• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    新元古代成冰纪雪球地球与化学风化作用

    陈欣阳 李彪 李超

    陈欣阳, 李彪, 李超, 2025. 新元古代成冰纪雪球地球与化学风化作用. 地球科学, 50(3): 1048-1065. doi: 10.3799/dqkx.2025.006
    引用本文: 陈欣阳, 李彪, 李超, 2025. 新元古代成冰纪雪球地球与化学风化作用. 地球科学, 50(3): 1048-1065. doi: 10.3799/dqkx.2025.006
    Chen Xinyang, Li Biao, Li Chao, 2025. Chemical Weathering during the Neoproterozoic Snowball Earth Events. Earth Science, 50(3): 1048-1065. doi: 10.3799/dqkx.2025.006
    Citation: Chen Xinyang, Li Biao, Li Chao, 2025. Chemical Weathering during the Neoproterozoic Snowball Earth Events. Earth Science, 50(3): 1048-1065. doi: 10.3799/dqkx.2025.006

    新元古代成冰纪雪球地球与化学风化作用

    doi: 10.3799/dqkx.2025.006
    基金项目: 

    国家重点研发计划项目 2022YFF0800100

    国家自然科学基金项目 42425002

    国家自然科学基金项目 42373070

    国家自然科学基金项目 42130208

    详细信息
      作者简介:

      陈欣阳(1987-),男,研究员,博士,主要从事非传统稳定同位素与风化作用研究.ORCID:0000-0002-7706-688X. E-mail:xinyangchen@cdut.edu.cn

    • 中图分类号: P532

    Chemical Weathering during the Neoproterozoic Snowball Earth Events

    • 摘要: 新元古代成冰纪(约720~635 Ma)发生了两次全球范围的雪球地球事件(斯图特冰期和马里诺冰期),是地球生命系统和环境演化的重要转折期.越来越多的证据显示雪球地球时期的气候和海洋氧化还原状态存在显著的时空波动,然而这一特征背后的碳循环‒海陆系统交互以及冰期气候波动的驱动机制还很不清楚.作为链接雪球地球发育、海洋化学和生物演化最为关键过程之一的大陆风化作用目前仍旧没有被有效刻画是其中的一个重要原因.本文综述了现有风化指标及其在成冰纪化学风化强度方面的研究现状,在此基础上,统计了全球28个成冰纪剖面(含钻孔)867件碎屑岩样品的主量元素数据,利用ln(Al2O3/Na2O)这一高效风化指标定量重建了从拉伸纪晚期到埃迪卡拉纪早期全球平均化学风化强度的演化趋势,发现了多次化学风化的强弱波动,表明冰期的启动和结束均与化学风化作用息息相关.此外,马里诺冰期的平均风化强度显著高于斯图特冰期,可能暗示马里诺冰期存在一定程度的水循环.未来的研究应进一步推动多指标的综合应用,以加深对成冰纪化学风化机制的理解,为全球环境演化的探索提供更多深入的视角和证据支持.

       

    • 图  1  全球新元古代成冰纪马里诺冰期的CIA记录对比

      数据来自冯连君等(2004)王自强等(2006)Rieu et al.(2007)刘兵等(2007)赵小明等(2011)蔡雄飞等(2017)李王鹏等(2022)

      Fig.  1.  Comparison of the global CIA records in the Cryogenian glaical deposits

      图  2  新元古代成冰纪海水Sr同位素演化曲线(据Cox et al.,2016

      Fig.  2.  The Sr isotope record of the Neoproterozoic seawater from marine carbonates (Cox et al., 2016)

      图  3  Lipp et al.(2020)提出的指示源岩成分指数(ψ)与化学风化指数(ω)示意图(a)以及ln(Al2O3/Na2O)与化学风化指数(ω)协变图(b)

      利用主成分分析法(PCA),以上地壳平均组成为基准,结合现代土壤剖面以及岩浆演化序列的主量元素变化,可以识别出由土壤剖面代表的风化趋势ω和岩浆演化序列代表的源岩成分趋势.而氧化铝和氧化钠比值的自然对数值和风化指标具有显著的线性相关性,表明ln(Al2O3/Na2O)可以作为良好的风化强度指标

      Fig.  3.  Cross-plot of weathering proxy (ω) and protolith proxy (ψ) based on the study by Lipp et al. (2020) (a), cross-plot between weathering proxy (ω) and natural log ratio ln(Al2O3/Na2O) (b)

