Challenges and Prospects of Cement Slurry Technology for Gas Hydrate-Bearing Sediments in Marine Environments
-
摘要: 固井是天然气水合物及其他深水油气资源安全稳定开发的关键环节和重要保障.当前,国内外开发了多种固井水泥浆体系以应对深水天然气水合物地层固井面临的低温、低破裂压力、水合物易分解、浅层高压气、水窜流等难题.概述了当前具有代表性的4类水合物地层固井水泥浆技术的研究现状,对比分析了低温早强固井水泥浆体系、低密度早强固井水泥浆体系、低热固井水泥浆体系、防窜固井水泥浆体系的优缺点.进一步探讨了新型固井水泥浆技术如保温隔热水泥浆体系、微生物自修复固井水泥浆体系、抗盐固井水泥浆体系在水合物地层中的适用性及应用前景,旨在为相关领域专家、学者提供关于天然气水合物地层固井水泥浆技术的最新研究动态,促进海域天然气水合物地层固井技术及相关领域学科的发展.Abstract: The role of cementing in the secure and steady exploitation of natural gas hydrates and other deepwater hydrocarbon resources is of paramount importance. In addressing the distinctive challenges posed by deepwater gas hydrate formations, such as low temperatures, minimal fracture pressures, the inclination towards hydrate dissociation, high-pressure shallow gas zones, and aqueous migration, a spectrum of cement slurry systems has been developed with innovation both domestically and internationally. This scholarly work presents an exhaustive overview of the contemporary research status concerning four pivotal cementing slurry technologies that are specifically adapted for hydrate formations. It conducts a rigorous analysis of the merits and limitations of cementing slurry systems characterized by low-temperature early-strength, low-density early-strength, low-heat generation, and anti-migration properties. Furthermore, it thoroughly investigates the applicability and promise of nascent cementing slurry technologies, which encompass insulating and thermal barrier cementing slurries, microbially induced self-healing cementing slurries, and salt-tolerant cementing slurries, for their utilization in hydrate formations. This contribution aims to furnish the latest understanding and insights into the progressive trajectory of cementing slurry technologies within natural gas hydrate formations, benefiting both researchers and professionals, and catalyzing the advancement of cementing technology in marine natural gas hydrate formations and contiguous scientific fields.
-
Key words:
- natural gas hydrates /
- cementing slurry /
- low-temperature /
- early-strength /
- low hydration heat /
- anti-tamper /
- self-healing /
- deepwater drilling /
- marine geology
-
图 3 添加保温隔热材料的固井水泥浆水化热测试结果(步玉环等, 2023)
Fig. 3. Hydration heat test of cement slurry with added thermal insulation materials (Bu et al., 2023)
表 1 常见低温早强固井水泥浆体系对比
Table 1. Comparison of common low-temperature early-strength cement slurry systems
水泥浆类型 优缺点 在水合物层中适用性 参考文献 快凝石膏水泥浆 早期强度高,放热集中,放热量大 不适用 张清玉等(2007) 高铝水泥浆 低温下早期强度高,放热集中,不环保 不适用 王建东等(2005) PSD水泥浆 高早期强度,高固相含量,良好流变性,低失水量 适用性强 王建东等(2005) 复配早强剂水泥浆 高早期强度,悬浮稳定性好 适用性强 郭永宾等(2019);崔策等(2022) 表 2 常见低密度固井水泥浆体系对比
Table 2. Comparison of common low-density cement slurry systems
水泥浆类型 减重剂材料类型 优缺点及在水合物层中适用性 参考文献 吸水膨胀水泥浆 膨润土、凹凸棒土、火山灰、硅灰、硅酸钠、硅酸钾和硅藻土 密度低,但力学强度低;失水量大;可能会发生自收缩
不适用水合物地层李绍晨(2013) 泡沫水泥浆 矿渣、铝酸钙、化学发泡剂、中空微珠 低密度,力学强度不足;高孔隙率、高渗透性
