• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    庐山玉京山岩体成因及其对构造体制转换的约束

    王嘉玮 王东升 王刚 武昱东

    王嘉玮, 王东升, 王刚, 武昱东, 2024. 庐山玉京山岩体成因及其对构造体制转换的约束. 地球科学, 49(12): 4369-4384. doi: 10.3799/dqkx.2024.105
    引用本文: 王嘉玮, 王东升, 王刚, 武昱东, 2024. 庐山玉京山岩体成因及其对构造体制转换的约束. 地球科学, 49(12): 4369-4384. doi: 10.3799/dqkx.2024.105
    Wang Jiawei, Wang Dongsheng, Wang Gang, Wu Yudong, 2024. Petrogenesis for the Yujingshan Pluton in Lushan Area, and Its Constraints on Tectonic Regime Transformation. Earth Science, 49(12): 4369-4384. doi: 10.3799/dqkx.2024.105
    Citation: Wang Jiawei, Wang Dongsheng, Wang Gang, Wu Yudong, 2024. Petrogenesis for the Yujingshan Pluton in Lushan Area, and Its Constraints on Tectonic Regime Transformation. Earth Science, 49(12): 4369-4384. doi: 10.3799/dqkx.2024.105

    庐山玉京山岩体成因及其对构造体制转换的约束

    doi: 10.3799/dqkx.2024.105
    基金项目: 

    地调项目 DD20230564

    中央级科研院所基本科研业务费 KK2217

    国家重点研发计划 2016YFC0600202

    详细信息
      作者简介:

      王嘉玮(1989-),男,助理研究员,主要从事矿物学、岩石学研究.ORCID:0000-0003-4085-250X. E-mail:wangjiawei0824@163.com

      通讯作者:

      王东升, ORCID: 0000-0001-7309-5432. E-mail: wangdsyzy@126.com

    • 中图分类号: P595

    Petrogenesis for the Yujingshan Pluton in Lushan Area, and Its Constraints on Tectonic Regime Transformation

    • 摘要: 对庐山核部的玉京山二长花岗岩开展了系统性分析.结果显示该岩体形成于125±1 Ma,其锆石εHft)值为-6.5~-2.0,二阶段模式年龄为1.6~1.3 Ga,表明岩浆源于中元古代地壳的部分熔融.岩体属过铝质高钾钙碱性花岗岩(A/CNK=1.10~1.15;K2O/Na2O=1.01~1.45),稀土总量较低(48.54×10-6~80.32×10-6),轻重稀土元素分馏不明显((La/Yb)N=2.91~4.32),具Eu负异常(σEu=0.19~0.28),富集Rb、Sr、Th、U、K,亏损Nb、Ti.岩体εNdt=125)值为-10.1~-8.9,指示出它们来源于古老地壳物质的重熔.综上所述,岩石形成过程中经历了结晶分异,属高分异S型花岗岩.岩体形成于早白垩世古太平洋板块北西向俯冲时,陆壳从挤压向伸展的构造转换阶段,随后于晚白垩世遭受了糜棱岩化.结合区域资料,表明华南板块构造体制转换发生于晚中生代,区域伸展作用可持续至早白垩世晚期.

       

    • 图  1  庐山地区地质构造略图(据项新葵等, 1993)

      Fig.  1.  Schematic geological map showing the main tectonic units of the Lushan region (after Xiang et al., 1993)

      图  2  玉京山糜棱岩化二长花岗岩宏、微观特征

      a.岩体内部长石受剪切形成的透镜体;b.片理面上发育的矿物拉伸线理(S,片理;La,拉伸线理);c.顺片理走向的剪切形成的S⁃C组构(俯拍);d.斜长石受剪切形成旋转碎斑;e.矿物集合体在剪切过程中形成旋转碎斑;f.云母受剪切形成云母鱼;Q.石英;Pl.斜长石;Mus.白云母;Kfs.钾长石

      Fig.  2.  Macro⁃ and micrographs of samples from the Yujingshan mylonitized monzogranite

      图  3  玉京山糜棱岩化二长花岗岩代表性锆石的CL图像及锆石U⁃Pb谐和图(a)和加权平均年龄(b)

      Fig.  3.  CL images, U⁃Pb concordia diagrams (a) and weighted average age (b) of representative zircons from the Yujingshan mylonitized monzogranite

      图  4  玉京山糜棱岩化二长花岗岩(JX34⁃0)锆石Lu⁃Hf同位素分析结果

      Fig.  4.  Lu⁃Hf isotopic results for zircons from the Yujingshan mylonitized monzogranite

