• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    华北自生黏土矿物指示中元古代末期浅海氧化还原条件的时空差异性

    谢宝增 汤冬杰 刘亚婕 杨欣囡 柯竺彤 孙龙飞 李超 王新强 史晓颖

    谢宝增, 汤冬杰, 刘亚婕, 杨欣囡, 柯竺彤, 孙龙飞, 李超, 王新强, 史晓颖, 2025. 华北自生黏土矿物指示中元古代末期浅海氧化还原条件的时空差异性. 地球科学, 50(3): 1066-1081. doi: 10.3799/dqkx.2024.135
    引用本文: 谢宝增, 汤冬杰, 刘亚婕, 杨欣囡, 柯竺彤, 孙龙飞, 李超, 王新强, 史晓颖, 2025. 华北自生黏土矿物指示中元古代末期浅海氧化还原条件的时空差异性. 地球科学, 50(3): 1066-1081. doi: 10.3799/dqkx.2024.135
    Xie Baozeng, Tang Dongjie, Liu Yajie, Yang Xinnan, Ke Zhutong, Sun Longfei, Li Chao, Wang Xinqiang, Shi Xiaoying, 2025. Authigenic Clay Minerals from North China Reveal Spatiotemporal Variations in Shallow Seawater Redox Conditions during the Terminal Mesoproterozoic. Earth Science, 50(3): 1066-1081. doi: 10.3799/dqkx.2024.135
    Citation: Xie Baozeng, Tang Dongjie, Liu Yajie, Yang Xinnan, Ke Zhutong, Sun Longfei, Li Chao, Wang Xinqiang, Shi Xiaoying, 2025. Authigenic Clay Minerals from North China Reveal Spatiotemporal Variations in Shallow Seawater Redox Conditions during the Terminal Mesoproterozoic. Earth Science, 50(3): 1066-1081. doi: 10.3799/dqkx.2024.135

    华北自生黏土矿物指示中元古代末期浅海氧化还原条件的时空差异性

    doi: 10.3799/dqkx.2024.135
    基金项目: 

    国家自然科学基金重点项目 41930320

    详细信息
      作者简介:

      谢宝增(1994-),男,博士研究生,主要从事元古宙中期生命与环境协同演化研究. ORCID:0000-0003-4721-6485,E-mail:baozeng_xie@163.com

      通讯作者:

      汤冬杰,ORCID:0000-0002-0075-6671. E-mail:dongjtang@126.com

    • 中图分类号: P534.3

    Authigenic Clay Minerals from North China Reveal Spatiotemporal Variations in Shallow Seawater Redox Conditions during the Terminal Mesoproterozoic

    • 摘要: 为了重建中元古代末期冠群真核生物快速演化的环境背景,以华北4条剖面的长龙山组碎屑岩为研究对象,开展了沉积学和矿物学分析.结果表明,怀来剖面深‒浅潮下带细‒粗砂岩中的黏土矿物以鲕绿泥石为主,指示缺氧铁化的海水环境;而深潮下带粉砂质泥岩‒泥质粉砂岩中以海绿石为主,反映次氧化的海水条件.门头沟剖面浅潮下带中‒粗砂岩中的黏土矿物以鲕绿泥石为主,指示缺氧铁化的海水条件;蓟县和卢龙剖面深潮下带砂岩中的黏土矿物则以海绿石为主,表明次氧化的环境条件.这些结果揭示,长龙山组沉积期华北浅海的氧化还原条件存在显著的时空差异,增氧促进了龙凤山藻的出现,但氧化水体分布的时空不连续性限制了它们的持续演化与广泛分布.

       

    • 图  1  研究区地质背景

      a. 中元古代末期古地理图,展示各剖面的古地理位置,据王鸿祯(1985);b~e. 地质简图,展示怀来、门头沟、蓟县和卢龙剖面位置

      Fig.  1.  Geological setting of the study area

      图  2  华北中元古界地层柱状图(根据Tang et al., 2016及其参考文献修改),以及怀来‒门头沟‒蓟县‒卢龙地区长龙山组‒景儿峪组与复州地区钓鱼台组‒南芬组的对比关系(根据杜汝霖等, 2009; Zhang et al., 2016b; Zhao et al., 2020; Kuang et al., 2023及其参考文献)