不适用水合物地层胡伟(2012) 低密度矿物水泥浆 粉煤灰、矿渣、空心玻璃微珠、漂珠、微硅、岩沥青、膨胀珍珠岩、蛭石 低密度,低水化热,稠化时间长;力学强度不足;难分散,体积收缩,不适用水合物地层 顾军等(2018);郑少军等(2021) 复配液体减轻剂水泥浆 液体减轻剂 低温下早期强度高,悬浮稳定性强,适用于水合物地层 崔策等(2022) 表 3 常见低热固井水泥浆体系对比
Table 3. Comparison of common low-heat cement slurry systems
控热剂类型 低热组分类型 优缺点及适用性 参考文献 低水化热胶凝材料 粉煤灰、矿渣、硅粉等 低水化热,适用性强 齐志刚(2009);邢希金等(2018);张俊斌等(2020);霍锦华(2019);姜春萌等(2023) 相变材料 石蜡类、无机水合盐类、多元醇、脂肪酸类、合成相变材料、相变微胶囊 吸热、但可能会导致体积收缩、合成工艺复杂、开发成本高,应用前景广 黄守国(2012);廖易波等(2019);宋建建等(2019);颜帮川等(2019);Liu et al. (2020);杨国坤等(2021);Yang et al. (2022);王龙等(2023);夏冬(2024) 放热平衡抑制剂 石蜡类、无机水合盐类、多元醇、脂肪酸类相变材料复配形成 吸热效果好,开发成本高,相互作用机制不明确,适用性有待进一步验证 许明标等(2010);黄守国(2012);
邢希金等(2018)水合物分解抑制剂 醇类(如乙醇、甲醇)、表面活性剂、以及改性聚合物等 能抑制水合物分解,对水泥石力学强度略微产生负面影响,适用性还不足 杜文祥(2020);郑明明等(2021) 表 4 常见防窜固井水泥浆体系对比
Table 4. Comparison of common anti-migration cement slurry systems
水泥浆类型 水泥浆性能及适用性 参考文献 膨胀水泥浆 水泥石微膨胀,后期防窜效果好,早期防窜效果不明显 García Calvo et al.(2020); 李鹏飞等(2023) 液硅水泥浆 水泥浆稳定性好,失水量低,防窜效果强 穆海鹏(2012) 胶乳水泥浆 失水量低,防窜效果好 张海山等(2015); 高元等(2016); 宋建建等(2021) 直角稠化水泥浆 稠化性能好,强度发展快,但目前主要应用于高温大温差固井 许明标等(2007) 发气水泥浆 低密度、流动性好,较高早期强度,防窜性能好 罗宇维等(2001); 焦少卿等(2013); 王翔等(2018);
崔策等(2022) -
Aranha, P. E. E., Miranda, C. R. R., Magalhães, J. V. M. V. M., et al., 2011. Dynamic Aspects Governing Cement-Plug Placement in Deepwater Wells. SPE Drilling & Completion, 26(3): 341-351. https://doi.org/10.2118/140144-pa Bu, Y. H., Shen, S. D., Liu, H. J., et al., 2023. Concept and Feasibility of Crossing Type Hydrate Layer Cementing to Enhance Long Production Life of Oil and Gas Wells. Journal of China University of Petroleum (Edition of Natural Science), 47(4): 93-101 (in Chinese with English abstract). Bu, Y. H., Tian, L. J., Guo, B. L., et al., 2020. Experiment and Simulation on the Integrity of Cement Ring Interface in Deep Water Shallow Formation. Journal of Petroleum Science and Engineering, 190: 107127. https://doi.org/10.1016/j.petrol.2020.107127 Cui, C., Zhang, H., Feng, Y. T., et al., 2022. Deep-Water Surface Cement Slurry Technology. Petrochemical Industry Application, 41(4): 1-5 (in Chinese with English abstract). Cui, Y. D., Lu, C., Guan, Z. Y., et al., 2023. Effects of Creep on Depressurization-Induced Gas Well Productivity in South China Sea Natural Gas Hydrate Reservoirs. Petroleum Reservoir Evaluation and Development, 13(6): 809-818 (in Chinese with English abstract). Darbe, R., Pewitt, K., Karcher, J., 2009. Dynamic Test Evaluates the Effectiveness of Self-Healing Cement Systems in the Downhole. Actas Españolas de Psiquiatría, 42(5): 242-249. https://doi.org/10.2118/125904-ms Du, W. X., 2020. Molecular Structure Design and Evaluation of Hydrate Decomposition Inhibitors Suitable for Cementing Cement (Dissertation). China University of Petroleum, Qingdao(in Chinese with English abstract). Gao, Y., Sang, L. Y., Yang, G. G., et al., 2016. Cement Slurry Treated with Latex Nano Liquid Silica Anti-Gas-Migration Agent. Drilling Fluid & Completion Fluid, 33(3): 67-72 (in Chinese with English abstract). García Calvo, J. L., Pedrosa, F., Carballosa, P., et al., 2020. Evaluation of the Sealing Effectiveness of Expansive