Transport Processes and Control Mechanisms of Terrigenous and Volcanic Materials to the Ocean
-
摘要: 海洋沉积物的源‒汇过程是连接陆地风化、海洋动力系统和全球气候变化的关键纽带,对重建古环境演化具有重要意义.本文综述了陆源与火山物质向海洋的输送过程及其控制机制.陆源物质输运受岩性‒气候‒海平面‒洋流系统共同调控——源岩性质和气候条件通过控制风化作用决定沉积物的产量和理化性质,海平面变化主导沉积物的输送距离,洋流格局决定最终沉积分布.火山物质的输入则受火山活动强度、气候、水文及区域构造背景的多元控制.近年来,地球化学与矿物学示踪技术的发展提升了物源识别能力,但该领域仍面临从定性描述到定量解析的方法学挑战.未来研究需进一步发展多学科交叉方法,以深化对海洋沉积源‒汇系统演化规律的认识.Abstract: The source-to-sink process in marine sediments is a critical link connecting terrestrial weathering, oceanic dynamics, and global climate change, playing a vital role in reconstructing paleoenvironmental evolution. This paper reviews the transport processes of terrestrial and volcanic materials to the ocean and their control mechanisms. The transport of terrestrial materials is regulated by the lithology-climate-sea level-current system: the nature of the source rocks and climate conditions determine the output and physicochemical properties of the sediments by controlling weathering; sea level changes dominate the distance of sediment transport; and the current pattern determines the final distribution of the sediments. The input of volcanic materials is controlled by the intensity of volcanic activity, climate, hydrology and regional tectonic context. Recent advances in geochemical and mineralogical provenance techniques have significantly improved the identification capacity of sediment sources. However, this field still faces methodological challenges in transitioning from qualitative assessments to quantitative reconstructions. Future research should focus on developing integrated, multidisciplinary approaches to enhance our understanding of the evolution of marine sedimentary source-to-sink systems.
-
Key words:
- source-to-sink system /
- fluvial deposits /
- aeolian deposits /
- glacial deposits /
- volcanic deposits /
- sedimentology /
- climate change
-
图 1 河流物质输入示意(参考自Tofelde et al., 2021)
Fig. 1. Schematic diagram of fluvial material inputs (referenced from Tofelde et al., 2021)
图 2 风尘及火山物质输入示意
图改自Langmann(2013);图中灰色颗粒物质代表火山喷发的碎屑物质,指示火山物质源‒汇过程;淡黄色颗粒物质代表陆源碎屑物质,指示风尘物质源‒汇过程
Fig. 2. Schematic diagram of dust and volcanic material input
图 3 冰川物质输入示意(参考自Kaparulina et al., 2016)
Fig. 3. Schematic diagram of glacial material input (referenced from Kaparulina et al., 2016)
表 1 全球陆源沉积物向海洋输送通量的估算
Table 1. Estimates of global fluxes of terrestrial sediment transport to the ocean
搬运机制 全球通量(Gt/a) 河流输入 25 风尘输入 0.7 冰川输入 2 注:表中数值据 Syvitski et al. (2003) 以及其中所引用的参考文献.表 2 主要源区现代年平均风尘通量模拟结果对比
Table 2. Comparison of modern annual average eolian flux simulation results for major source regions
文献 非洲 亚洲 美洲 澳大利亚 全球 北部 南部 阿拉伯 中部 东部 北部 南部 Tanaka and Chiba, 2006 1 087
(58%)63
(3%)221
(12%)140
(7.5%)214
(11%)2
(0.1%)44
(2%)106
(6%)1 877 Werner et al., 2002 693
(65%)101
(9.5%)96
(9%)52
(5%)1 060 Luo et al., 2003 1 114
(67%)119
(7%)54
(3%)132
(8%)1 654 Zender et al., 2003 980
(66%)415
(28%)8
(0.5%)35
(2%)37
(2.5%)1 490 Ginoux et al., 2004 1 430
(69%)496
(24%)9
(0.4%)55
(3%)61
(3%)2 073 Miller et al., 2004 517
(51%)43
(4%)163
(16%)50
(5%)53
(5%)148
(15%)1 019 注:通量数值据 Maher et al.(2010) ,单位:Tg/a;括号内为全球占比. -