      Fig.  2.  Stratigraphic column of the Mesoproterozoic in North China (modified from Tang et al., 2016 and references therein), and the correlation between the Changlongshan Formation-Jing'eryu Formation in the Huailai-Mentougou-Jixian-Lulong area and the Diaoyutai Formation-Nanfen Formation in the Fuzhou area (Du et al., 2009; Zhang et al., 2016b; Zhao et al., 2020; Kuang et al., 2023 and references therein)

      图  3  华北燕辽盆地长龙山组沉积特征

      a.蓟县剖面二段红绿页岩层段中的含海绿石砂岩夹层;b.蓟县剖面二段含海绿石砂岩的近距离特征;c.怀来剖面一段中粗粒砂岩,发育斜层理;d.怀来剖面一段含鲕绿泥石细砂岩;e.怀来剖面二段灰黑-灰绿色泥质粉砂岩(化石层);f.门头沟剖面二段中厚层含鲕绿泥石砂岩的近观照片;g.门头沟剖面二段含鲕绿泥石砂岩,发育交错层理;h.卢龙剖面二段绿色页岩‒粉砂岩夹薄层砂岩;i.卢龙剖面二段含海绿石砂岩

      Fig.  3.  Depositional features of the Changlongshan Formation in Yanliao basin of North China

      图  4  怀来剖面长龙山组二段下部海绿石岩相学特征

      a.低倍显微照片,显示海绿石碎屑颗粒状特征;b.高倍显微照片,显示海绿石颗粒明显大于周边碎屑颗粒;c.图b处的正交偏光照片,显示海绿石的集合消光特征;d.背散射照片,显示海绿石(Glt)均匀的成分特征;e.图d处的元素面扫描特征,标记了海绿石(Glt)、石英(Qz)、云母(Mca)和钾长石(Fsp);f.高倍扫描电镜照片,显示海绿石片状集合体结构

      Fig.  4.  Petrographic features of glauconite from lower Member Ⅱ of the Changlongshan Formation in Huailai section

      图  5  怀来剖面长龙山组二段中部鲕绿泥石岩相学特征

      a.低倍显微特征,显示大量鲕绿泥石(箭头指示)与陆源碎屑;b.单偏光显微照片,显示鲕绿泥石(Chm)轮廓受限于周边的碎屑石英(Qz);c.图b处的正交偏光照片,显示鲕绿泥石集合消光特征;d.背散射照片,多个颗粒状鲕绿泥石(较亮)被后期的鲕绿泥石(较暗)胶结形成更大的集合体;e.图d处的面扫描特征;f.高倍扫描电镜照片,显示鲕绿泥石片状集合体的结构

      Fig.  5.  Petrographic features of chamosite from middle Member Ⅱ of the Changlongshan Formation in Huailai section

      图  6  门头沟剖面长龙山组二段黏土矿物岩相学特征

      a.低倍显微照片,显示鲕绿泥石的边界不规则特征;b.高倍显微照片,显示鲕绿泥石的边界受周围碎屑颗粒的轮廓控制;c.图b处的正交偏光显微照片,显示鲕绿泥石的集合消光特征;d.背散射电子显微照片,显示海绿石(Glt,较暗)和鲕绿泥石(Chm,较亮)颗粒共生;e.背散射电子显微照片,显示海绿石颗粒(Glt)和鲕绿泥石颗粒(Chm)共生,后期鲕绿泥石(Chm)脉状体穿插于两者之间;f.海绿石颗粒已部分转化为鲕绿泥石(Glt+Chm),并被后期鲕绿泥石(Chm)脉切割(Qz为石英,Fsp为钾长石);g.图f处的能谱面扫描结果,显示海绿石颗粒已部分转化为鲕绿泥石(Glt+Chm),并被后期鲕绿泥石(Chm)脉切割;h.高倍背散射电子显微照片,显示鲕绿泥石(Chm)颗粒内残留少量海绿石(Glt)

      Fig.  6.  Petrographic features of green clay minerals from Member Ⅱ of the Changlongshan Formation in Mentougou section

      图  7  蓟县剖面长龙山组二段海绿石的岩相学特征

      a.低倍显微特征,显示大量海绿石(箭头指示)与陆源碎屑(图中蓝色圆圈为人为标记,用于定位扫描电镜分析的矿物位置);b.单偏光显微照片,显示海绿石(Glt)颗粒粒径大于周围碎屑石英(Qz);c.图b处的正交偏光照片,显示海绿石集合消光特征;d.背散射照片,显示海绿石(Glt)成分均匀,但被细石英脉穿插,且其粒径大于周边碎屑石英(Qz);e.图d处的面扫描特征;f.高倍扫描电镜照片,显示海绿石片状集合体的结构