      图  4  本文统计的867件样品的CIA(a)、CIW(b)、PIA(c)、WIP(d)风化指标的统计分布直方图

      图中样品各指标总体较为接近正态分布,主要是因为间冰期的样品数据占主导,而间冰期的风化强度高于冰期.更高的风化强度主要出现在成冰纪前的拉伸纪晚期以及之后的埃迪卡拉纪早期

      Fig.  4.  The histograms of the calculated weathering proxies CIA(a), CIW(b), PIA(c) and WIP(d) for the 867 samples compiled in this study

      图  5  成冰纪碎屑岩的ACNK图解

      全球该时期的数据较为一致,均呈现出从源岩为玄武岩/英云闪长岩/花岗岩,向伊利石/白云母方向演化,说明源岩的化学风化过程中Ca和Na的流失要快于K,指示了斜长石的优先风化.仅在塔里木阿克苏地区的苏盖尔布拉克组和叶城地区的雨塘组中5件样品数据表现出K的富集

      Fig.  5.  ACNK diagrams of the Cryogenian siliciclastic rocks

      图  6  成冰纪碎屑岩风化指标ln(Al2O3/Na2O)(a)、指示源岩成分差异的指标ln(K2O/MgO)(b)、指示沉积物再循环的指标ICV(c),以及SiO2/Al2O3比值(d)的统计直方图

      Fig.  6.  Histograms of the compiled proxies ln(Al2O3/Na2O) (a) for weathering intensity, ln(K2O/MgO) (b) for protoliths, ICV (c) for compositional variability and sediment recycling, and SiO2/Al2O3 (d) ratio of the compiled Cryogenian siliciclastic rocks

      图  7  CIACIWPIA、和WIP与风化指标ln(Al2O3/Na2O)之间的相关性图解

      其中CIACIW以及PIA均与ln(Al2O3/Na2O)存在较好的正相关关系,但是在风化程度较高的区域,CIA表现得更加发散,表明在强风化地区,由于化学动力学的差异,碱金属K、Na和碱土金属Ca、Mg可能出现差异性风化.而CIWPIA在强风化区则趋向饱和,可能是由于Ca和Mg接近于完全流失,从而使得CIWPIA对较强烈的化学风化不够敏感

      Fig.  7.  The cross-plots between traditional weathering proxies CIA, CIW, PIA, WIP and ln(Al2O3/Na2O)

      图  8  新元古代成冰纪前后风化指标ln(Al2O3/Na2O) 随时间的演化示意

      图中每一个箱线图左边为统计样品的拟合正态分布曲线,中间为统计数据点分布,右边为箱线图,箱体上下边界分别对应数据的上下四分位数,箱体内水平横线和数字为中位数.上下须线连接的水平横线表示数据的最大值和最小值,须线之外的点为异常值.图右侧棕色五角形代表后太古宙澳大利亚页岩(Taylor and McLennan,1985)(PAAS),绿色三角形为平均上地壳(Rudnick and Gao,2014)(UCC),蓝色正方形为花岗闪长岩(Wedepohl,1995)(Grd)

      Fig.  8.  The box-whisker plot of ln(Al2O3/Na2O) values from the Late Tonian to the Early Ediacaran

      图  9  新元古代成雪球地球事件及前后各时期化学风化的直方图

      图中箭头为ln(Al2O3/Na2O)中位值随时间的变化,显示出多次强弱波动

      Fig.  9.  The histograms of ln(Al2O3/Na2O) values divided by different periods ranging from the Late Tonian, Sturtian ice age, interglacial, Marinoan glaciation, and Early Ediacaran

      表  1  常用主量元素风化指标及适用范围

      Table  1.   Common proxies for chemical weathering intensity based on major element compositions and their limitations