      图  5  基于QAP系统对玉京山岩体的分类(a)、SiO2-(K2O+Na2O)分类图(b)(Middlemost, 1994)、SiO2⁃K2O图解(c)(Peccerillo and Taylor, 1976)和A/CNK-A/NK图解(d)(Maniar and Piccoli, 1989)

      Fig.  5.  Nomenclature system used to classify rocks in the Yujingshan pluton based on the quartz-alkali feldspar-plagioclase classification diagram (a), SiO2-(K2O+ Na2O) classification diagram (b) (after Middlemost, 1994), SiO2-K2O diagram (c) (after Peccerillo and Taylor, 1976) and A/CNK-A/NK diagram (d) (after Maniar and Piccoli, 1989) for the Yujingshan pluton

      图  6  玉京山地区糜棱岩化二长花岗岩的球粒陨石标准化稀土元素配分曲线(a)和原始地幔标准化微量元素蛛网图(b)

      标准化数据据Sun and Mcdonough(1989);庐山-武功山早白垩世岩体数据据张海祥和张伯友(2002);灰色背景为庐山早白垩世侵入岩数据据莫佳君等(2024)

      Fig.  6.  Chondrite⁃normalized REE diagram (a) and primitive mantle⁃normalized spider diagram (b) of mylonitized monzogranite in the Yujingshan area

      图  7  玉京山糜棱岩化二长花岗岩岩石类型判别图

      a.(Na2O+K2O)/CaO⁃Zr+Nb+Ce+Y(Whalen et al.,1987);b. SiO2⁃TFeO/MgO;c. AFC图解

      Fig.  7.  Plots of (Na2O+K2O)/CaO⁃Zr+Nb+Ce+Y (a), SiO2⁃TFeO/MgO (b) and AFC (c) for the Yujingshan mylonitized monzogranite

      图  8  玉京山糜棱岩化二长花岗岩Al2O3/(FeO+MgO+TiO2)⁃Al2O3+FeO+MgO+TiO2(a)及Rb/Ba⁃Rb/Sr(b)(Sylvester, 1998)图解

      Fig.  8.  Plots of Al2O3/(FeO+MgO+TiO2) vs. Al2O3+FeO+MgO+TiO2 (a), and Rb/Ba versus Rb/Sr (b) (Sylvester, 1998) for the Yujingshan mylonitized monzogranite

      图  9  玉京山糜棱岩化二长花岗岩Rb⁃Hf⁃3Ta构造环境判别图解

      Fig.  9.  Plots of Rb⁃Hf⁃3Ta for the Yujingshan mylonitized monzogranite

      表  1  玉京山糜棱岩化二长花岗岩(JX34⁃0)锆石ICP⁃MS U⁃Pb分析结果

      Table  1.   Results of ICP⁃MS U⁃Pb dating for zircons from the Yujingshan mylonitized monzogranite

