• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    华南沿海地区白垩纪花岗岩多期构造裂缝发育特征及其对潜山勘探的指示

    孙侨阳 邓洪旦 纪沫 龚俊峰 董方 孙思瑶 王云龙 于志泉

    孙侨阳, 邓洪旦, 纪沫, 龚俊峰, 董方, 孙思瑶, 王云龙, 于志泉, 2024. 华南沿海地区白垩纪花岗岩多期构造裂缝发育特征及其对潜山勘探的指示. 地球科学, 49(7): 2570-2588. doi: 10.3799/dqkx.2024.005
    引用本文: 孙侨阳, 邓洪旦, 纪沫, 龚俊峰, 董方, 孙思瑶, 王云龙, 于志泉, 2024. 华南沿海地区白垩纪花岗岩多期构造裂缝发育特征及其对潜山勘探的指示. 地球科学, 49(7): 2570-2588. doi: 10.3799/dqkx.2024.005
    Sun Qiaoyang, Deng Hongdan, Ji Mo, Gong Junfeng, Dong Fang, Sun Siyao, Wang Yunlong, Yu Zhiquan, 2024. Characteristics of Multi-Phase Fracture Development in Cretaceous Granite from Coastal Region of South China and Its Implications for Buried-Hill Exploration. Earth Science, 49(7): 2570-2588. doi: 10.3799/dqkx.2024.005
    Citation: Sun Qiaoyang, Deng Hongdan, Ji Mo, Gong Junfeng, Dong Fang, Sun Siyao, Wang Yunlong, Yu Zhiquan, 2024. Characteristics of Multi-Phase Fracture Development in Cretaceous Granite from Coastal Region of South China and Its Implications for Buried-Hill Exploration. Earth Science, 49(7): 2570-2588. doi: 10.3799/dqkx.2024.005

    华南沿海地区白垩纪花岗岩多期构造裂缝发育特征及其对潜山勘探的指示

    doi: 10.3799/dqkx.2024.005
    基金项目: 

    国家自然科学基金面上项目 42272234

    详细信息
      作者简介:

      孙侨阳(1999-),女,硕士研究生,从事构造地质学研究. ORCID:0009-0002-4040-7588. E-mail:sunqiaoyang@zju.edu.cn

      通讯作者:

      邓洪旦,ORCID: 0000-0002-5546-3884. E-mail:denghongdan@zju.edu.cn

    • 中图分类号: P548

    Characteristics of Multi-Phase Fracture Development in Cretaceous Granite from Coastal Region of South China and Its Implications for Buried-Hill Exploration

    • 摘要: 裂缝的分布特征对花岗岩储层研究具有重要作用.结合无人机遥感技术和野外调查对华南沿海地区白垩纪花岗岩露头的构造裂缝进行数字化识别和定量研究.分析表明:研究区主要发育NE20°~40°和SE100°~140°两组裂缝,NE向裂缝形成时间早于SE向;多期构造变形会显著提高裂缝网络的连通度和面密度,连通度高值区广泛分布,面密度高值区集中分布在辉绿岩脉侵入区和断裂带内部;构造裂缝网络的线密度、面密度和连通度与断裂带规模呈正相关.构建了华南沿海地区白垩纪花岗岩多期构造裂缝的发育模式,指出断裂带和辉绿岩脉侵入区等裂缝交汇部位有利于形成优势储层,为海域花岗岩潜山的勘探开发提供重要指示.

       

    • 图  1  (a)华南地块断裂系统和岩浆平面分布图(改自Li et al.2012));(b)长乐‒南澳断裂带岩性‒构造单元划分及研究区位置(改自Wei et al.(2023)

      Fig.  1.  (a) Fault system and magma distribution in the South China block (modified from Li et al. (2012)); (b) lithologic and structural units along the Changle-Nanao fault belt (modified from Wei et al. (2023))

      图  2  华南中、新生代沉积‒构造演化综合柱状图(改自张岳桥等(2012)叶青等(2017)

      Fig.  2.  Mesozoic and Cenozoic tectonic-stratigraphic chart of the South China block (modified from Zhang et al. (2012) and Ye et al. (2017))