Cement Grouts through a Novel Water Penetration Test. Construction and Building Materials, 251: 118974. https://doi.org/10.1016/j.conbuildmat.2020.118974 Gu, J., Tao, L., Gan, P., et al., 2018. Optimization Test of Low-Temperature and Low-Density Cementing Slurry System for Natural Gas Hydrate Drilling. Drilling Engineering, 45(1): 24-27(in Chinese with English abstract). Guo, Y. B., Li, Z., Liu, H. X., et al., 2019. Development of a Low Temperature Early Strength Cement Slurry with Low Exothermic Heat of Hydration. Drilling Fluid & Completion Fluid, 36(4): 500-505(in Chinese with English abstract). Hu, W., 2012. Study and Application of Foam Cement Slurry System (Disserattion). Northeast Petroleum University, Chengdu(in Chinese with English abstract). Huang, S. G., 2012. Study on Low-Hydrating Heat Cement Slurry Suitable for Deep Water Drilling (Disserattion). Yangtze University, Jingzhou (in Chinese with English abstract). Huo, J. H., 2019. Study on Low-Temperature Low-Hydrating Heat Cement Slurry System for Cementing in Deep Water Natural Gas Hydrate Layers (Disserattion). Southwest Petroleum University, Chengdu(in Chinese with English abstract). Jiang, C. M., An, S. H., Gong, J. W., et al., 2023. Evolution and Prediction on Mechanical Properties of Fly Ash and Low Heat Cement Pastes under Sulfate Attack. Water Power, 49(7): 107-113(in Chinese with English abstract). Jiang, J. Y., Sun, W., Wang, J., et al., 2010. Resistance to Chloride Ion Diffusion of Structural Concrete under Bending Fatigue Load. Journal of Southeast University (Natural Science Edition), 40(2): 362-366(in Chinese with English abstract). Jiao, S. Q., Zhou, H. S., Quan, J. Z., et al., 2013. Application of Dual-Thickening Anti-Channeling Cement Slurry System in Ultra-Deep Gas Well LY1. Drilling Fluid & Completion Fluid, 30(5): 67-70, 100(in Chinese with English abstract). Li, L. X., Liu, T. L., Jiang, G. S., et al., 2021. Interactive Mechanism of Manufacturing Factors on the Properties of Microbial Cementing Slurry. Construction and Building Materials, 311: 125308. https://doi.org/10.1016/j.conbuildmat.2021.125308 Li, P. F., Wang, J. W., Yang, X. T., et al., 2023. Research and Application of Compound Expansive & Flexible Agent. Speciality Petrochemicals, 40(5): 10-14(in Chinese with English abstract). Li, Q. C., 2020. Research on Engineering Geological Hazards in the Process of Drilling and Exploitation of Shallow Unconsolidated Hydrate Formations in Deep Water (Disserattion). China University of Petroleum, Qingdao (in Chinese with English abstract). Li, S. C., 2013. Research and Application on Water Swelling Cement Slurry. Drilling Fluid & Completion Fluid, 30(3): 67-69, 96-97 (in Chinese with English abstract). Liao, Y. B., Wei, H. S., Wei, Y. S., et al., 2019. Study and Application of Low-Hydrating Heat Cement Slurry System for Cementing in Deep Water Natural Gas Hydrate Formations. Chemical Industry Management, (30): 195-197(in Chinese with English