      Fig.  7.  Petrographic features of glauconite from Member Ⅱ of the Changlongshan Formation in Jixian section

      图  8  卢龙剖面长龙山组二段海绿石岩相学特征

      a.低倍显微照片,展示具有不规则边界特征的海绿石(上部箭头)和颗粒状海绿石(下部箭头);b.高倍显微照片,显示颗粒状海绿石粒径大于周围碎屑颗粒;c.图b处的正交偏光显微照片,显示海绿石的集合消光特征;d.背散射电子显微照片,显示海绿石颗粒(Glt)被后期鲕绿泥石(Chm)脉穿插(Qz:石英;图中圆圈表示原位Rb-Sr定年激光剥蚀点位);e.图d处的面扫描特征;f.Fe元素面扫描结果,显示低铁海绿石(Glt)被高铁鲕绿泥石(Chm)穿插

      Fig.  8.  Petrographic features of glauconite from Member Ⅱ of the Changlongshan Formation in Lulong section

      图  9  华北长龙山组黏土矿物地球化学和矿物学特征

      a.典型海绿石能谱图,展示高钾低铁特征;b.典型鲕绿泥石能谱图,展示低钾高铁特征;c.全岩粉末XRD谱图,展示卢龙剖面黏土矿物主要为海绿石,门头沟剖面则为鲕绿泥石.Glt.海绿石;Chm.鲕绿泥石;Qz.石英;Fsp.钾长石.d.黏土矿物TFe2O3与K2O协变图,展示海绿石的高钾低铁特征,鲕绿泥石的低钾高铁特征

      Fig.  9.  Geochemical and mineralogical features of clay minerals from the Changlongshan Formation in North China

      图  10  华北长龙山组黏土矿物沉积模式

      相对局限的怀来和门头沟地区海水氧化还原界面较浅,浅潮下带缺氧富铁环境中以鲕绿泥石为主;相对开阔的蓟县、卢龙地区海水氧化还原界面较深,正常浪基面与风暴浪基面之间处于次氧化条件,主要发育海绿石.长龙山组二段下部沉积期发生海侵,怀来地区风暴浪基面附近发育海绿石,指示次氧化条件,对应龙凤山藻的产出

      Fig.  10.  Depositional model of clay minerals from the Changlongshan Formation in North China