      测点号 元素含量(μg/g) Th/U 同位素比值 年龄(Ma) 谐和度(%)
      206Pb 232Th 238U 206Pb/
      238U
      ±2σ 207Pb/
      235U
      ±2σ 207Pb/
      206Pb
      ±2σ 206Pb/
      238U
      ±2σ 207Pb/
      235U
      ±2σ 207Pb/
      206Pb
      ±2σ
      1 13 315 623 0.51 0.018 73 0.000 93 0.129 13 0.010 60 0.051 00 0.005 09 120 6 123 10 165 245 97
      2 13 267 612 0.44 0.019 62 0.000 61 0.143 87 0.013 26 0.053 12 0.004 92 125 4 136 12 234 240 91
      3 11 170 546 0.31 0.019 86 0.000 78 0.138 48 0.012 12 0.050 69 0.004 55 127 5 131 11 144 208 96
      4 12 263 532 0.50 0.019 50 0.000 62 0.138 69 0.015 05 0.051 50 0.005 51 125 4 131 13 227 223 95
      5 15 328 662 0.50 0.020 75 0.000 95 0.145 49 0.011 12 0.050 41 0.004 89 132 6 138 10 170 213 96
      6 26 313 1 273 0.25 0.019 81 0.000 95 0.138 67 0.011 20 0.050 67 0.004 19 126 6 132 10 156 238 96
      7 12 139 558 0.25 0.020 00 0.000 91 0.139 58 0.014 95 0.050 84 0.005 48 128 6 132 14 270 182 96
      8 14 96 669 0.14 0.020 16 0.000 78 0.137 45 0.013 31 0.049 32 0.004 19 129 5 131 12 101 230 99
      9 15 486 644 0.76 0.018 97 0.000 75 0.138 96 0.015 28 0.053 30 0.006 08 121 5 132 14 258 260 91
      10 14 222 638 0.35 0.020 67 0.000 78 0.151 09 0.011 59 0.052 87 0.004 33 132 5 143 10 258 182 92
      11 11 235 502 0.47 0.020 15 0.000 72 0.149 65 0.014 36 0.053 81 0.005 23 129 5 141 13 252 255 90
      12 18 221 848 0.26 0.020 30 0.000 54 0.139 54 0.009 52 0.049 73 0.003 66 130 3 132 9 116 195 98
      13 10 213 477 0.45 0.019 31 0.000 64 0.135 19 0.011 73 0.050 57 0.004 25 123 4 128 11 143 213 96
      14 16 348 761 0.46 0.018 87 0.000 65 0.138 96 0.010 53 0.052 72 0.004 41 121 4 132 9 248 188 91
      15 20 570 834 0.68 0.019 83 0.000 58 0.146 14 0.011 04 0.053 14 0.003 97 127 4 138 10 281 165 91
      16 32 965 1 348 0.72 0.019 60 0.000 44 0.128 83 0.007 76 0.047 39 0.002 72 125 3 123 7 77 119 98
      17 19 375 919 0.41 0.018 46 0.000 59 0.133 22 0.011 50 0.052 68 0.004 57 118 4 127 10 271 216 92
      18 13 292 577 0.51 0.019 10 0.000 61 0.132 16 0.012 84 0.050 19 0.004 68 122 4 126 12 126 253 97
      19 12 329 516 0.64 0.019 20 0.000 64 0.130 83 0.011 96 0.048 62 0.004 01 123 4 125 11 71 204 98
      20 14 279 627 0.45 0.019 44 0.000 88 0.144 24 0.017 96 0.053 80 0.006 23 124 6 136 16 282 320 90
      21 15 297 666 0.45 0.019 59 0.000 81 0.138 43 0.014 05 0.051 68 0.005 97 125 5 131 12 158 266 95
      22 11 216 536 0.40 0.019 00 0.000 82 0.140 05 0.014 71 0.053 99 0.006 17 121 5 133 13 400 186 91
      下载: 导出CSV

      表  2  玉京山糜棱岩化二长花岗岩中锆石的LA⁃MC⁃ICP⁃MS Lu⁃Hf同位素分析结果(分析点位同表 1)

      Table  2.   LA⁃MC⁃ICP⁃MS Lu⁃Hf isotope data of zircons from the Yujingshan mylonitized monzogranite

      Spots 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf (176Hf/177Hf)i εHf(t) tDM(Ga) tDMC(Ga) Age(Ma)
      2 0.102 15 0.000 59 0.002 564 0.000 015 0.282 592 0.000 019 0.282 59 -3.8 1.0 1.4 125
      3 0.107 60 0.003 30 0.002 688 0.000 079 0.282 516 0.000 018 0.282 51 -6.5 1.1 1.6 127
      4 0.096 39 0.000 39 0.002 376 0.000 012 0.282 551 0.000 020 0.282 55 -5.3 1.0 1.5 124
      6 0.112 70 0.001 30 0.002 859 0.000 023 0.282 585 0.000 018 0.282 58 -4.1 1.0 1.4 126
      7 0.067 17 0.000 44 0.001 810 0.000 007 0.282 545 0.000 018 0.282 54 -5.4 1.0 1.5 128
      8 0.074 80 0.003 20 0.002 011 0.000 088 0.282 536 0.000 019 0.282 53 -5.8 1.0 1.5 129
      9 0.098 35 0.000 76 0.002 452 0.000 022 0.282 601 0.000 018 0.282 60 -3.5 1.0 1.4 121
      11 0.092 24 0.000 88 0.002 443 0.000 031 0.282 594 0.000 021 0.282 59 -3.8 1.0 1.4 129
      13 0.075 40 0.001 20 0.001 906 0.000 024 0.282 594 0.000 017 0.282 59 -3.7 1.0 1.4 123
      15 0.121 70 0.002 00 0.003 055 0.000 037 0.282 645 0.000 020 0.282 64 -2.0 0.9 1.3 127
      下载: 导出CSV

      Table  3.   Major and trace element contents of the mylonitized monzogranite in the Yujingshan area