abstract). Liu, X. J., Feng, Q., Peng, Z. G., et al., 2020. Preparation and Evaluation of Micro-Encapsulated Thermal Control Materials for Oil Well Cement Slurry. Energy, 208: 118175. https://doi.org/10.1016/j.energy.2020.118175 Luo, Y. W., Zhang, G. C., Liu, H. Y., et al., 2001. Cement Slurry Study for Cementing Preventing Gas Channeling at HTHP in Gas Well. Journal of Southwest Petroleum Institute, 23(6): 18-20(in Chinese with English abstract). Mueller, D. T., Brannon, H. D., Bray, W. S., 2008. Self-Sealing Well Cement Composition. BJ Services Company. Houston, TX, U. S. A. . Qi, Z. G., 2009. Study on Low-Temperature Low-Hydrating Heat Cementing Cement Slurry System(Dissertation). China University of Petroleum, Beijing (in Chinese with English abstract). Qiu, K. B., Yamamoto, K., Birchwood, R., et al., 2015. Well-Integrity Evaluation for Methane-Hydrate Production in the Deepwater Nankai Trough. SPE Drilling & Completion, 30(1): 52-67. https://doi.org/10.2118/174081-pa Qu, J. S., Xi, F. Z., Tan, W. L., et al., 2011. Study on Shallow Formation Cement Slurry Performance in Deepwater Drilling. Petroleum Drilling Techniques, 39(2): 22-26(in Chinese with English abstract). Song, J. J., Xu, M. B., Wang, X. L., et al., 2019. The Effects of a New Phase Change Material on the Properties of Low Heat Cement Slurries. Drilling Fluid & Completion Fluid, 36(2): 218-223(in Chinese with English abstract). Song, J. J., Xu, M. B., Wang, X. L., et al., 2021. Research and Application of Latex Powder Cement Slurry System. Oilfield Chemistry, 38(3): 406-411 (in Chinese with English abstract). Wang, C. Y., Bu, Y. H., Shen, Z. H., 2018. Study on the Mechanism of Self-Healing Agents for Oil Well Cement Expansion. Drilling Fluid & Completion Fluid, 35(6): 98-102, 107(in Chinese with English abstract). Wang, J. D., Qu, J. S., Gao, Y. H., 2005. The Review of Deep Sea Cementing Slurry Technology Abroad. Drilling Fluid and Completion Fluld, 22(6): 54-56, 61, 89(in Chinese with English abstract). Wang, L., Wu, J. R., Peng, Z. G., et al., 2023. Preparation and Application of Phase Change Microcapsules for Gas Hydrate Layer Cementing. Chinese Journal of Synthetic Chemistry, 31(7): 519-526(in Chinese with English abstract). Wang, L., Yang, J., Li, L. L., et al., 2022. Study on the Stability of Drilling Wellhead in Deepwater Hydrate-Bearing Strata. Journal of Geotechnical Engineering, 44(12): 2312-2318(in Chinese with English abstract). Wang, Q. S., Yue, Q. S., Xu, S. C., 2006. Deep Water Cement Slurry Technique. Journal of Oil and Gas Technology, 28(3): 109-111, 446(in Chinese with English abstract). Wang, X., Wang, X. X., Wang, C. W., et al., 2018. Preparation and Application of Chemically Nitrogen Filled Foamed Cement Slurry. Drilling Fluid & Completion Fluid, 35(4): 97-101(in Chinese with English abstract). Wang, Y., Li, X. S., 2013. Research Progress of Natural Gas Hydrate Production Technology. Advances in New and Renewable Energy, 1(1): 69-79(in Chinese with English