, 张志诚, 陈彦, 等, 2018. 内蒙古中部苏尼特左旗地区早古生代火成岩年代学、地球化学、锆石Hf同位素特征及其构造意义. 岩石学报, 34(10): 2973-2994.
      王强, 赵振华, 熊小林, 2000. 桐柏-大别造山带燕山晚期A型花岗岩的厘定. 岩石矿物学杂志, 19(4): 297-306, 315.
      吴福元, 李献华, 杨进辉, 等, 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238.
      肖文交, 宋东方, Windley, B. F., 等, 2019. 中亚增生造山过程与成矿作用研究进展. 中国科学: 地球科学, 49(10): 1512-1545.
      徐备, Charvet, J., 张福勤, 2001. 内蒙古北部苏尼特左旗蓝片岩岩石学和年代学研究. 地质科学, 36(4): 424-434.
      徐备, 陈斌, 邵济安, 1996. 内蒙古锡林郭勒杂岩Sm-Nd, Rb-Sr同位素年代研究. 科学通报, 41(2): 153-155.
      薛怀民, 郭利军, 侯增谦, 等, 2009. 中亚-蒙古造山带东段的锡林郭勒杂岩: 早华力西期造山作用的产物而非古老陆块? : 锆石SHRIMP U-Pb年代学证据. 岩石学报, 25(8): 2001-2010.
      杨泽黎, 胡晓佳, 王树庆, 等, 2020. 内蒙古东乌旗北部早古生代火山岩年代学、地球化学特征及地质意义. 岩石学报, 36(4): 1107-1126.
      杨泽黎, 王树庆, 胡晓佳, 等, 2017. 内蒙古吉尔嘎郎图早古生代岩体成因: 年代学、地球化学及Nd-Hf同位素制约. 地质通报, 36(8): 1369-1384.
      杨泽黎, 王树庆, 胡晓佳, 等, 2018. 内蒙古东乌珠穆沁旗早古生代辉长闪长岩年代学和地球化学特征及地质意义. 岩石矿物学杂志, 37(3): 349-365.
      于洋, 陈智斌, 周文孝, 等, 2017. 内蒙古东乌旗瓦窑地区奥陶纪铜山组沉积时代及构造环境判别. 地质通报, 36(10): 1814-1822.
      赵利刚, 冉皞, 张庆红, 等, 2012. 内蒙古阿巴嘎旗奥陶纪岩体的发现及地质意义. 世界地质, 31(3): 451-461.
      赵芝, 迟效国, 潘世语, 等, 2010. 小兴安岭西北部石炭纪地层火山岩的锆石LA-ICP-MS U-Pb年代学及其地质意义. 岩石学报, 26(8): 2452-2464.
      赵忠海, 曲晖, 李成禄, 等, 2014. 黑龙江霍龙门地区早古生代花岗岩的锆石U-Pb年龄、地球化学特征及构造意义. 中国地质, 41(3): 773-783.
      周红升, 马昌前, 张超, 等, 2008. 华北克拉通南缘泌阳春水燕山期铝质A型花岗岩类: 年代学、地球化学及其启示. 岩石学报, 24(1): 49-64.
    • dqkxzx-50-4-1443-附表1-4.docx
      dqkxzx-50-4-1443-附表5.docx
    • 加载中
    图(13)
    计量
    • 文章访问数:  480
    • HTML全文浏览量:  193
    • PDF下载量:  42
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-10-28
    • 网络出版日期:  2025-05-10
    • 刊出日期:  2025-04-25

    目录

      /

      返回文章
      返回