      图  3  节点和分支类型

      a. I型节点;b. Y型节点;c. X型节点;d.孤立型分支、半连接型分支和全连接型分支

      Fig.  3.  Types of node and branch

      图  4  (a)鹅尾山正射影像图;(b)鹅尾山构造裂缝网络分布图

      Fig.  4.  (a) Orthographic image of the Eweishan; (b) fracture network map produced by manual lineament picking on the orthographic image

      图  5  (a)鹅尾山裂缝走向的玫瑰花图;(b)野外测量的裂缝产状赤平投影图;(c)裂缝走向‒频数/长度统计图

      Fig.  5.  (a) Rose diagram of the fractures measured in Eweishan; (b) stereographic projection of fractures measured in the outcrop; (c) chart of fracture strike-frequency/length plots

      图  6  野外露头照片显示NE向充填的石英脉被SE向裂缝右行错开

      Fig.  6.  Field outcrop photos showing the NE quartz veins sinistrally offset by the SE fractures

      图  7  鹅尾山构造裂缝线密度分析图

      a.测线1;b.测线2;c.测线3;d.测线4

      Fig.  7.  Line density analysis of structural fractures in Eweishan

      图  8  一期NE向裂缝网络和两期叠加裂缝网络的节点三元图(a)和分支三元图(b)

      Fig.  8.  Ternary plots of nodes (a) and of branches (b) from one- and two-phase fracture network

      图  9  (a)鹅尾山一期NE向裂缝网络连通度分布图;(b)鹅尾山两期叠加裂缝网络连通度分布图;(c)鹅尾山一期NE向裂缝网络面密度分布图;(d)鹅尾山两期叠加裂缝网络面密度分布图

      Fig.  9.  (a) Connectivity distribution of one-phase NE fracture network in Eweishan; (b) connectivity distribution of two-phase superimposed fracture network in Eweishan; (c) fracture intensity distribution of one-phase NE fracture network in Eweishan; (d) fracture intensity distribution of two-phase superimposed fracture network in Eweishan

      图  10  一期与两期构造事件在断裂带、辉绿岩脉侵入区、围岩的裂缝发育情况和几何连通模式

      Fig.  10.  Fracture development and geometric connectivity patterns of one- and two-phase tectonic events in fault zone, diabase dike intrusion area and wall rock

      图  11  (a)断裂带内部露头1照片;(b)内部构造裂缝网络的几何连通情况;(c)测线1的线密度分析;(d)测线2的线密度分析

      Fig.  11.  (a) Outcrop 1 inside the Fz4; (b) patterns of structural fracture network connectivity in outcrop 1; (c) line density analysis of line 1; (d) line density analysis of line 2

      图  12  (a)断裂带内部露头2照片;(b)内部构造裂缝网络分布图;(c)构造裂缝网络的几何连通情况

      Fig.  12.  (a) Outcrop 2 inside the Fz4; (b) fracture network map produced by manual lineament picking on outcrop 2; (c) patterns of structural fracture network connectivity

      图  13  (a)海角一号正射影像图;(b)海角一号构造裂缝网络分布图

      Fig.  13.  (a) Orthographic image of the Haijiaoyihao; (b) fracture network map produced by manual lineament picking on the orthographic image

      图  14  (a)海角一号裂缝走向的玫瑰花图;(b)海角一号裂缝线密度分析;(c)裂缝走向‒频数/长度统计图

      Fig.  14.  (a) Rose diagram of the fractures measured in Haijiaoyihao; (b) line density analysis of structural fractures in Haijiaoyihao; (c) chart of fracture strike-frequency/length plots

      图  15  (a)海角一号一期NE向裂缝网络连通度分布图;(b)海角一号两期叠加裂缝网络连通度分布图;(c)海角一号一期NE向裂缝网络面密度分布图;(d)海角一号两期叠加裂缝网络面密度分布图

      Fig.  15.  (a) Connectivity distribution of one-phase NE fracture network in Haijiaoyihao; (b) connectivity distribution of two-phase superimposed fracture network in Haijiaoyihao; (c) fracture intensity distribution of one-phase NE fracture network in Haijiaoyihao; (d) fracture intensity distribution of two-phase superimposed fracture network in Haijiaoyihao