abstract). Wei, J. G., Wu, T. T., Zhang, W., et al., 2020. Deeply Buried Authigenic Carbonates in the Qiongdongnan Basin, South China Sea: Implications for Ancient Cold Seep Activities. Minerals, 10(12): 1135. https://doi.org/10.3390/min10121135 Xia, D., 2024. Study on Low-Temperature Low-Hydrating Heat Cementing Cement Slurry System for Natural Gas Hydrates in the South China Sea(Dissertation). China University of Petroleum, Qingdao(in Chinese with English abstract). Xing, X. J., Wu, Z. Q., Geng, Y. N., et al., 2018. Laboratory Study on a New Low Heat Cement. Drilling Fluid & Completion Fluid, 35(3): 94-99(in Chinese with English abstract). Xu, M. B., Huang, S. G., Wang, X. L., et al., 2010. Study on Heat Release of Hydration of Deepwater Cementing Slurry. Journal of Oil and Gas Technology, 32(6): 112-115, 126, 530(in Chinese with English abstract). Xu, M. B., Zeng, J., Tang, H. X., et al., 2007. Research on a Cement Slurry for Deepwater Cementing Operation in Zero Thickening Transition Period at Low Temperature. Journal of Oil and Gas Technology, 29(3): 104-107(in Chinese with English abstract). Yan, B. C., Li, Z., Liu, X. J., et al., 2019. Study on Controlling Effects of Fly Ash and Slag on Early Hydration Heat Evaluation of Cement Slurry System. Bulletin of the Chinese Ceramic Society, 38(1): 52-59(in Chinese with English abstract). Yang, G. K., Jiang, G. S., Liu, T. L., et al., 2021. Analysis on Preparation of Temperature Controlled Self-Repairing Microcapsules and Its Application in Cement Slurry for Hydrate Formation. Materials Reports, 35(2): 2032-2038(in Chinese with English abstract). Yang, G. K., Liu, T. L., Aleksandravih, B. P., et al., 2022. Temperature Regulation Effect of Low Melting Point Phase Change Microcapsules for Cement Slurry in Nature Gas Hydrate-Bearing Sediments. Energy, 253: 124115. https://doi.org/10.1016/j.energy.2022.124115 Zhang, H., Fu, J. F., Xiang, X. Z., et al., 2013. Advance Research on Application of Self-Healing Cement System in Oil Cementing. Inner Mongolia Petrochemical Industry, 39(16): 76-79(in Chinese with English abstract). Zhang, H. S., Wang, Y. S., Gong, J. Z., et al., 2015. Study and Application of Toughness Enhanced and Anti-Channeling Cement Slurry Used in Offshore Well Cementing. Drilling Fluid & Completion Fluid, 32(4): 59-62, 108-109(in Chinese with English abstract). Zhang, J. B., Li, B., Jin, H., et al., 2020. Study and Application of a Low Hydration Heat Cement Slurry System for the Cementing of Deepwater Hydrate Layer. China Offshore Oil and Gas, 32(1): 119-124(in Chinese with English abstract). Zhang, Q. Y., Zou, J. L., Zhu, H. J., 2007. Advances in Deep Water Cementing Technology. Oilfield Chemistry, 24(2): 175-178(in Chinese with English abstract). Zheng, M. M., Wang, X. Y., Zhou, K. R., et al., 2021. Hydrate Reservoir Physical Properties Response and High-Pressure Gas-Water Reverse Penetration during Deepwater Oil and Gas Cementing. Coal Geology & Exploration, 49(3): 118-127(in Chinese with English abstract). Zheng, S. J., Wang, K. L., Liu, S. Y., et al., 2021. Design of Low Density Cementing Slurry Based on Close Packing Theory. Drilling Engineering, 48(3): 94-100(in Chinese with English abstract). 