      风化指标 计算公式 指标适用范围
      WIP 100×(CaO*/0.7+2Na2O/0.35+2K2O/0.25+MgO/0.9) 不适用于强风化情况,受石英含量的影响显著
      CIA Al2O3/(Al2O3+CaO*+K2O+Na2O)×100 受源区影响较大,同时成岩作用也会对其产生影响
      CIW [Al2O3/(Al2O3+CaO*+Na2O)]×100 没有考虑钾长石中的Al元素,不适用于物源区
      母岩中钾长石富集的样品
      PIA 100×(Al2O3-K2O)/(Al2O3+CaO*+Na2O-K2O) 仅适用于判断母岩中含有斜长石而不含钾长石的
      物源区风化程度
      ICV (Fe2O3+K2O+Na2O+CaO*+MgO+TiO2)/Al2O3 CIA值计算的检查,表征矿物成分的成熟度
      CIX 100×A12O3/(A12O3+Na2O+K2O) 该指标不用考虑CaO
      注:式中氧化物均为摩尔含量;CaO*为硅酸盐中CaO的摩尔含量.
      下载: 导出CSV
    • Algeo, T. J., Hong, H. L., Wang, C. W., 2025. The Chemical Index of Alteration (CIA) and Interpretation of ACNK Diagrams. Chemical Geology, 671: 122474. https://doi.org/10.1016/j.chemgeo.2024.122474
      Allen, P. A., Etienne, J. L., 2008. Sedimentary Challenge to Snowball Earth. Nature Geoscience, 1: 817-825. https://doi.org/10.1038/ngeo355
      Bahlburg, H., Dobrzinski, N., 2011. A Review of the Chemical Index of Alteration (CIA) and Its Application to the Study of Neoproterozoic Glacial Deposits and Climate Transitions. Geological Society, London, Memoirs, 36: 81-92. https://doi.org/10.1144/m36.6
      Benn, D. I., Le Hir, G., Bao, H. M., et al., 2015. Orbitally Forced Ice Sheet Fluctuations during the Marinoan Snowball Earth Glaciation. Nature Geoscience, 8: 704-707. https://doi.org/10.1038/ngeo2502
      Berner, R. A., Lasaga, A. C., Garrels, R. M., 1983. The Carbonate-Silicate Geochemical Cycle and Its Effect on Atmospheric Carbon Dioxide over the Past 100 Million Years. American Journal of Science, 283(7): 641-683. https://doi.org/10.2475/ajs.283.7.641
      Busfield, M. E., Le Heron, D. P., 2016. A Neoproterozoic Ice Advance Sequence, Sperry Wash, California. Sedimentology, 63(2): 307-330. https://doi.org/10.1111/sed.12210
      Cai, X. F., Luo, Z. J., Ye, Q., 2017. Sedimentary Characteristics of the Nantuo Formation in Siduping, Hunan and Its Coupling Relationship with Paleoclimate. East China Geology, 38(2): 91-98 (in Chinese with English abstract)
      Cheng, M., Zhang, Z. H., Algeo, T. J., et al., 2021. Hydrological Controls on Marine Chemistry in the Cryogenian Nanhua Basin (South China). Earth-Science Reviews, 218: 103678. https://doi.org/10.1016/j.earscirev.2021.103678
      Cox, G. M., Halverson, G. P., Stevenson, R. K., et al., 2016. Continental Flood Basalt Weathering as a Trigger for Neoproterozoic Snowball Earth. Earth and Planetary Science Letters, 446: 89-99. https://doi.org/10.1016/j.epsl.2016.04.016
      Cox, R., Lowe, D. R., Cullers, R. L., 1995. The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States. Geochimica et Cosmochimica Acta, 59(14): 2919-2940. https://doi.org/10.1016/0016-7037(95)00185-9
      Ding, H. F., Ma, D. S., Yao, C. Y., et al., 2009. Sedimentary Environment of Ediacaran Glacigenic Diamictite in Guozigou of Xinjiang, China. Chinese Science Bulletin, 54(18): 3283-3294. https://doi.org/10.1007/s11434-009-0443-5
      Dodd, M. S., Shi, W., Li, C., et al., 2023. Uncovering the Ediacaran Phosphorus Cycle. Nature, 618: 974-980. https://doi.org/10.1038/s41586-023-06077-6
      Fairchild, I. J., Fleming, E. J., Bao, H. M., et al., 2016. Continental Carbonate Facies of a Neoproterozoic Panglaciation, North-East Svalbard. Sedimentology, 63(2): 443-497. https://doi.org/10.1111/sed.12252
      Feng, L. J., Chu, X. L., Zhang, Q. R., et al., 2003. CIA (Chemical Index of Alteration)and Its Applications in the Neoproterozoic Clastic Rocks. Earth Science Frontiers, 10(4): 539-544 (in Chinese with English abstract)