    • Alcott, L. J., Mills, B. J. W., Bekker, A., et al., 2022. Earth's Great Oxidation Event Facilitated by the Rise of Sedimentary Phosphorus Recycling. Nature Geoscience, 15: 210-215. https://doi.org/10.1038/s41561-022-00906-5
      Banerjee, S., Choudhury, T. R., Saraswati, P. K., et al., 2020. The Formation of Authigenic Deposits during Paleogene Warm Climatic Intervals: A Review. Journal of Palaeogeography, 9(1): 27. https://doi.org/10.1186/s42501-020-00076-8
      Banerjee, S., Mondal, S., Chakraborty, P. P., et al., 2015. Distinctive Compositional Characteristics and Evolutionary Trend of Precambrian Glaucony: Example from Bhalukona Formation, Chhattisgarh Basin, India. Precambrian Research, 271: 33-48. https://doi.org/10.1016/j.precamres.2015.09.026
      Bansal, U., Banerjee, S., Nagendra, R., 2020. Is the Rarity of Glauconite in Precambrian Bhima Basin in India Related to Its Chloritization? Precambrian Research, 336: 105509. https://doi.org/10.1016/j.precamres.2019.105509
      Cole, D. B., Reinhard, C. T., Wang, X. L., et al., 2016. A Shale-Hosted Cr Isotope Record of Low Atmospheric Oxygen during the Proterozoic. Geology, 44(7): 555-558. https://doi.org/10.1130/g37787.1
      Deng, Y., Wang, H. J., Lü, D., et al., 2021. Evolution of the 1.8-1.6 Ga Yanliao and Xiong'er Basins, North China Craton. Precambrian Research, 365: 106383. https://doi.org/10.1016/j.precamres.2021.106383
      Du, R. L., 1982. The Discovery of the Fossils such as Chuaria in the Qingbaikou System in Northwestern Hebei and Their Significance. Geological Review, 28(1): 1-6 (in Chinese with English abstract).
      Du, R. L., Tian, L. F., 1985. Discovery and Preliminary Study of Mega-Alga Longfengshania from the Qingbaikou System of the Yanshan Mountain Area. Acta Geological Sinica, 59(3): 183-190 (in Chinese with English abstract).
      Du, R. L, Tian, L. F., Hu, H. B., et al., 2009. The Neoproterozoic Qingbaikou Period Longfengshan Biota. Science Press, Beijing (in Chinese).
      Gao, L. Z., Zhang, C. H., Liu, P. J., et al., 2009. Reclassification of the Meso- and Neoproterozoic Chronostratigraphy of North China by SHRIMP Zircon Ages. Acta Geologica Sinica-English Edition, 83(6): 1074-1084. https://doi.org/10.1111/j.1755-6724.2009.00135.x
      Gilleaudeau, G. J., Frei, R., Kaufman, A. J., et al., 2016. Oxygenation of the Mid-Proterozoic Atmosphere: Clues from Chromium Isotopes in Carbonates. Geochemical Perspectives Letters, 2(2): 178-187. https://doi.org/10.7185/geochemlet.1618
      Gong, H., Gao, F. H., Jia, X. Y., 2023. The Response of Geochemical Characteristics to Neoproterozoic Great Oxidation Event from Nanfen Formation in Tonghua Area. Journal of Jilin University (Earth Science Edition), Online (in Chinese with English abstract).
      Jahnke, L., Klein, H. P., 1979. Oxygen as a Factor in Eukaryote Evolution: Some Effects of Low Levels of Oxygen on Saccharomyces Cerevisiae. Origins of Life, 9(4): 329-334. https://doi.org/10.1007/BF00926825
      Jahnke, L., Klein, H. P., 1983. Oxygen Requirements for Formation and Activity of the Squalene Epoxidase in Saccharomyces Cerevisiae. Journal of Bacteriology, 155(2): 488-492. https://doi.org/10.1128/jb.155.2.488-492.1983
      Jing, Y. H., Chen, Z. Q., Anderson, R. P., et al., 2022. Microscopic and Geochemical Analyses of the Tonian Longfengshan Biota from the Luotuoling Formation (Hebei Province, North China) with Taphonomic Implications. Precambrian Research, 382: 106899. https://doi.org/10.1016/j.precamres.2022.106899
      Kuang, H. W., Peng, N., Liu, Y. Q., et al., 2023. Is There a Great Unconformity between Xiamaling and Longshan Formations in the North China Craton? Science China Earth Sciences, 66(5): 959-984. https://doi.org/10.1007/s11430-022-1034-9