      组分 JX34-2 JX34-3 JX34-4 JX34-5 JX34-6
      主量元素(%)
      SiO2 73.68 75.31 74.50 74.63 73.56
      TiO2 0.10 0.07 0.13 0.12 0.11
      A12O3 14.23 14.03 14.21 13.90 14.14
      Fe2O3 0.38 0.20 0.51 0.45 0.54
      FeO 0.55 0.56 0.59 0.59 0.56
      MnO 0.07 0.05 0.06 0.05 0.06
      MgO 0.26 0.24 0.28 0.26 0.27
      CaO 0.67 0.69 0.87 0.84 0.84
      Na2O 4.06 3.69 3.36 3.36 3.56
      K2O 4.11 4.72 4.88 4.87 5.08
      P2O5 0.12 0.13 0.16 0.14 0.15
      LOI 1.60 0.94 1.02 1.04 1.19
      总和 99.82 100.62 100.58 100.25 100.06
      Mg# 34 37 32 32 32
      FeOT/MgO 3.50 3.09 3.74 3.79 3.82
      微量元素(10-6)
      Li 96.88 84.61 105.15 98.98 98.20
      Sc 5.55 3.54 6.16 5.90 5.75
      V 5.46 4.83 9.99 7.78 7.74
      Ni 4.34 4.80 10.39 2.55 2.86
      Co 0.73 0.49 0.90 0.69 0.69
      Cu 2.60 3.48 4.59 2.90 1.46
      Ga 24.53 21.18 23.70 22.78 22.89
      Rb 396.31 386.71 406.79 386.61 386.24
      Sr 24.27 35.32 50.30 55.11 60.05
      Y 15.83 13.70 20.94 20.13 20.54
      Zr 61.42 65.90 93.26 91.12 93.46
      Nb 33.43 26.42 35.97 29.71 26.72
      Cs 5.34 5.50 6.80 6.50 6.49
      Ba 32.04 72.78 119.28 136.03 159.34
      La 8.54 8.40 13.27 13.34 12.81
      Ce 19.47 17.56 31.37 30.27 29.47
      Pr 2.91 2.61 4.18 4.10 4.03
      Nd 10.55 9.48 15.54 15.06 14.65
      Sm 2.51 2.18 3.42 3.35 3.25
      Eu 0.14 0.17 0.25 0.26 0.27
      Gd 1.96 1.73 2.81 2.70 2.67
      Tb 0.43 0.37 0.57 0.55 0.54
      Dy 2.63 2.26 3.48 3.27 3.31
      Ho 0.57 0.45 0.70 0.67 0.67
      Er 1.55 1.22 1.85 1.77 1.80
      Tm 0.32 0.25 0.34 0.33 0.33
      Yb 1.98 1.59 2.21 2.08 2.13
      Lu 0.33 0.27 0.35 0.34 0.34
      Hf 2.15 2.30 2.95 2.97 2.83
      Ta 2.97 2.98 3.32 3.07 2.80
      Pb 13.61 17.29 17.30 17.20 18.58
      Th 11.24 8.01 11.22 11.30 10.64
      U 17.98 9.83 8.69 11.06 5.80
      ∑REE 53.88 48.54 80.32 78.09 76.28
      LREE 44.12 40.39 68.02 66.37 64.48
      HREE 9.76 8.14 12.30 11.72 11.80
      LREE/HREE 4.52 4.96 5.53 5.66 5.47
      (La/Yb)N 2.91 3.57 4.05 4.32 4.06
      (La/Sm)N 2.14 2.43 2.44 2.51 2.48
      (Gd/Yb)N 0.80 0.88 1.03 1.05 1.01
      δEu 0.19 0.26 0.24 0.26 0.28
      δCe 0.94 0.90 1.01 0.98 0.98
      注:Mg#= MgO/(MgO+FeOT), 为分子比.
      下载: 导出CSV

      表  4  玉京山糜棱岩化二长花岗岩Sm⁃Nd同位素测试结果

      Table  4.   Sm⁃Nd isotopic compositions of rocks from the Yujingshan mylonitized monzogranite

      样品号 Sm Nd 147Sm/
      144Nd
      143Nd/
      144Nd
      εNd(t) tDM
      (Ga)
      tDM2
      (Ga)
      (10-6)
      JX34-2 2.6 9.4 0.165 3 0.512 123 -9.6 3.4 1.7
      JX34-3 2.4 9.1 0.158 8 0.512 092 -10.1 3.0 1.7
      JX34-4 3.9 15.5 0.152 8 0.512 148 -8.9 2.5 1.6
      JX34-5 3.6 14.6 0.150 3 0.512 135 -9.1 2.4 1.7
      JX34-6 3.5 14.0 0.151 5 0.512 097 -9.8 2.6 1.7
      下载: 导出CSV

      表  5  华南板块东部晚中生代伸展相关火山岩年龄汇总

      Table  5.   Summary of ages of Late Mesozoic extension-related magmatic rocks in the eastern South China block