      Feng, L. J., Chu, X. L., Zhang, Q. R., et al., 2004. New Evidence for a Cold Climate during the Deposition of the Xieshuihe Formation in Northeast Hunan. Science Bulletin, 49(12): 1172-1178 (in Chinese).
      Fleming, E. J., Benn, D. I., Stevenson, C. T. E., et al., 2016. Glacitectonism, Subglacial and Glacilacustrine Processes during a Neoproterozoic Panglaciation, North-East Svalbard. Sedimentology, 63(2): 411-442. https://doi.org/10.1111/sed.12251
      Fu, H. J., Jian, X., Liang, H. H., 2021. Research Progress of Sediment Indicators and Methods for Evaluation of Silicate Chemical Weathering Intensity. Journal of Palaeogeography (Chinese Edition), 23(6): 1192-1209 (in Chinese with English abstract)
      Fu, H. J., Jian, X., Pan, H. Q., 2023. Bias in Sediment Chemical Weathering Intensity Evaluation: A Numerical Simulation Study. Earth-Science Reviews, 246: 104574. https://doi.org/10.1016/j.earscirev.2023.104574
      Gan, T., Tian, M., Wang, X. K., et al., 2024. Lithium Isotope Evidence for a Plumeworld Ocean in the Aftermath of the Marinoan Snowball Earth. Proceedings of the National Academy of Sciences, 121(46): e2407419121. https://doi.org/10.1073/pnas.2407419121
      Gernon, T. M., Hincks, T. K., Tyrrell, T., et al., 2016. Snowball Earth Ocean Chemistry Driven by Extensive Ridge Volcanism during Rodinia Breakup. Nature Geoscience, 9: 242-248. https://doi.org/10.1038/ngeo2632
      Goddéris, Y., Le Hir, G., Macouin, M., et al., 2017. Paleogeographic Forcing of the Strontium Isotopic Cycle in the Neoproterozoic. Gondwana Research, 42: 151-162. https://doi.org/10.1016/j.gr.2016.09.013
      Halverson, G. P., Dudás, F. Ö., Maloof, A. C., et al., 2007. Evolution of the 87Sr/86Sr Composition of Neoproterozoic Seawater. Palaeogeography, Palaeoclimatology, Palaeoecology, 256(3-4): 103-129. https://doi.org/10.1016/j.palaeo.2007.02.028
      Halverson, G. P., Wade, B. P., Hurtgen, M. T., et al., 2010. Neoproterozoic Chemostratigraphy. Precambrian Research, 182(4): 337-350. https://doi.org/10.1016/j.precamres.2010.04.007
      Hoffman, P. F., 2016. Cryoconite Pans on Snowball Earth: Supraglacial Oases for Cryogenian Eukaryotes? Geobiology, 14(6): 531-542. https://doi.org/10.1111/gbi.12191
      Hoffman, P. F., Abbot, D. S., Ashkenazy, Y., et al., 2017. Snowball Earth Climate Dynamics and Cryogenian Geology-Geobiology. Science Advances, 3(11): e1600983. https://doi.org/10.1126/sciadv.1600983
      Hoffman, P. F., Kaufman, A. J., Halverson, G. P., et al., 1998. A Neoproterozoic Snowball Earth. The American Journal of Case Reports, 281(5381): 1342-1346. https://doi.org/10.1126/science.281.5381.1342
      Hoffman, P. F., Li, Z. X., 2009. A Palaeogeographic Context for Neoproterozoic Glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 277(3-4): 158-172. https://doi.org/10.1016/j.palaeo.2009.03.013
      Hood, A. V. S., Penman, D. E., Lechte, M. A., et al., 2022. Neoproterozoic Syn-Glacial Carbonate Precipitation and Implications for a Snowball Earth. Geobiology, 20(2): 175-193. https://doi.org/10.1111/gbi.12470
      Hu, J., Li, C., Tong, J. N., et al., 2020. Glacial Origin of the Cryogenian Nantuo Formation in Eastern Shennongjia Area (South China): Implications for Macroalgal Survival. Precambrian Research, 351: 105969. https://doi.org/10.1016/j.precamres.2020.105969