      Li, H. K., Lu, S. N., Su, W. B., et al., 2013. Recent Advances in the Study of the Mesoproterozoic Geochronology in the North China Craton. Journal of Asian Earth Sciences, 72: 216-227. https://doi.org/10.1016/j.jseaes.2013.02.020
      Liaoning Institute of Geological Exploration, 2017. Regional Geology of China-Records of Liaoning. Geological Publishing House, Beijing (in Chinese).
      Lin, Y. T., Tang, D. J., Shi, X. Y., et al., 2019. Shallow-Marine Ironstones Formed by Microaerophilic Iron-Oxidizing Bacteria in Terminal Paleoproterozoic. Gondwana Research, 76: 1-18. https://doi.org/10.1016/j.gr.2019.06.004
      Lü, D., Deng, Y., Wang, H. J., et al., 2021. Using Cyclostratigraphic Evidence to Define the Unconformity Caused by the Mesoproterozoic Qinyu Uplift in the North China Craton. Journal of Asian Earth Sciences, 206: 104608. https://doi.org/10.1016/j.jseaes.2020.104608
      Lü, D., Deng, Y., Wang, X. M., et al., 2022. New Chronological and Paleontological Evidence for Paleoproterozoic Eukaryote Distribution and Stratigraphic Correlation between the Yanliao and Xiong'er Basins, North China Craton. Precambrian Research, 371: 106577. https://doi.org/10.1016/j.precamres.2022.106577
      Lu, S. N., Yang, C. L., Li, H. K., et al., 2002. A Group of Rifting Events in the Terminal Paleoproterozoic in the North China Craton. Gondwana Research, 5(1): 123-131. https://doi.org/10.1016/S1342-937X(05)70896-0
      Lu, S. N., Zhao, G. C., Wang, H. C., et al., 2008. Precambrian Metamorphic Basement and Sedimentary Cover of the North China Craton: A Review. Precambrian Research, 160(1-2): 77-93. https://doi.org/10.1016/j.precamres.2007.04.017
      Luo, G. M., Junium, C. K., Kump, L. R., et al., 2014. Shallow Stratification Prevailed for ∼1 700 to ∼1 300 Ma Ocean: Evidence from Organic Carbon Isotopes in the North China Craton. Earth and Planetary Science Letters, 400: 219-232. https://doi.org/10.1016/j.epsl.2014.05.020
      Lyons, T. W., Diamond, C. W., Planavsky, N. J., et al., 2021. Oxygenation, Life, and the Planetary System during Earth's Middle History: An Overview. Astrobiology, 21(8): 906-923. https://doi.org/10.1089/ast.2020.2418
      Ma, J. B., Shi, X. Y., Lechte, M., et al., 2022. Mesoproterozoic Seafloor Authigenic Glauconite-Berthierine: Indicator of Enhanced Reverse Weathering on Early Earth. American Mineralogist, 107(1): 116-130. https://doi.org/10.2138/am-2021-7904
      Miao, L., Yin, Z., Knoll, A. H., et al., 2024. 1.63-Billion-Year-Old Multicellular Eukaryotes from the Chuanlinggou Formation in North China. Sci Adv, 10(4): eadk3208. https://doi.org/10.1126/sciadv.adk3208
      Mills, B., Lenton, T. M., Watson, A. J., 2014. Proterozoic Oxygen Rise Linked to Shifting Balance between Seafloor and Terrestrial Weathering. Proceedings of the National Academy of Sciences of the United States of America, 111(25): 9073-9078. https://doi.org/10.1073/pnas.1321679111
      Mills, D. B., Simister, R. L., Sehein, T. R., et al., 2024. Constraining the Oxygen Requirements for Modern Microbial Eukaryote Diversity. Proceedings of the National Academy of Sciences of the United States of America, 121(2): e2303754120. https://doi.org/10.1073/pnas.2303754120
      Niu, S. W., 2019. More on the Morphological Characteristics and Systematic Texology of Genus Longfengshania Du, 1982 (Magascopic Alga). Geological Bulletin of China, 38(8): 1259-1265 (in Chinese with English abstract).
      Planavsky, N. J., Reinhard, C. T., Wang, X. L., et al., 2014. Low Mid-Proterozoic Atmospheric Oxygen Levels and the Delayed Rise of Animals. Science, 346(6209): 635-638. https://doi.org/10.1126/science.1258410