      序号 位置 岩性 测试方法 地质意义 年龄(Ma)
      1 安徽铜陵 正长花岗岩、二长花岗岩 LA-ICP-MS U-Pb锆石 伸展 123~134
      2 安徽铜陵 花岗闪长岩、二长花岗岩、花岗岩 SHRIMP U-Pb锆石 伸展 124~135
      3 安徽铜陵 石英二长岩 SHRIMP U-Pb锆石 伸展 132~135
      4 浙江临安 流纹岩、安山岩 LA-ICP-MS U-Pb锆石 伸展 122~134
      5 安徽池州 英安岩、花岗岩 SIMS U-Pb锆石 岩石圈减薄 131~124
      6 浙江桐庐 二长花岗岩、花岗岩、花岗闪长岩 LA-ICP-MS U-Pb锆石 伸展 135~100
      7 浙江桐庐 火山凝灰岩、石英二长岩 单颗粒锆石U-Pb 伸展 134.4~140.3
      8 安徽黄山 斑状花岗岩、二长花岗岩 LA-ICP-MS U-Pb锆石 岩石圈减薄 125.2~127.7
      9 江西鹅湖 二长花岗岩 SHRIMP U-Pb锆石 伸展 121.7±2.9
      10 浙江白菊花尖 碱性花岗岩 SHRIMP U-Pb锆石 伸展 126.0±3.2
      11 江西大桥坞/
      杨梅湾
      花岗岩、花岗斑岩 LA-ICP-MS U-Pb锆石 伸展 134~135
      12 浙江龙游 花岗斑岩、正长花岗岩、流纹岩 LA-ICP-MS U-Pb锆石 伸展 127~134
      13 浙西北 粗面英安岩、熔结凝灰岩 LA-ICP-MS U-Pb锆石 伸展 118~136
      14 浙江鹅湖岭 流纹质熔结凝灰岩 SHRIMP U-Pb锆石 伸展 138.0±2.4
      15 江西德兴 二长花岗岩、正长花岗岩、碱性长石花岗岩、辉绿岩 SHRIMP U-Pb锆石 伸展 121.7~129
      16 江西三清山 黑云母花岗岩 SHRIMP U-Pb锆石 伸展 123±2.2
      17 江西三清山 花岗岩 LA-ICP-MS U-Pb锆石 伸展 131~135
      18 江西大茂山 碱性长石花岗岩、正长花岗岩 LA-ICP-MS U-Pb锆石 伸展 130~132
      19 江西石溪 粗面岩 SHRIMP U-Pb锆石 伸展 137.00±0.94
      20 浙江温州 玄武安山岩 LA-ICP-MS U-Pb锆石 伸展 120.0±1.4
      21 浙江温州 流纹岩 LA-ICP-MS U-Pb锆石 伸展 130±5
      22 浙江庆元 流纹质凝灰岩、英安质凝灰岩 LA-ICP-MS U-Pb锆石 伸展 144.0~139.9
      23 江西城门山 花岗斑岩 SIMS U-Pb锆石 挤压向伸展转换 144.5~146.0
      24 江西庐山 花岗岩 LA-ICP-MS U-Pb锆石 伸展 133.0±2.1
      25 江西庐山 花岗岩 榍石U-Pb 伸展 127
      26 江西相山 花岗岩、煌斑岩 TIMS锆石U-Pb 伸展 125~134
      27 江西天华山 流纹岩 LA-ICP-MS U-Pb锆石 伸展 140.0±1.0
      28 江西相山 流纹岩 SHRIMP U-Pb锆石 伸展 136.6±2.7
      29 江西相山 流纹岩 TIMS U-Pb锆石 伸展 136.0±2.6
      30 江西相山 流纹岩 SHRIMP/LA-ICP-MS U-Pb锆石 伸展 134~135
      31 江西相山 流纹岩 LA-ICP-MS U-Pb锆石 伸展 129.5±7.9
      32 福建外屯/石陂 花岗闪长岩、二长花岗岩、花岗岩 LA-ICP-MS U-Pb锆石 伸展 109~160
      33 江西吉安 玄武岩 锆石U-Pb 伸展 139~143
      34 福建社口 玄武岩 SHRIMP U-Pb锆石 构造体制转换 142.3±7.2
      35 福建泉州 长英质火山岩 MC-ICPMS U-Pb锆石 伸展 130~149
      36 福建泉州 花岗岩、花岗闪长岩、闪长岩 SIMS U-Pb锆石 伸展 115.3~117.5
      37 福建泉州 二长花岗岩、辉长岩 LA-ICP-MS U-Pb锆石 伸展 108~111
      38 福建金山 黑云母花岗岩 ELA-ICP-MS U-Pb锆石 弧后伸展 140±1
      39 福建蓝田 花岗岩 LA-ICP-MS U-Pb锆石 131~142
      40 广东河源 花岗岩 TIMS U-Pb锆石 伸展 149±1.6
      41 广东恶鸡脑 A型花岗岩 SHRIMP U-Pb锆石 伸展 137±2
      42 广东水濂山 角闪石花岗岩、黑云母花岗岩 LA-ICP-MS U-Pb锆石 俯冲后撤 136~139
      43 香港 凝灰岩、流纹岩 TIMS U-Pb锆石 伸展 142.7~147.5
      44 香港 粗面岩、流纹岩 TIMS U-Pb锆石 伸展 141.2~143
      45 珠江口盆地 角闪石花岗岩 LA-ICP-MS U-Pb锆石 俯冲后撤 141.6±1.4
      46 南沙 二长花岗岩 LA-ICP-MS U-Pb锆石 岩石圈减薄 127.2±0.2
      注:据Wang et al.(2023)及其内部参考文献.
      下载: 导出CSV
    • Anderson, D. L., 1983. Chemical Composition of the Mantle. Journal of Geophysical Research: Solid Earth, 88(Suppl. 1): 41-52. https://doi.org/10.1029/jb088is01p00b41
      Bi, H., Tan, K. R., Wu, Q. H., et al., 1996. Orogenesis-Basinogenesis in Mount Lu-Poyang Lake in North Jiangxi. Geology of Jiangxi, (1): 3-12(in Chinese with English abstract).
      Cui, X. J., Zhao, G., Chen, X. Y., et al., 2002. Study of the 40Ar/39Ar Isotopic Age for Mesozoic Tectonothermal Event in Lushan Mountain. Journal of Chengdu University of Technology, 29(6): 646-649(in Chinese with English abstract).