      Hu, J., Wang, J. S., Chen, H. R., et al., 2012. Multiple Cycles of Glacier Advance and Retreat during the Nantuo (Marinoan) Glacial Termination in the Three Gorges Area. Frontiers of Earth Science, 6(1): 101-108. https://doi.org/10.1007/s11707-011-0179-9
      Huang, K. J., Teng, F. Z., Shen, B., et al., 2016. Episode of Intense Chemical Weathering during the Termination of the 635 Ma Marinoan Glaciation. Proc Natl Acad Sci USA, 113(52): 14904-14909. https://doi.org/10.1073/pnas.1607712113
      Jacobsen, S. B., Kaufman, A. J., 1999. The Sr, C and O Isotopic Evolution of Neoproterozoic Seawater. Chemical Geology, 161(1): 37-57. https://doi.org/10.1016/S0009-2541(99)00080-7
      Kennedy, M. J., Christie-Blick, N., Prave, A. R., 2001. Carbon Isotopic Composition of Neoproterozoic Glacial Carbonates as a Test of Paleoceanographic Models for Snowball Earth Phenomena. Geology, 29(12): 1135-1138. https://doi.org/10.1130/0091-7613(2001)0291135:cicong>2.0.co;2 doi: 10.1130/0091-7613(2001)0291135:cicong>2.0.co;2
      Lan, Z. W., 2023. Research Progress on the Chronostratigraphic Study of Nanhua System in South China. Sedimentary Geology and Tethyan Geology, 43(1): 180-187 (in Chinese with English abstract)
      Lan, Z. W., Huyskens, M. H., Le Hir, G., et al., 2022. Massive Volcanism may Have Foreshortened the Marinoan Snowball Earth. Geophysical Research Letters, 49(6): e2021GL097156. https://doi.org/10.1029/2021gl097156
      Lan, Z. W., Li, X. H., Zhang, Q. R., et al., 2015. Global Synchronous Initiation of the 2nd Episode of Sturtian Glaciation: SIMS Zircon U-Pb and O Isotope Evidence from the Jiangkou Group, South China. Precambrian Research, 267: 28-38. https://doi.org/10.1016/j.precamres.2015.06.002
      Lang, X. G., Chen, J. T., Cui, H., et al., 2018b. Cyclic Cold Climate during the Nantuo Glaciation: Evidence from the Cryogenian Nantuo Formation in the Yangtze Block, South China. Precambrian Research, 310: 243-255. https://doi.org/10.1016/j.precamres.2018.03.004
      Lang, X. G., Shen, B., Peng, Y. B., et al., 2018a. Transient Marine Euxinia at the End of the Terminal Cryogenian Glaciation. Nature Communications, 9: 3019. https://doi.org/10.1038/s41467-018-05423-x
      Li, W. P., Li, H. L., Wang, Y., et al., 2022. Neoproterozoic Glaciations in Yecheng Area, Southwestern Margin of the Tarim Basin. Earth Science Frontiers, 29(3): 356-380 (in Chinese with English abstract).
      Li, X. L., Zhang, X., Lin, C. M., et al., 2022. Overview of the Application and Prospect of Common Chemical Weathering Indices. Geological Journal of China Universities, 28(1): 51-63 (in Chinese with English abstract)
      Li, Z. X., Evans, D. A. D., Halverson, G. P., 2013. Neoproterozoic Glaciations in a Revised Global Palaeogeography from the Breakup of Rodinia to the Assembly of Gondwanaland. Sedimentary Geology, 294: 219-232. https://doi.org/10.1016/j.sedgeo.2013.05.016
      Lipp, A. G., Shorttle, O., Syvret, F., et al., 2020. Major Element Composition of Sediments in Terms of Weathering and Provenance: Implications for Crustal Recycling. Geochemistry, Geophysics, Geosystems, 21(6): e2019GC008758. https://doi.org/10.1029/2019gc008758
      Liu, B., Xu, B., Meng, X. Y., et al., 2007. Study on the Chemical Index of Alteration of Neoproterozoic Strata in the Tarim Plate and Its Implications. Acta Petrologica Sinica, 23(7): 1664-1670 (in Chinese with English abstract).