      Qiao, X. F., Gao, L. Z., Zhang, C. H., 2007. New Idea of the Meso- and Neoproterozoic Chronostratigraphic Chart and Tectonic Environment in Sino-Korean Plate. Geological Bulletin of China, 26(5): 503-509 (in Chinese with English abstract).
      Reinhard, C. T., Planavsky, N. J., Olson, S. L., et al., 2016. Earth's Oxygen Cycle and the Evolution of Animal Life. Proceedings of the National Academy of Sciences of the United States of America, 113(32): 8933-8938. https://doi.org/10.1073/pnas.1521544113
      Shang, M. H., Tang, D. J., Shi, X. Y., et al., 2019. A Pulse of Oxygen Increase in the Early Mesoproterozoic Ocean at Ca. 1.57-1.56 Ga. Earth and Planetary Science Letters, 527: 115797. https://doi.org/10.1016/j.epsl.2019.115797
      Stolper, D. A., Revsbech, N. P., Canfield, D. E., 2010. Aerobic Growth at Nanomolar Oxygen Concentrations. Proceedings of the National Academy of Sciences, 107(44): 18755-18760. https://doi.org/10.1073/pnas.1013435107
      Stüeken, E. E., Kipp, M. A., Koehler, M. C., et al., 2016. The Evolution of Earth's Biogeochemical Nitrogen Cycle. Earth-Science Reviews, 160: 220-239. https://doi.org/10.1016/j.earscirev.2016.07.007
      Su, W. B., Li, H. K., Warren, D. H., et al., 2010. Zircon SHRIMP U-Pb Ages of Tuff in the Tieling Formation and Their Geological Significance. Chinese Science Bulletin, 55(29): 3312-3323. https://doi.org/10.1007/s11434-010-4007-5
      Tang, D. J., Ma, J. B., Shi, X. Y., et al., 2020. The Formation of Marine Red Beds and Iron Cycling on the Mesoproterozoic North China Platform. American Mineralogist, 105(9): 1412-1423. https://doi.org/10.2138/am-2020-7406
      Tang, D. J., Shi, X. Y., Jiang, G. Q., et al., 2017b. Ferruginous Seawater Facilitates the Transformation of Glauconite to Chamosite: An Example from the Mesoproterozoic Xiamaling Formation of North China. American Mineralogist, 102(11): 2317-2332. https://doi.org/10.2138/am-2017-6136
      Tang, D. J., Shi, X. Y., Ma, J. B., et al., 2017a. Formation of Shallow-Water Glaucony in Weakly Oxygenated Precambrian Ocean: An Example from the Mesoproterozoic Tieling Formation in North China. Precambrian Research, 294: 214-229. https://doi.org/10.1016/j.precamres.2017.03.026
      Tang, D. J., Shi, X. Y., Wang, X. Q., et al., 2016. Extremely Low Oxygen Concentration in Mid-Proterozoic Shallow Seawaters. Precambrian Research, 276: 145-157. https://doi.org/10.1016/j.precamres.2016.02.005
      Tang, F., 1995. Macroalgal Fossil of Changlongshan Stage in Beijing Region and Their Significance. Professional Papers of Stratigraphy and Palaeontology, 26: 24-36 (in Chinese with English abstract).
      Wang, H. Y., Liu, A. R., Li, C., et al., 2021. A Benthic Oxygen Oasis in the Early Neoproterozoic Ocean. Precambrian Research, 355: 106085. https://doi.org/10.1016/j.precamres.2020.106085
      Wang, H. Z., 1985. Atlas of the Palaeogeography of China. Cartographic Publishing House, Beijing (in Chinese).
      Wang, H. Z., Shi, X. Y., Wang, X. L., et al., 2001. Research on the Sequence Stratigraphy of China. Guangdong Science and Technology Press, Guangzhou (in Chinese).
      Wang, L. F., Li, W. X., Luo, J. L., et al., 2000. The Study on Sedimentary Facies of Changlongshan Formation of Neoproterozoic Era in Huailai, Hebei. World Geology, 19(2): 138-143 (in Chinese with English abstract).
      Xie, B. Z., Zhu, J. M., Wang, X. L., et al., 2023. Mesoproterozoic Oxygenation Event: From Shallow Marine to Atmosphere. GSA Bulletin, 135(3-4): 753-766. https://doi.org/10.1130/b36407.1
      Yang, X. Q., Yang, G. W., Li, C., et al., 2025. Pulse of Intense Oxidative Weathering during the Latest Paleoproterozoic. Geology, 53(1): 78-82. https://doi.org/10.1130/g52373.1
      Zhai, M. G., Zhu, X. Y., Zhou, Y. Y., et al., 2020. Continental Crustal Evolution and Synchronous Metallogeny through Time in the North China Craton. Journal of Asian Earth Sciences, 194: 104169. https://doi.org/10.1016/j.jseaes.2019.104169