      Dong, S. W., Xue, H. M., Xiang, X. K., et al., 2010. The Discovery of Neoproterozoic Pillow Lava in Spilite-Ceratophyre of Lushan Area, Northern Jiangxi Province, and Its Geological Significance. Geology in China, 37(4): 1021-1033(in Chinese with English abstract).
      Gao, L. Z., Huang, Z. Z., Ding, X. Z., et al., 2012. The Geochronological Relationship between the Shaojiwa Formation and the Xingzi Complex Group in Northwestern Jiangxi and the Constraints on Zircon SHRIMP U-Pb Age. Acta Geoscientica Sinica, 33(3): 295-304(in Chinese with English abstract).
      Gelman, S. E., Deering, C. D., Bachmann, O., et al., 2014. Identifying the Crystal Graveyards Remaining after Large Silicic Eruptions. Earth and Planetary Science Letters, 403: 299-306. https://doi.org/10.1016/j.epsl.2014.07.005
      Griffin, W. L., Belousova, E. A., Shee, S. R., et al., 2004. Archean Crustal Evolution in the Northern Yilgarn Craton: U-Pb and Hf-Isotope Evidence from Detrital Zircons. Precambrian Research, 131: 231-282. https://doi.org/10.1016/j.precamres.2003.12.011
      Guan, J. P., He, B., Li, D. W., 2010. SIMS U-Pb Dating of the Detrital Zircons from the Xingzi Group in Lushan Area and Its Geological Significance. Geotectonica et Metallogenia, 34(3): 402-407(in Chinese with English abstract).
      Halliday, A. N., Shepherd, T. J., Dickin, A. P., et al., 1990. Sm-Nd Evidence for the Age and Origin of a Mississippi Valley Type Ore Deposit. Nature, 344: 54-56. https://doi.org/10.1038/344054a0
      Li, J. L., Sun, S., Xu, J. H., et al., 1989. New Evidences about the Evolution of the South Cathay Orogenic Belt. Chinese Journal of Geology, 24(3): 217-225(in Chinese with English abstract).
      Li, W. X., Zhou, X. M., Li, X. H., et al., 2001. Zircon U-Pb Dating of Pegmatite from Xingzi Metamorphic Core Complex of Lushan Mountain and Its Geological Implication. Earth Science, 26(5): 491-495(in Chinese with English abstract).
      Li, X. G., Yang, K. G., Zhu, Q. B., 2010. Zircon LA-ICP-MS U-Pb Dating of Granitic Intrusion in the Core of Lushan Metamorphic Core Complex and Its Geological Significance. Journal of Mineralogy and Petrology, 30(4): 36-42(in Chinese with English abstract).
      Lin, W., Faure, M., Monie, P., et al., 2000. Tectonics of SE China: New Insights from the Lushan Massif (Jiangxi Province). Tectonics, 19(5): 852-870. https://doi.org/10.1029/2000tc900009
      Lin, W., Xu, D. R., Hou, Q. L., et al., 2019. Early Cretaceous Extensional Dome and Related Polymetallic Mineralization in the Central and Eastern China. Geotectonica et Metallogenia, 43(3): 409-430(in Chinese with English abstract).
      Liu, L., Liu, L., Xu, Y. G., 2021. Mesozoic Intraplate Tectonism of East Asia Due to Flat Subduction of a Composite Terrane Slab. Earth-Science Reviews, 214: 103505. https://doi.org/10.1016/j.earscirev.2021.103505
      Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434-010-3052-4
      Liu, Y. Y., Ma, C. Q., Lü, Z. Y., et al., 2012. Zircon U-Pb Age, Element and Sr-Nd-Hf Isotope Geochemistry of Late Mesozoic Magmatism from the Guichi Metallogenic District in the Middle and Lower Reaches of the Yangtze River Region. Acta Petrologica Sinica, 28(10): 3287-3305(in Chinese with English abstract).