      Mills, B., Watson, A. J., Goldblatt, C., et al., 2011. Timing of Neoproterozoic Glaciations Linked to Transport-Limited Global Weathering. Nature Geoscience, 4: 861-864. https://doi.org/10.1038/ngeo1305
      Nesbitt, H. W., 1979. Mobility and Fractionation of Rare Earth Elements during Weathering of a Granodiorite. Nature, 279: 206-210. https://doi.org/10.1038/279206a0
      Nesbitt, H. W., Markovics, G., Price, R. C., 1980. Chemical Processes Affecting Alkalis and Alkaline Earths during Continental Weathering. Geochimica et Cosmochimica Acta, 44(11): 1659-1666. https://doi.org/10.1016/0016-7037(80)90218-5
      Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299: 715-717. https://doi.org/10.1038/299715a0
      Nesbitt, H. W., Young, G. M., 1984. Prediction of Some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48(7): 1523-1534. https://doi.org/10.1016/0016-7037(84)90408-3
      Nesbitt, H. W., Young, G. M., 1989. Formation and Diagenesis of Weathering Profiles. Journal of Geology, 97(2): 129-147. https://doi.org/10.1086/629290
      Nesbitt, H. W., Young, G. M., McLennan, S. M., et al., 1996. Effects of Chemical Weathering and Sorting on the Petrogenesis of Siliciclastic Sediments, with Implications for Provenance Studies. Journal of Geology, 104(5): 525-542. https://doi.org/10.1086/629850
      Och, L. M., Shields-Zhou, G. A., 2012. The Neoproterozoic Oxygenation Event: Environmental Perturbations and Biogeochemical Cycling. Earth-Science Reviews, 110(1-4): 26-57. https://doi.org/10.1016/j.earscirev.2011.09.004
      Ohta, T., Arai, H., 2007. Statistical Empirical Index of Chemical Weathering in Igneous Rocks: A New Tool for Evaluating the Degree of Weathering. Chemical Geology, 240(3/4): 280-297. https://doi.org/10.1016/j.chemgeo.2007.02.017
      Pierrehumbert, R. T., Abbot, D. S., Voigt, A., et al., 2011. Climate of the Neoproterozoic. Annual Review of Earth and Planetary Sciences, 39: 417-460. https://doi.org/10.1146/annurev-earth-040809-152447
      Pogge von Strandmann, P. A. E., Desrochers, A., Murphy, M. J., et al., 2017. Global Climate Stabilisation by Chemical Weathering during the Hirnantian Glaciation. Geochemical Perspectives Letters, : 230-237. https://doi.org/10.7185/geochemlet.1726
      Qi, L., Yu, W. C., Du, Y. S., et al., 2015. Paleoclimate Evolution of the Cryogenian Tiesi'ao FormationDatangpo Formation in Eastern Guizhou Province: Evidence from the Chemical Index of Alteration. Geological Science and Technology Information, 34(6): 47-57 (in Chinese with English abstract)
      Qi, Y., Gu, S. Y., Zhao, F. Q., 2022. Redox Characteristics of Marine Environment of Nantuo Glaciation, Nanhua Basin. Acta Sedimentologica Sinica, 40(3): 715-729 (in Chinese with English abstract)
      Rieu, R., Allen, P. A., Plotze, M., et al., 2007. Compositional and Mineralogical Variations in a Neoproterozoic Glacially Influenced Succession, Mirbat Area, South Oman: Implications for Paleoweathering Conditions. Precambrian Research, 154(3-4): 248-265. https://doi.org/10.1016/j.precamres.2007.01.003
      Rooney, A. D., Macdonald, F. A., Strauss, J. V., et al., 2014. Re-Os Geochronology and Coupled Os-Sr Isotope Constraints on the Sturtian Snowball Earth. Proceedings of the National Academy of Sciences of the United States of America, 111(1): 51-56. https://doi.org/10.1073/pnas.1317266110