      Zhang, K., Zhu, X. K., Wood, R. A., et al., 2018. Oxygenation of the Mesoproterozoic Ocean and the Evolution of Complex Eukaryotes. Nature Geoscience, 11(5): 345-350. https://doi.org/10.1038/s41561-018-0111-y
      Zhang, S. C., Su, J., Ma, S. H., et al., 2021. Eukaryotic Red and Green Algae Populated the Tropical Ocean 1 400 Million Years Ago. Precambrian Research, 357: 106166. https://doi.org/10.1016/j.precamres.2021.106166
      Zhang, S. C., Wang, X. M., Wang, H. J., et al., 2016a. Sufficient Oxygen for Animal Respiration 1, 400 Million Years Ago. Proceedings of the National Academy of Sciences, 113(7): 1731-1736. https://doi.org/10.1073/pnas.1523449113
      Zhang, S. H., Zhao, Y., Ye, H., et al., 2016b. Early Neoproterozoic Emplacement of the Diabase Sill Swarms in the Liaodong Peninsula and Pre-Magmatic Uplift of the Southeastern North China Craton. Precambrian Research, 272: 203-225. https://doi.org/10.1016/j.precamres.2015.11.005
      Zhang, S., Wang, X., Hammarlund, E. U., et al., 2015. Orbital Forcing of Climate 1.4 Billion Years Ago. Proceedings of the National Academy of Sciences, 112(12): E1406-E1413. https://doi.org/10.1073/pnas.1502239112
      Zhao, G. C., Li, S. Z., Sun, M., et al., 2011. Assembly, Accretion, and Break-Up of the Palaeo- Mesoproterozoic Columbia Supercontinent: Record in the North China Craton Revisited. International Geology Review, 53(11-12): 1331-1356. https://doi.org/10.1080/00206814.2010.527631
      Zhao, H. Q., Zhang, S. H., Ding, J. K., et al., 2020. New Geochronologic and Paleomagnetic Results from Early Neoproterozoic Mafic Sills and Late Mesoproterozoic to Early Neoproterozoic Successions in the Eastern North China Craton, and Implications for the Reconstruction of Rodinia. Geological Society of America Bulletin, 132(3-4): 739-766. https://doi.org/10.1130/B35198.1
      Zhou, H. R., Mei, M. X., Luo, Z. Q., et al., 2006. Sedimentary Sequence and Stratigraphic Framework of the Neoproterozoic Qingbaikou System in the Yanshan Region, North China. Earth Science Frontiers, 13(6): 280-290 (in Chinese with English abstract).
      Zhu, S. X., Liu, H., Hu, J., 2012. On the Disintegration of the Neoproterozoic Qingbaikouan System in Yanshan Range, North China. North China Geology, 35(2): 81-95 (in Chinese with English abstract).
      Zhu, S. X., Zhu, M. Y., Knoll, A. H., et al., 2016. Decimetre-Scale Multicellular Eukaryotes from the 1.56-Billion-Year-Old Gaoyuzhuang Formation in North China. Nature Communications, 7: 11500. https://doi.org/10.1038/ncomms11500
      杜汝霖, 1982. 冀西北青白口系Chuaria等化石的发现及其意义. 地质论评, 28(1): 1-6.
      杜汝霖, 田立富, 1985. 燕山青白口系宏观藻类龙凤山藻属的发现和初步研究. 地质学报, 59(3): 183-190.
      杜汝霖, 田立富, 胡华斌, 等, 2009. 新元古代青白口纪龙凤山生物群. 北京: 科学出版社.
      龚辉, 高福红, 贾啸宇, 2023. 吉林省通化地区南芬组地球化学特征对新元古代大氧化事件的响应. 吉林大学学报(地球科学版), 在线出版. https://doi.org/10.13278/j.cnki.jjuese.20230218
      辽宁省地质勘查院, 2017. 中国区域地质志辽宁志, 北京: 地质出版社.
      牛绍武, 2019. 再论龙凤山藻属(Longfengshania Du)的形态学特征与系统分类. 地质通报, 38(8): 1259-1265.
      乔秀夫, 高林志, 张传恒, 2007. 中朝板块中、新元古界年代地层柱与构造环境新思考. 地质通报, 26(5): 503-509.
      唐烽, 1995. 北京地区青白口纪长龙山期宏观藻类的新发现. 地层古生物论文集, 26: 24-36.
      王鸿祯, 1985. 中国古地理图集. 北京: 地图出版社.
      王鸿祯, 史晓颖, 王训练, 等, 2001. 中国层序地层研究. 广州: 广东科技出版社.
      王立峰, 李文宣, 罗均林, 等, 2000. 河北省怀来新元古代长龙山组沉积相研究. 世界地质, 19(2): 138-143.
      周洪瑞, 梅冥相, 罗志清, 等, 2006. 燕山地区新元古界青白口系沉积层序与地层格架研究. 地学前缘, 13(6): 280-290.
      朱士兴, 刘欢, 胡军, 2012. 论燕山地区青白口系的解体. 地质调查与研究, 35(2): 81-95.
    • dqkxzx-50-3-1066_附表.xlsx
    • 加载中
    图(10)
    计量
    • 文章访问数:  131
    • HTML全文浏览量:  103
    • PDF下载量:  50
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-11-24
    • 网络出版日期:  2025-03-19
    • 刊出日期:  2025-03-25

    目录

      /

      返回文章
      返回