      Ma, C. X., Xiang, X. K., 1993. Preliminary Study of the Nd Isotopic Model Ages of the Precambrian Metamorphic Stratum in Northeastern Jiangxi Province. Chinese Journal of Geology, 28(2): 145-150(in Chinese with English abstract).
      Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2
      Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      Mo, J. J., Xu, Y. G., He, B., 2024. Interaction between Magmatism and Deformation in the Mesozoic of the Lushan Area, Eastern China. Chinese Science Bulletin, 69(2): 301-316(in Chinese with English abstract). doi: 10.1360/TB-2023-0122
      Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745
      Shi, Z. G., Gao, L. Z., Li, T. D., et al., 2014. Zircon U-Pb Isotopes Dating of Hanyangfeng Formation in Lushan Area and Its Geological Significance. Geology in China, 41(2): 326-334(in Chinese with English abstract).
      Shu, L. S., Yao, J. L., Wang, B., et al., 2021. Neoproterozoic Plate Tectonic Process and Phanerozoic Geodynamic Evolution of the South China Block. Earth-Science Reviews, 216: 103596. https://doi.org/10.1016/j.earscirev.2021.103596
      Shu, L. S., Zhou, X. M., Deng, P., et al., 2004. Geological Features and Tectonic Evolution of Meso-Cenozoic Basins in Southeastern China. Geological Bulletin of China, 23(9): 876-884(in Chinese with English abstract).
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A. D., Norry, M. J., eds., Magmatism in Ocean Basins 27. Geological Society, London, Special Publication, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Sun, Y., Shu, L. S., Zhu, W. B., et al., 2000. Mesozoic Tectonic Events and the Geochronological Dating in the Lushan Massif, Jiangxi Province. Journal of Naijing University, 36(3): 363-367.
      Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1-4): 29-44. doi: 10.1016/S0024-4937(98)00024-3
      Wang, D. S., Li, J. W., She, H. Q., et al., 2023. Late Jurassic Volcanism Deduced from Geochemical, Geochronological, and Sr-Nd-Hf Isotopic Composition Characteristics of the Nanyuan Formation, South China. Acta Geologica Sinica, 97(2): 249-468.
      Wang, J. L., He, B., Guan, J. P., 2013. Study on Age and Mechanism of the Metamorphism of the Xingzi Group in the Lushan Area, Jiangxi Province. Geotectonica et Metallogenia, 37(3): 489-498(in Chinese with English abstract).
      Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters. 64: 295-304. https://doi.org/10.1016/0012-821x(83)90211-x
      Watson, E. B., Harrison, T. M., 2005. Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth. Science, 308(5723): 841-844. https://doi.org/10.1126/science.1110873
      Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/bf00402202
      Wilson, M. 1989. Igneous Petrogenesis a Global Tectonic Approach. Unwin Hyman, London, 11-40. https://doi.org/10.1007/978-1-4020-6788-4
      Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Scientia Sinica(Terrae), 47(7): 745-765(in Chinese).