      Rudnick, R. L., Gao, S., 2014. Composition of the Continental Crust. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry (Second Edition), Elsevier, Oxford. https://doi.org/10.1016/b978-0-08-095975-7.00301-6
      Shao, J. Q., Yang, S. Y., 2012. Does Chemical Index of Alteration (CIA) Reflect Silicate Weathering and Monsoonal Climate in the Changjiang River Basin? Chinese Science Bulletin, 57(10): 1178-1187. https://doi.org/10.1007/s11434-011-4954-5
      Shen, H. J., Gu, S. Y., Zhao, S. F., et al., 2020. The Sedimentary Geochemical Records of Ocean Environment during the Nantuo (Marinoan) Glaciation in South China—Carbon and Oxygen Isotopes and Trace Element Compositions of Dolostone in Nantuo Formation, Nanhuan System, in Eastern Guizhou. Geological Review, 66(1): 214-228 (in Chinese with English abstract).
      Shen, W. B., Zhu, X. K., Yan, B., et al., 2022. Secular Variation in Seawater Redox State during the Marinoan Snowball Earth Event and Implications for Eukaryotic Evolution. Geology, 50(11): 1239-1244. https://doi.org/10.1130/G50147.1
      Shi, W., Mills, B. J. W., Li, C., et al., 2022. Decoupled Oxygenation of the Ediacaran Ocean and Atmosphere during the Rise of Early Animals. Earth and Planetary Science Letters, 591: 117619. https://doi.org/10.1016/j.epsl.2022.117619
      Shields, G. A., 2007. A Normalised Seawater Strontium Isotope Curve: Possible Implications for Neoproterozoic-Cambrian Weathering Rates and the Further Oxygenation of the Earth. eEarth, 2(2): 35-42. https://doi.org/10.5194/ee-2-35-200710.5194/eed-2-69-2007
      Song, H. Y., An, Z. H., Ye, Q., et al., 2023. Mid-Latitudinal Habitable Environment for Marine Eukaryotes during the Waning Stage of the Marinoan Snowball Glaciation. Nature Communications, 14: 1564. https://doi.org/10.1038/s41467-023-37172-x
      Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford.
      Wang, J., Li, Z. X., 2003. History of Neoproterozoic Rift Basins in South China: Implications for Rodinia Break-up. Precambrian Research, 122(1-4): 141-158. https://doi.org/10.1016/S0301-9268(02)00209-7
      Wang, P., Du, Y. S., Yu, W. C., et al., 2020. The Chemical Index of Alteration (CIA) as a Proxy for Climate Change during Glacial-Interglacial Transitions in Earth History. Earth-Science Reviews, 201: 103032. https://doi.org/10.1016/j.earscirev.2019.103032
      Wang, Z. Q., Yin, C. Y., Gao, L. Z., et al., 2006. The Character of the Chemical Index of Alteration and Discussion of Subdivision and Correlation of the Nanhua System in Yichang Area. Geological Review, 52(5): 577-585 (in Chinese with English abstract)
      Wedepohl, K. H., 1995. The Composition of the Continental Crust. Geochimica et Cosmochimica Acta, 59(7): 1217-1232. https://doi.org/10.1016/0016-7037(95)00038-2
      Wei, G. Y., Wei, W., Wang, D., et al., 2020. Enhanced Chemical Weathering Triggered an Expansion of Euxinic Seawater in the Aftermath of the Sturtian Glaciation. Earth and Planetary Science Letters, 539: 116244. https://doi.org/10.1016/j.epsl.2020.116244
      Wu, Z. Y., Gu, S. Y., 2019. Potassium Enrichment of Diamictite in Neoproterozoic Nantuo Glaciation in South China: An Example from the Cryogenian Nantuo Formation in Songtao, Guizhou Province. Journal of Guizhou University (Natural Sciences), 36(5): 43-49 (in Chinese with English abstract)