      图  16  一期与两期构造事件在辉绿岩脉侵入区、围岩的裂缝发育情况和几何连通模式

      Fig.  16.  Fracture development and geometric connectivity patterns of one- and two-phase tectonic events in diabase dike intrusion area and wall rock

      图  17  华南沿海地区白垩纪花岗岩潜山构造裂缝发育模式

      Fig.  17.  Block diagram showing tectonic fracture distribution patterns of Cretaceous granite buried hill in coastal region of South China

    • Bonato, J., Tognoli, F. M. W., Nogueira, F. C. C., et al., 2022. The Use of Network Topology to Assess Connectivity of Deformation Bands in Sandstone: A Quantitative Approach Based on Digital Outcrop Models. Journal of Structural Geology, 161: 104682. https://doi.org/10.1016/j.jsg.2022.104682
      Ceccato, A., Tartaglia, G., Antonellini, M., et al., 2022. Multiscale Lineament Analysis and Permeability Heterogeneity of Fractured Crystalline Basement Blocks. Solid Earth, 13(9): 1431-1453. https://doi.org/10.5194/se-13-1431-2022
      Choi, J. H., Edwards, P., Ko, K., et al., 2016. Definition and Classification of Fault Damage Zones: A Review and a New Methodological Approach. Earth-Science Reviews, 152: 70-87. https://doi.org/10.1016/j.earscirev.2015.11.006
      ChungHsiang, P. A., 1982. Petroleum in Basement Rocks. AAPG Bulletin, 66(10): 1597-1643. https://doi.org/10.1306/03B5A994-16D1-11D7-8645000102C1865D
      Cuong, T. X., Warren, J. K., 2009. Bach Ho Field, a Fractured Granitic Basement Reservoir, Cuu Long Basin, Offshore SE Vietnam: A "Buried-Hill" Play. Journal of Petroleum Geology, 32(2): 129-156. https://doi.org/10.1111/j.1747-5457.2009.00440.x
      Dimmen, V., Rotevatn, A., Peacock, D. C. P., et al., 2017. Quantifying Structural Controls on Fluid Flow: Insights from Carbonate-Hosted Fault Damage Zones on the Maltese Islands. Journal of Structural Geology, 101: 43-57. https://doi.org/10.1016/j.jsg.2017.05.012
      Dong, C. W., Zhou, C., Gu, H. Y., et al., 2011. The Age Difference, Geochemistry and Petrogenesis of Mafic Dikes and Host Granites from Meizhou Island in Fujian Province. Journal of Jilin University (Earth Science Edition), 41(3): 735-744 (in Chinese with English abstract).
      Du, X. Y., Jin, Z. J., Zeng, L. B., et al., 2023. Development Characteristics and Controlling Factors of Natural Fractures in Chang 7 Shale Oil Reservoir, Longdong Area, Ordos Basin. Earth Science, 48(7): 2589-2600 (in Chinese with English abstract).
      Duffy, O. B., Bell, R. E., Jackson, C. A. L., et al., 2015. Fault Growth and Interactions in a Multiphase Rift Fault Network: Horda Platform, Norwegian North Sea. Journal of Structural Geology, 80: 99-119. https://doi.org/10.1016/j.jsg.2015.08.015
      Duffy, O. B., Nixon, C. W., Bell, R. E., et al., 2017. The Topology of Evolving Rift Fault Networks: Single-Phase vs Multi-Phase Rifts. Journal of Structural Geology, 96: 192-202. https://doi.org/10.1016/j.jsg.2017.02.001
      Fossen, H., Bale, A., 2007. Deformation Bands and Their Influence on Fluid Flow. AAPG Bulletin, 91(12): 1685-1700. https://doi.org/10.1306/07300706146
      Gong, Z. S., 2010. Continued Exploration of Granitic- Reservoir Hydrocarbon Accumulations in China Offshore Basins. China Offshore Oil and Gas, 22(4): 213-220 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-1506.2010.04.001