Bao, C., Kong, D. M., Wei, G. Y., et al., 2023. Provenance of Deep-Sea Sediments in the Eastern South China Sea since Marine Isotope Stage 5 (MIS 5) and Implications for Climate Change and Volcanic Activity. Marine Geology, 463: 107118. https://doi.org/10.1016/j.margeo.2023.107118 Boulay, S., Colin, C., Trentesaux, A., et al., 2007. Sedimentary Responses to the Pleistocene Climatic Variations Recorded in the South China Sea. Quaternary Research, 68(1): 162-172. https://doi.org/10.1016/j.yqres.2007.03.004 Brass, G. W., 1975. The Effect of Weathering on the Distribution of Strontium Isotopes in Weathering Profiles. Geochimica et Cosmochimica Acta, 39(12): 1647-1653. https://doi.org/10.1016/0016-7037(75)90086-1 Brown, R. J., Bonadonna, C., Durant, A. J., 2012. A Review of Volcanic Ash Aggregation. Physics and Chemistry of the Earth, Parts A/B/C, 45: 65-78. https://doi.org/10.1016/j.pce.2011.11.001 Bufe, A., Cook, K. L., Galy, A., et al., 2022. The Effect of Lithology on the Relationship between Denudation Rate and Chemical Weathering Pathways-Evidence from the Eastern Tibetan Plateau. Earth Surface Dynamics, 10(3): 513-530. https://doi.org/10.5194/esurf-10-513-2022 Cai, G. Q., Li, S., Zhao, L., et al., 2020. Clay Minerals, Sr-Nd Isotopes and Provenance of Sediments in the Northwestern South China Sea. Journal of Asian Earth Sciences, 202: 104531. https://doi.org/10.1016/j.jseaes.2020.104531 Cai, M. J., Colin, C., Xu, Z. K., et al., 2022. Climate and Sea Level Forcing of Terrigenous Sediments Input to the Eastern Arabian Sea since the Last Glacial Period. Marine Geology, 450: 106860. https://doi.org/10.1016/j.margeo.2022.106860 Cao, L. C., Shao, L., van Hinsbergen, D. J. J., et al., 2023. Provenance and Evolution of East Asian Large Rivers Recorded in the East and South China Seas: A Review. GSA Bulletin, : 135(11-12): 2723-2752. https://doi.org/10.1130/b36559.1 Carey, S. N., Schneider, J. L., 2011. Volcaniclastic Processes and Deposits in the Deep-Sea. Elsevier, Amsterdam, 457-515. https://doi.org/10.1016/b978-0-444-53000-4.00007-x Carey, S., Sigurdsson, H., 2000. Grain Size of Miocene Volcanic Ash Layers from Sites 998, 999, and 1 000: Implications for Source Areas and Dispersal. Proceedings of the Ocean Drilling Program, Scientific Results, 165: 101-113. https://doi.org/10.2973/odp.proc.sr.165.002.2000 Chaudhri, A. R., Singh, M., 2012. Clay Minerals as Climate Change Indicators—A Case Study. American Journal of Climate Change, 1(4): 231-239. https://doi.org/10.4236/ajcc.2012.14020 Chen, J. X., Li, T. G., Nan, Q. Y., 2009. Variations of Terrigenous Material Discharges in the South Okinawa Trough and Its Relation to the East Asian Summer Monsoon since the Last Millennium. Earth Science, 34(5): 811-818 (in Chinese with English abstract). Chen, S., Wu, Z. J., Peng, X. T., 2014. Experimental Study on Weathering of Seafloor Volcanic Glass by Bacteria (Pseudomonas Fluorescens)-Implications for the Contribution of Bacteria to the Water-Rock Reaction at the Mid-Oceanic Ridge Setting. Journal of Asian Earth Sciences, 90: 15-25. https://doi.org/10.1016/j.jseaes.2014.04.012 Clift, P. D., Jonell, T. N., 2021. Monsoon Controls on Sediment Generation and Transport: Mass Budget