      Xu, X. T., Shao, L. Y., 2018. Limiting Factors in Utilization of Chemical Index of Alteration of Mudstones to Quantify the Degree of Weathering in Provenance. Journal of Palaeogeography (Chinese Edition), 20(3): 515-522 (in Chinese with English abstract)
      Ye, Q., Tong, J. N., Xiao, S. H., et al., 2015. The Survival of Benthic Macroscopic Phototrophs on a Neoproterozoic Snowball Earth. Geology, 43(6): 507-510. https://doi.org/10.1130/G36640.1
      Yu, W. C., Algeo, T. J., Zhou, Q., et al., 2020. Cryogenian Cap Carbonate Models: A Review and Critical Assessment. Palaeogeography, Palaeoclimatology, Palaeoecology, 552: 109727. https://doi.org/10.1016/j.palaeo.2020.109727
      Zhang, Q. R., Chu, X. L., Feng, L. J., 2011. Neoproterozoic Glacial Records in the Yangtze Region, China. Geological Society, London, Memoirs, 36: 357-366. https://doi.org/10.1144/M36.3
      Zhang, S. H., Evans, D. A. D., Li, H. Y., et al., 2013. Paleomagnetism of the Late Cryogenian Nantuo Formation and Paleogeographic Implications for the South China Block. Journal of Asian Earth Sciences, 72: 164-177. https://doi.org/10.1016/j.jseaes.2012.11.022
      Zhao, X. M., Liu, S. D., Zhang, Q. X., et al., 2011. Geochemical Characters of the Nanhua System in Changyang, Western Hubei Province and Its Implication for Climate and Sequence Correlation. Acta Geologica Sinica, 85(4): 576-585 (in Chinese with English abstract)
      Zhao, Y. Y., Zheng, Y. F., 2011. Record and Time of Neoproterozoic Glaciations on Earth. Acta Petrologica Sinica, 27(2): 545-565 (in Chinese with English abstract)
      Zhou, C. M., Huyskens, M. H., Lang, X. G., et al., 2019. Calibrating the Terminations of Cryogenian Global Glaciations. Geology, 47(3): 251-254. https://doi.org/10.1130/G45719.1
      Zhu, M. Y., Wang, H. F., 2011. Neoproterozoic Glaciogenic Diamictites of the Tarim Block, NW China. Geological Society, London, Memoirs, 36: 367-378. https://doi.org/10.1144/M36.33
      蔡雄飞, 罗中杰, 叶琴, 2017. 湖南四都坪南沱组沉积特征与古气候变化耦合关系. 华东地质, 38(2): 91-98.
      冯连君, 储雪蕾, 张启锐, 等, 2003. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用. 地学前缘, 10(4): 539-544.
      冯连君, 储雪蕾, 张启锐, 等, 2004. 湘西北南华系渫水河组寒冷气候成因的新证据. 科学通报, 49(12): 1172-1178.
      傅寒晶, 简星, 梁杭海, 2021. 硅酸盐化学风化强度评估的沉积物指标与方法研究进展. 古地理学报, 23(6): 1192-1209.
      兰中伍, 2023. 华南南华系年代地层学研究进展. 沉积与特提斯地质, 43(1): 180-187.
      李王鹏, 李慧莉, 王毅, 等, 2022. 塔里木盆地西南缘叶城地区新元古代冰期事件. 地学前缘, 29(3): 356-380.
      李绪龙, 张霞, 林春明, 等, 2022. 常用化学风化指标综述: 应用与展望. 高校地质学报, 28(1): 51-63.
      刘兵, 徐备, 孟祥英, 等, 2007. 塔里木板块新元古代地层化学蚀变指数研究及其意义. 岩石学报, 23(7): 1664-1670.
      齐靓, 余文超, 杜远生, 等, 2015. 黔东南华纪铁丝坳期‒大塘坡期古气候的演变: 来自CIA的证据. 地质科技情报, 34(6): 47-57.
      祁钰, 顾尚义, 赵凤其, 2022. 南华盆地南沱冰期海水氧化还原特征. 沉积学报, 40(3): 715-729.
      沈洪娟, 顾尚义, 赵思凡, 等, 2020. 华南南华纪南沱冰期海洋环境的沉积地球化学记录: 来自黔东部南华系南沱组白云岩碳氧同位素和微量元素的证据. 地质论评, 66(1): 214-228.
      王自强, 尹崇玉, 高林志, 等, 2006. 宜昌三斗坪地区南华系化学蚀变指数特征及南华系划分、对比的讨论. 地质论评, 52(5): 577-585.
      吴忠银, 顾尚义, 2019. 华南新元古代南沱杂砾岩中富钾现象的研究: 以贵州松桃南沱组为例. 贵州大学学报(自然科学版), 36(5): 43-49.
      徐小涛, 邵龙义, 2018. 利用泥质岩化学蚀变指数分析物源区风化程度时的限制因素. 古地理学报, 20(3): 515-522.
      赵小明, 刘圣德, 张权绪, 等, 2011. 鄂西长阳南华系地球化学特征的气候指示意义及地层对比. 地质学报, 85(4): 576-585.
      赵彦彦, 郑永飞, 2011. 全球新元古代冰期的记录和时限. 岩石学报, 27(2): 545-565.
    • dqkxzx-50-3-1048_附表.xlsx
    • 加载中
    图(9) / 表(1)
    计量
    • 文章访问数:  162
    • HTML全文浏览量:  91
    • PDF下载量:  55
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-12-04
    • 网络出版日期:  2025-03-19
    • 刊出日期:  2025-03-25

    目录

      /

      返回文章
      返回