      Jia, P. M., Zhang, X. T., Chen, W. T., et al., 2021. Tectonic Evolution of Huizhou 21 Buried Hill and Its Control over Deep Oil Accumulations in the Huizhou Sag of Pearl River Mouth Basin. Marine Geology Frontiers, 37(12): 27-37 (in Chinese with English abstract).
      Kim, Y. S., Peacock, D. C. P., Sanderson, D. J., 2004. Fault Damage Zones. Journal of Structural Geology, 26(3): 503-517. https://doi.org/10.1016/j.jsg.2003.08.002
      Li, J. P., Zhou, X. H., Wang, G. Z., 2014. Lithologic Constitution and Its Control on Reservoir Development on Penglai 9-1 Buried Hill, Bohai Sea Basin. Earth Science, 39(10): 1521-1530 (in Chinese with English abstract).
      Li, J. Y., 2020. Filling Characteristics and Main Controlling Factors for the Development of Multi-Phase Structural Fractures: A Case of the Pingnan Buried Hill from Jiyang Depression. Acta Sedimentologica Sinica, 38(2): 420-428 (in Chinese with English abstract).
      Li, S. Z., Suo, Y. H., Li, X. Y., et al., 2018. Mesozoic Plate Subduction in West Pacific and Tectono-Magmatic Response in the East Asian Ocean-Continent Connection Zone. Chinese Science Bulletin, 63(16): 1550-1593 (in Chinese). doi: 10.1360/N972017-01113
      Li, X. H., Li, Z. X., He, B., et al., 2012. The Early Permian Active Continental Margin and Crustal Growth of the Cathaysia Block: In Situ U-Pb, Lu-Hf and O Isotope Analyses of Detrital Zircons. Chemical Geology, 328: 195-207. https://doi.org/10.1016/j.chemgeo.2011.10.027
      Li, Z. Y., Yun, X. R., He, B. Z., et al., 2022. Macro Fracture Systems of the Granites Controlled by the Tectonism: A Case Study of the Dangjiasi Pluton in the Northeastern Margin of the Gonghe Basin. Acta Petrologica Sinica, 38(11): 3578-3596 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.11.19
      Liu, G. P., Zeng, L. B., Lei, M. S., et al., 2016. Fracture Development Characteristics and Main Controlling Factors of the Volcanic Reservoir in Xujiaweizi Fault Depression. Geology in China, 43(1): 329-337 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2016.01.025
      McCaffrey, K. J. W., Holdsworth, R. E., Pless, J., et al., 2020. Basement Reservoir Plumbing: Fracture Aperture, Length and Topology Analysis of the Lewisian Complex, NW Scotland. Journal of the Geological Society, 177(6): 1281-1293. https://doi.org/10.1144/jgs2019-143
      Nixon, C. W., Nærland, K., Rotevatn, A., et al., 2020. Connectivity and Network Development of Carbonate-Hosted Fault Damage Zones from Western Malta. Journal of Structural Geology, 141: 104212. https://doi.org/10.1016/j.jsg.2020.104212
      Nyberg, B., Nixon, C. W., Sanderson, D. J., 2018. NetworkGT: A GIS Tool for Geometric and Topological Analysis of Two-Dimensional Fracture Networks. Geosphere, 14(4): 1618-1634. https://doi.org/10.1130/ges01595.1
      Peacock, D. C. P., Sanderson, D. J., Rotevatn, A., 2018. Relationships between Fractures. Journal of Structural Geology, 106: 41-53. https://doi.org/10.1016/j.jsg.2017.11.010
      Rotevatn, A., Fossen, H., Hesthammer, J., et al., 2007. Are Relay Ramps Conduits for Fluid Flow? Structural Analysis of a Relay Ramp in Arches National Park, Utah. Geological Society, London, Special Publications, 270(1): 55-71. https://doi.org/10.1144/gsl.sp.2007.270.01.04