      Xiang, X. K., Xu, J. H., Xu, K. L., 1993. Characteristics of Metamorphic Core Complexes of Xingzi Group and Its Geological Significance. Mineral Resources and Geology, 7(6): 401-407(in Chinese with English abstract).
      Xie, G. G., Li, J. H., Li, W. X., et al., 1997. U-Pb Zircon Dating of Presinian Rocks at Lushan Mt. and Its Geological Implication. Chinese Journal of Geology (Scientia Geologica Sinica), 32(1): 110-115(in Chinese with English abstract).
      Yang, F., Song, C. Z., Ren, S. L., et al., 2015. Metamorphism and Deformation of the Lushan Metamorphic Core Complex and Their Tectonic Significance. Geological Review, 61(4): 752-766(in Chinese with English abstract).
      Zhang, H. X., Zhang, B. Y., 2002. The High Sr, Low Y Granite in the Metamorphic Core Complex and Its Geological Significance. Journal of Mineralogy and Petrology, 22(4): 16-20(in Chinese with English abstract).
      Zhu, Q. B., Yang, K. G., Wang, Y., 2010. Extensional Detachment and Magmatism of the Lushan Metamorphic Core Complex: Constraints from 40Ar/39Ar and U-Pb Geochronology. Geotectonica et Metallogenia, 34(3): 391-401(in Chinese with English abstract).
      毕华, 谭克仁, 吴堑虹, 等, 1996. 赣北庐山-鄱阳湖的造山-造盆作用. 江西地质, 10(1): 3-12.
      崔学军, 赵赣, 陈祥云, 等, 2002. 江西庐山中生代构造事件的40Ar/39Ar同位素年龄研究. 成都理工学院学报, 29(6): 646-649.
      董树文, 薛怀民, 项新葵, 等, 2010. 赣北庐山地区新元古代细碧-角斑岩系枕状熔岩的发现及其地质意义. 中国地质, 37(4): 1021-1033.
      高林志, 黄志忠, 丁孝忠, 等, 2012. 庐山筲箕洼组与星子岩群年代地层关系及SHRIMP锆石U-Pb年龄的制约. 地球学报, 33(3): 295-304.
      关俊朋, 何斌, 李德威, 2010. 庐山地区星子群碎屑锆石SIMS U-Pb年龄及其地质意义. 大地构造与成矿学, 34(3): 402-407.
      李继亮, 孙枢, 许靖华, 等, 1989. 南华夏造山带构造演化的新证据. 地质科学, 24(3): 217-225.
      李武显, 周新民, 李献华, 等, 2001. 庐山"星子变质核杂岩" 中伟晶岩锆石U-Pb年龄及其地质意义. 地球科学, 26(5): 491-495. http://www.earth-science.net/article/id/1039
      李学刚, 杨坤光, 朱清波, 2010. 庐山变质核杂岩核部岩体锆石LA-ICP-MS U-Pb年代学研究及其地质意义. 矿物岩石, 30(4): 36-42.
      林伟, 许德如, 侯泉林, 等, 2019. 中国大陆中东部早白垩世伸展穹隆构造与多金属成矿. 大地构造与成矿学, 43(3): 409-430.
      刘园园, 马昌前, 吕昭英, 等, 2012. 长江中下游贵池矿集区燕山期岩浆作用及其地质意义: 年代学、地球化学及Sr-Nd-Hf同位素证据. 岩石学报, 28(10): 3287-3305.
      马长信, 项新葵, 1993. 赣东北前寒武纪变质地层钕模式年龄初步研究. 地质科学, 28(2): 145-150.
      莫佳君, 徐义刚, 何斌, 2024. 庐山地区晚中生代深源岩浆与浅表构造变形的相互作用. 科学通报, 69(2): 301-316.
      史志刚, 高林志, 李廷栋, 等, 2014. 庐山汉阳峰组变流纹岩锆石U-Pb同位素定年及其地质意义. 中国地质, 41(2): 326-334.
      舒良树, 周新民, 邓平, 等, 2004. 中国东南部中、新生代盆地特征与构造演化. 地质通报, 23(增刊2): 876-884.
      王继林, 何斌, 关俊朋, 2013. 江西庐山地区星子群变质时代及变质机制探讨. 大地构造与成矿学, 37(3): 489-498.
      吴福元, 刘小驰, 纪伟强, 等, 2017. 高分异花岗岩的识别与研究. 中国科学: 地球科学, 47(7): 745-765.
      项新葵, 许建华, 徐寇龙, 1993. 星子群变质核杂岩的特征及其地质意义. 矿产与地质, 7(6): 401-407.
      谢国刚, 李均辉, 李武显, 等, 1997. 庐山前震旦纪岩石中锆石U-Pb法定年与其地质意义. 地质科学, 32(1): 110-115.
      杨帆, 宋传中, 任升莲, 等, 2015. 庐山变质核杂岩的变质变形及构造意义. 地质论评, 61(4): 752-766.
      张海祥, 张伯友, 2002. 变质核杂岩中高Sr低Y型花岗岩的发现及其地质意义. 矿物岩石, 22(4): 16-20.
      朱清波, 杨坤光, 王艳, 2010. 庐山变质核杂岩伸展拆离和岩浆作用的年代学约束. 大地构造与成矿学, 34(3): 391-401.
    • 加载中
    图(9) / 表(5)
    计量
    • 文章访问数:  268
    • HTML全文浏览量:  101
    • PDF下载量:  33
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-07-17
    • 网络出版日期:  2025-01-09
    • 刊出日期:  2024-12-25

    目录

      /

      返回文章
      返回