and Provenance Constraints from the Indus River Catchment, Delta and Submarine Fan over Tectonic and Multimillennial Timescales. Earth-Science Reviews, 220: 103682. https://doi.org/10.1016/j.earscirev.2021.103682 Clift, P. D., Kulhanek, D. K., Zhou, P., et al., 2020. Chemical Weathering and Erosion Responses to Changing Monsoon Climate in the Late Miocene of Southwest Asia. Geological Magazine, 157(6): 939-955. https://doi.org/10.1017/s0016756819000608 Clift, P. D., Layne, G. D., Blusztajn, J., 2004. Marine Sedimentary Evidence for Monsoon Strengthening, Tibetan Uplift and Drainage Evolution in East Asia. Geophysical Monograph Series, 149: 255-282. https://doi.org/10.1029/149gm14 Darby, D. A., Bischof, J. F., Spielhagen, R. F., et al., 2002. Arctic Ice Export Events and Their Potential Impact on Global Climate during the Late Pleistocene. Paleoceanography, 17(2): 15-11-15-17. https://doi.org/10.1029/2001pa000639 Dong, L. S., Polyak, L., Zhang, Y., et al., 2024. Isotopic Constraints on the Late Pleistocene Glacial Water and Sediment Inputs to the Central Arctic Ocean. Quaternary Science Reviews, 334: 108733. https://doi.org/10.1016/j.quascirev.2024.108733 Dou, Y. G., Yang, S. Y., Liu, Z. X., et al., 2012. Sr-Nd Isotopic Constraints on Terrigenous Sediment Provenances and Kuroshio Current Variability in the Okinawa Trough during the Late Quaternary. Palaeogeography, Palaeoclimatology, Palaeoecology, 365: 38-47. https://doi.org/10.1016/j.palaeo.2012.09.003 Duan, Z. F., Li, C., Guo, Y. L., et al., 2023. Sr-Nd Isotopic Fingerprints of Red River Sediments and Its Implication for Provenance Discrimination in the South China Sea. Marine Geology, 457: 106997. https://doi.org/10.1016/j.margeo.2023.106997 Duce, R. A., Unni, C. K., Ray, B. J., et al., 1980. Long-Range Atmospheric Transport of Soil Dust from Asia to the Tropical North Pacific: Temporal Variability. Science, 209(4464): 1522-1524. https://doi.org/10.1126/science.209.4464.1522 Fang, T. B., Liu, S. F., Wu, K. K., et al., 2024. Sediment Provenance Variations Driven by Sea Level in the Eastern Arabian Sea since the MIS 9 Period: Evidence from Geochemical Proxies. Journal of Asian Earth Sciences, 266: 106121. https://doi.org/10.1016/j.jseaes.2024.106121 Fazal, A. M., Varikoden, H., Reji, M. J. K., 2023. Long Term Trends and Variabilities of Rainfall of the Global Monsoon Systems during Boreal and Austral Summer Seasons. Global and Planetary Change, 229: 104251. https://doi.org/10.1016/j.gloplacha.2023.104251 Feng, J. L., Zhu, L. P., Zhen, X. L., et al., 2009. Grain Size Effect on Sr and Nd Isotopic Compositions in Eolian Dust: Implications for Tracing Dust Provenance and Nd Model Age. Geochemical Journal, 43(2): 123-131. https://doi.org/10.2343/geochemj.1.0007 Gao, X. B., Li, C., Duan, Z. F., et al., 2025. Sr-Nd Isotopic Characteristics and Their Significance in Provenance Tracing of Detrital Sediment in Major Rivers and Marginal Seas of Eastern China. Science China Earth Sciences, 68(2): 523-537. https://doi.org/10.1007/s11430-024-1464-5 Garba, T. E., Mustapha, K. A., 2024. Source Rock Characterisation and Petroleum System Modelling: A Review of Marginal Marine Deposit in the