      Sanderson, D. J., Peacock, D. C. P., Nixon, C. W., et al., 2019. Graph Theory and the Analysis of Fracture Networks. Journal of Structural Geology, 125: 155-165. https://doi.org/10.1016/j.jsg.2018.04.011
      Shen, C., Jiang, Y. L., Su, S. M., et al., 2021. Characteristics and Development Modes of the Granite Buried-Hill Reservoir in Wulanhua Sag of Erlian Basin. Petroleum Geology & Oilfield Development in Daqing, 40(6): 12-19 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-8217.2021.06.003
      Shu, L. S., 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geological Bulletin of China, 31(7): 1035-1053 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2012.07.003
      Shu, L. S., Lu, H. F., Jia, D., et al., 1999. Study of the 40Ar/39Ar Isotopic Age for the Early Paleozoic Tectonothermal Event in the Wuyishan Region, South China. Journal of Naijing University (Natural Sciences), 35(6): 26-32 (in Chinese with English abstract).
      Wang, D. Z., Shu, L. S., 2012. Late Mesozoic Basin and Range Tectonics and Related Magmatism in Southeast China. Geoscience Frontiers, 3(2): 109-124. https://doi.org/10.1016/j.gsf.2011.11.007
      Wang, J., Li, Y. D., Gan, L. D., 2013. Fracture Characterization Based on Azimuthal Anisotropy of Ant-Tracking Attribute Volumes. Oil Geophysical Prospecting, 48(5): 763-769, 673, 854 (in Chinese with English abstract).
      Wang, X., Zhou, X. H., Xu, G. S., et al., 2015. Characteristics and Controlling Factors of Reservoirs in Penglai 9-1 Large-Scale Oilfield in Buried Granite Hills, Bohai Sea. Oil & Gas Geology, 36(2): 262-270 (in Chinese with English abstract).
      Wei, W., Lin, W., Chen, Y., et al., 2023. Tectonic Controls on Magmatic Tempo in an Active Continental Margin: Insights from the Early Cretaceous Syn-Tectonic Magmatism in the Changle-Nan'ao Belt, South China. Journal of Geophysical Research: Solid Earth, 128(2): e2022JB025973. https://doi.org/10.1029/2022JB025973
      Xu, X. B., Zhang, Y. Q., Jia, D., et al., 2009. Early Mesozoic Geotectonic Processes in South China. Geology in China, 36(3): 573-593 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2009.03.007
      Yao, Y. T., Zeng, L. B., Zhang, H., et al., 2023. Fracture Development Laws of Feixianguan Formation Carbonate Reservoirs in Huanglongchang-Qilibei Area, Northeast Sichuan. Earth Science, 48(7): 2643-2651 (in Chinese with English abstract).
      Ye, Q., Shi, H. S., Mei, L. F., et al., 2017. Post-Rift Faulting Migration, Transition and Dynamics in Zhu I Depression, Pearl River Mouth Basin. Earth Science, 42(1): 105-118 (in Chinese with English abstract).
      Yin, A., 2010. Cenozoic Tectonic Evolution of Asia: A Preliminary Synthesis. Tectonophysics, 488(1-4): 293-325. https://doi.org/10.1016/j.tecto.2009.06.002
      Zhang, Y. Q., Dong, S. W., Li, J. H., et al., 2012. The New Progress in the Study of Mesozoic Tectonics of South China. Acta Geoscientica Sinica, 33(3): 257-279 (in Chinese with English abstract).
      Zhou, J., Yang, X. B., Yang, J. H., et al., 2020. Development Characteristics and Formation Mechanism of Mesozoic Buried Hill Fractures in the Deep Water Area of Qiongdongnan Basin: Taking Y8 Area in Songnan Low Uplift as an Example. China Offshore Oil and Gas, 32(3): 1-9 (in Chinese with English abstract).