步玉环, 沈晟达, 柳华杰, 等, 2023. 提升油气井长效生产寿命的穿越型水合物层固井理念及可行性. 中国石油大学学报(自然科学版), 47(4): 93-101. 崔策, 张浩, 冯颖韬, 等, 2022. 深水表层固井水泥浆技术. 石油化工应用, 41(4): 1-5. 崔玉东, 陆程, 关子越, 等, 2023. 南海海域天然气水合物降压开采储层蠕变对气井产能影响. 油气藏评价与开发, 13(6): 809-818. 杜文祥, 2020. 适于固井水泥的水合物分解抑制剂分子结构设计与评价(博士学位论文). 青岛: 中国石油大学. 高元, 桑来玉, 杨广国, 等, 2016. 胶乳纳米液硅高温防气窜水泥浆体系. 钻井液与完井液, 33(3): 67-72. 顾军, 陶雷, 干品, 等, 2018. 天然气水合物钻探低温低密度水泥浆体系优选试验. 探矿工程(岩土钻掘工程), 45(1): 24-27. 郭永宾, 李中, 刘和兴, 等, 2019. 低温早强低水化放热水泥浆体系开发. 钻井液与完井液, 36(4): 500-505. 胡伟, 2012. 泡沫水泥浆体系研究与应用(博士学位论文). 大庆: 东北石油大学. 黄守国, 2012. 适合于深水钻井的低热水泥浆研究(博士学位论文). 荆州: 长江大学. 霍锦华, 2019. 深水天然气水合物层固井低温低水化热水泥浆体系研究(博士学位论文). 成都: 西南石油大学. 姜春萌, 安世浩, 宫经伟, 等, 2023. 硫酸盐侵蚀作用下粉煤灰-低热水泥浆体力学性能演化与预测. 水力发电, 49(7): 107-113. 蒋金洋, 孙伟, 王晶, 等, 2010. 弯曲疲劳载荷作用下结构混凝土抗氯离子扩散性能. 东南大学学报(自然科学版), 40(2): 362-366. 焦少卿, 周回生, 全家正, 等, 2013. 双凝抗盐防气窜水泥浆在超深气井LY1井的应用. 钻井液与完井液, 30(5): 67-70, 100. 李鹏飞, 王建伟, 杨先涛, 等, 2023. 复合型膨胀增韧剂的研究与应用. 精细石油化工, 40(5): 10-14. 李庆超, 2020. 深水浅层未成岩水合物地层钻采过程工程地质灾害分析研究(博士学位论文). 青岛: 中国石油大学. 李绍晨, 2013. 遇水膨胀水泥浆体系的研究与应用. 钻井液与完井液, 30(3): 67-69, 96-97. 廖易波, 韦红术, 魏裕森, 等, 2019. 深水天然气水合物地层固井低水化热水泥浆体系研究与应用. 化工管理, (30): 195-197. 罗宇维, 张光超, 刘云华, 等, 2001. 海洋高温高压气井固井防气窜水泥浆研究. 西南石油学院学报, 23(6): 18-20. 齐志刚, 2009. 低温低水化热固井水泥浆体系研究(博士学位论文). 北京: 中国石油大学. 屈建省, 席方柱, 谭文礼, 等, 2011. 深水油气井浅层固井水泥浆性能研究. 石油钻探技术, 39(2): 22-26. 宋建建, 许明标, 王晓亮, 等, 2019. 新型相变材料对低热水泥浆性能的影响. 钻井液与完井液, 36(2): 218-223. 宋建建, 许明标, 王晓亮, 等, 2021. 胶乳粉固井水泥浆体系研究与应用. 油田化学, 38(3): 406-411. 王春雨, 步玉环, 沈忠厚, 2018. 油井水泥膨胀性自修复剂机理研究. 钻井液与完井液, 35(6): 98-102, 107. 王建东, 屈建省, 高永会, 2005. 国外深水固井水泥浆技术综述. 钻井液与完井液, 22(6): 54-56, 61, 89. 王磊, 杨进, 李莅临, 等. 2022. 深水含水合物地层钻井井口稳定性研究. 岩土工程学报, 44(12): 2312-2318. 王龙, 吴佳容, 彭志刚, 等, 2023. 天然气水合物层固井用相变微胶囊的制备及应用. 合成化学, 31(7): 519-526. 王清顺, 岳前升, 徐绍诚, 2006. 深水固井水泥浆技术研究. 石油天然气学报(江汉石油学院学报), 28(3): 109-111, 446. 王翔, 王星星, 王成文, 等, 2018. 化学充氮泡沫水泥浆制备原理与应用. 钻井液与完井液, 35(4): 97-101. 王屹, 李小森, 2013. 天然气水合物开采技术研究进展. 新能源进展, 1(1): 69-79. 夏冬, 2024. 南海天然气水合物低温低水化热固井水泥浆体系研究(博士学位论文). 青岛: 中国石油大学. 邢希金, 武治强, 耿亚楠, 等, 2018. 一种新型低放热水泥材料的室内性能研究. 钻井液与完井液, 35(3): 94-99. 许明标, 黄守国, 王晓亮, 等, 2010. 深水固井水泥浆的水化放热研究. 石油天然气学报, 32(6): 112-115, 126. 许明标, 王晓亮, 姜智博, 2015. 一种能改善盐岩层固井胶结质量的饱和盐水胶乳水泥浆体系的研制. 长江大学学报(自然科学版), 12(2): 61-65, 6. 许明标, 曾晶, 唐海雄, 等, 2007. 适于海洋深水固井的零稠化转化时间低温水泥浆体系研究. 石油天然气学报, 29(3): 104-107. 颜帮川, 李中, 刘先杰, 等, 2019. 粉煤灰及矿渣对水泥浆体系早期水化热效应的控制研究. 硅酸盐通报, 38(1): 52-59. 杨国坤, 蒋国盛, 刘天乐, 等, 2021. 控温自修复微胶囊的制备及在水合物地层固井水泥浆中的应用. 材料导报, 35(2): 2032-2038. 张海山, 王永松, 宫吉泽, 等, 2015. 海上增韧防窜固井水泥浆体系研究及应用. 钻井液与完井液, 32(4): 59-62, 108-109. 张浩, 符军放, 项先忠, 等, 2013. 油田固井水泥自修复技术研究进展. 内蒙古石油化工, 39(16): 76-79. 张俊斌, 李彬, 金颢, 等, 2020. 深水水合物层固井低水化热水泥浆体系研究及应用. 中国海上油气, 32(1): 119-124. 张清玉, 邹建龙, 朱海金, 2007. 国外深水固井水泥浆技术进展. 油田化学, 24(2): 175-178. 郑明明, 王晓宇, 周珂锐, 等, 2021. 深水油气固井水合物储层物性响应与高压气水反侵研究. 煤田地质与勘探, 49(3): 118-127. 郑少军, 王凯伦, 刘思雨, 等, 2021. 基于紧密堆积理论的低密度固井水泥浆设计. 钻探工程, 48(3): 94-100. -