Permo-Triassic Sydney Basin, Australia. Journal of Sedimentary Environments, 9(2): 239-251. https://doi.org/10.1007/s43217-024-00168-8 Ginoux, P., Prospero, J. M., Torres, O., et al., 2004. Long-Term Simulation of Global Dust Distribution with the GOCART Model: Correlation with North Atlantic Oscillation. Environmental Modelling & Software, 19(2): 113-128. https://doi.org/10.1016/S1364-8152(03)00114-2 Goldstein, S. J., Jacobsen, S. B., 1987. The Nd and Sr Isotopic Systematics of River-Water Dissolved Material: Implications for the Sources of Nd and Sr in Seawater. Chemical Geology: Isotope Geoscience Section, 66(3-4): 245-272. https://doi.org/10.1016/0168-9622(87)90045-5 Goswami, V., Singh, S. K., Bhushan, R., et al., 2012. Temporal Variations in 87Sr/86Sr and ɛNd in Sediments of the Southeastern Arabian Sea: Impact of Monsoon and Surface Water Circulation. Geochemistry, Geophysics, Geosystems, 13: 2011GC003802. https://doi.org/10.1029/2011gc003802 Govin, A., Holzwarth, U., Heslop, D., et al., 2012. Distribution of Major Elements in Atlantic Surface Sediments (36°N-49°S): Imprint of Terrigenous Input and Continental Weathering. Geochemistry, Geophysics, Geosystems, 13: 2011GC003785. https://doi.org/10.1029/2011gc003785 Han, Y. X., Zhao, T. L., Song, L. C., et al., 2011. A Linkage between Asian Dust, Dissolved Iron and Marine Export Production in the Deep Ocean. Atmospheric Environment, 45(25): 4291-4298. https://doi.org/10.1016/j.atmosenv.2011.04.078 Hanebuth, T. J., Stattegger, K., Saito, Y., 2002. The Stratigraphic Architecture of the Central Sunda Shelf (SE Asia) Recorded by Shallow-Seismic Surveying. Geo-Marine Letters, 22(2): 86-94. https://doi.org/10.1007/s00367-002-0102-1 Hu, S. Y., Zeng, Z. G., Fang, X., et al., 2020. Increasing Terrigenous Sediment Supply from Taiwan to the Southern Okinawa Trough over the Last 3 000 Years Evidenced by Sr-Nd Isotopes and Geochemistry. Sedimentary Geology, 406: 105725. https://doi.org/10.1016/j.sedgeo.2020.105725 Huang, J., Li, A. C., Wan, S. M., 2011. Sensitive Grain-Size Records of Holocene East Asian Summer Monsoon in Sediments of Northern South China Sea Slope. Quaternary Research, 75(3): 734-744. https://doi.org/10.1016/j.yqres.2011.03.002 Huang, X. X., Wang, R. J., Xiao, W. S., et al., 2018. Transportation Mechanism of Terrigenous Sediment and Its Paleoenvironmental Implications on the Chukchi Plateau, Western Arctic Ocean during the Late Quaternary. Marine Geology & Quaternary Geology, 38(2): 52-62 (in Chinese with English abstract). Ibarra, D. E., Caves, J. K., Moon, S., et al., 2016. Differential Weathering of Basaltic and Granitic Catchments from Concentration-Discharge Relationships. Geochimica et Cosmochimica Acta, 190: 265-293. https://doi.org/10.1016/j.gca.2016.07.006 Jickells, T. D., An, Z. S., Andersen, K. K., et al., 2005. Global Iron Connections between Desert Dust, Ocean Biogeochemistry, and Climate. Science, 308(5718): 67-71. https://doi.org/10.1126/science.1105959 Jin, H. L., Wan, S. M., Clift, P. D., et al., 2022. Birth of the Pearl River at 30 Ma: Evidence from Sedimentary Records in the Northern South China Sea. Earth and Planetary Science Letters, 600: 