      Zhou, X. H., Wang, Q. B., Feng, C., et al., 2022. Formation Conditions and Geological Significance of Large Archean Buried Hill Reservoirs in Bohai Sea. Earth Science, 47(5): 1534-1548 (in Chinese with English abstract).
      董传万, 周超, 顾虹艳, 等, 2011. 福建湄州岛镁铁质岩墙群与寄主花岗岩的形成时差、地球化学及成因. 吉林大学学报(地球科学版), 41(3): 735-744. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201103015.htm
      杜晓宇, 金之钧, 曾联波, 等, 2023. 鄂尔多斯盆地陇东地区长7页岩油储层天然裂缝发育特征与控制因素. 地球科学, 48(7): 2589-2600. doi: 10.3799/dqkx.2022.208
      龚再升, 2010. 继续勘探中国近海盆地花岗岩储层油气藏. 中国海上油气, 22(4): 213-220. doi: 10.3969/j.issn.1673-1506.2010.04.001
      贾培蒙, 张向涛, 陈维涛, 等, 2021. 珠江口盆地惠州凹陷惠州21古潜山的形成演化及其对深层油气成藏的控制. 海洋地质前沿, 37(12): 27-37. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT202112004.htm
      李继岩, 2020. 多期构造裂缝发育充填特征及其主控因素——以济阳坳陷平南潜山为例. 沉积学报, 38(2): 420-428. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202002016.htm
      李建平, 周心怀, 王国芝, 2014. 蓬莱9-1潜山岩性组成及其对储层发育的控制. 地球科学, 39(10): 1521-1530. doi: 10.3799/dqkx.2014.134
      李三忠, 索艳慧, 李玺瑶, 等, 2018. 西太平洋中生代板块俯冲过程与东亚洋陆过渡带构造‒岩浆响应. 科学通报, 63(16): 1550-1593. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201816006.htm
      李振宇, 贠晓瑞, 何碧竹, 等, 2022. 构造作用对花岗岩宏观裂缝系统的控制: 以共和盆地东北部党家寺岩体为例. 岩石学报, 38(11): 3578-3596. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202211019.htm
      刘国平, 曾联波, 雷茂盛, 等, 2016. 徐家围子断陷火山岩储层裂缝发育特征及主控因素. 中国地质, 43(1): 329-337. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201601025.htm
      沈澈, 蒋有录, 苏圣民, 等, 2021. 二连盆地乌兰花凹陷花岗岩潜山储层特征及发育模式. 大庆石油地质与开发, 40(6): 12-19. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202106002.htm
      舒良树, 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035-1053. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201207004.htm
      舒良树, 卢华复, 贾东, 等, 1999. 华南武夷山早古生代构造事件的40Ar/39Ar同位素年龄研究. 南京大学学报(自然科学版), 35(6): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ199906002.htm
      王军, 李艳东, 甘利灯, 2013. 基于蚂蚁体各向异性的裂缝表征方法. 石油地球物理勘探, 48(5): 763-769, 673, 854. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201305016.htm
      王昕, 周心怀, 徐国胜, 等, 2015. 渤海海域蓬莱9-1花岗岩潜山大型油气田储层发育特征与主控因素. 石油与天然气地质, 36(2): 262-270. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201502012.htm
      徐先兵, 张岳桥, 贾东, 等, 2009. 华南早中生代大地构造过程. 中国地质, 36(3): 573-593. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200903009.htm
      姚迎涛, 曾联波, 张航, 等, 2023. 川东北黄龙场‒七里北地区飞仙关组碳酸盐岩储层裂缝发育规律. 地球科学, 48(7): 2643-2651. doi: 10.3799/dqkx.2022.496
      叶青, 施和生, 梅廉夫, 等, 2017. 珠江口盆地珠一坳陷裂后期断裂作用: 迁移、转换及其动力学. 地球科学, 42(1): 105-118. doi: 10.3799/dqkx.2012.049
      张岳桥, 董树文, 李建华, 等, 2012. 华南中生代大地构造研究新进展. 地球学报, 33(3): 257-279. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201203001.htm
      周杰, 杨希冰, 杨金海, 等, 2020. 琼东南盆地深水区中生界潜山裂缝发育特征及形成机理——以松南低凸起Y8区为例. 中国海上油气, 32(3): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202003001.htm
      周心怀, 王清斌, 冯冲, 等, 2022. 渤海海域大型太古界潜山储层形成条件及地质意义. 地球科学, 47(5): 1534-1548. doi: 10.3799/dqkx.2021.249
    • dqkxzx-49-7-2570-附录.docx
    • 加载中
    图(17)
    计量
    • 文章访问数:  458
    • HTML全文浏览量:  227
    • PDF下载量:  72
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-08-21
    • 网络出版日期:  2024-08-03
    • 刊出日期:  2024-07-25

    目录

      /

      返回文章
      返回