117872. https://doi.org/10.1016/j.epsl.2022.117872 Kang, X. Y., Yu, Z. J., Song, L. N., et al., 2024. Wind-Driven Sediment Exchange between the Indian Marginal Seas over the Last 18 000 Years. Environmental Research Letters, 19(8): 084004. https://doi.org/10.1088/1748-9326/ad5bf4 Kaparulina, E., Strand, K., Lunkka, J. P., 2016. Provenance Analysis of Central Arctic Ocean Sediments: Implications for Circum-Arctic Ice Sheet Dynamics and Ocean Circulation during Late Pleistocene. Quaternary Science Reviews, 147: 210-220. https://doi.org/10.1016/j.quascirev.2015.09.017 Kessarkar, P. M., Rao, V. P., Ahmad, S. M., et al., 2003. Clay Minerals and Sr-Nd Isotopes of the Sediments along the Western Margin of India and Their Implication for Sediment Provenance. Marine Geology, 202(1-2): 55-69. https://doi.org/10.1016/ S0025-3227(03)00240-8 doi: 10.1016/S0025-3227(03)00240-8 Kump, L. R., Brantley, S. L., Arthur, M. A., 2000. Chemical Weathering, Atmospheric CO2, and Climate. Annual Review of Earth and Planetary Sciences, 28: 611-667. https://doi.org/10.1146/annurev.earth.28.1.611 Lang, D. C., Bailey, I., Wilson, P. A., et al., 2014. The Transition on North America from the Warm Humid Pliocene to the Glaciated Quaternary Traced by Eolian Dust Deposition at a Benchmark North Atlantic Ocean Drill Site. Quaternary Science Reviews, 93: 125-141. https://doi.org/10.1016/j.quascirev.2014.04.005 Langmann, B., 2013. Volcanic Ash Versus Mineral Dust: Atmospheric Processing and Environmental and Climate Impacts. ISRN Atmospheric Sciences, 2013: 245076. https://doi.org/10.1155/2013/245076 Leithold, E. L., Blair, N. E., Wegmann, K. W., 2016. Source-to-Sink Sedimentary Systems and Global Carbon Burial: A River Runs through It. Earth-Science Reviews, 153: 30-42. https://doi.org/10.1016/j.earscirev.2015.10.011 Li, C. S., Shi, X. F., Kao, S., et al., 2012. Clay Mineral Composition and Their Sources for the Fluvial Sediments of Taiwanese Rivers. Chinese Science Bulletin, 57(6): 673-681. https://doi.org/10.1007/s11434-011-4824-1 Li, J. R., Liu, S. F., Shi, X. F., et al., 2017. Distributions of Clay Minerals in Surface Sediments of the Middle Bay of Bengal: Source and Transport Pattern. Continental Shelf Research, 145: 59-67. https://doi.org/10.1016/j.csr.2017.06.017 Li, J. R., Liu, S. F., Shi, X. F., et al., 2020a. Provenance of Terrigenous Sediments in the Central Bay of Bengal and Its Relationship to Climate Changes since 25 ka. Progress in Earth and Planetary Science, 7(1): 16. https://doi.org/10.1186/s40645-020-00328-0 Li, L., Bai, S. J., Li, J. W., et al., 2020b. Volcanic Ash Inputs Enhance the Deep-Sea Seabed Metal-Biogeochemical Cycle: A Case Study in the Yap Trench, Western Pacific Ocean. Marine Geology, 430: 106340. https://doi.org/10.1016/j.margeo.2020.106340 Liu, J. G., He, W., Cao, L., et al., 2019. Staged Fine-Grained Sediment Supply from the Himalayas to the Bengal Fan in Response to Climate Change over the Past 50, 000 Years. Quaternary Science Reviews, 212: 164-177. https://doi.org/10.1016/j.quascirev.2019.04.008 Liu, Z. F., Colin, C., Huang, W., et al., 2007. Climatic and Tectonic Controls on Weathering in South China and Indochina Peninsula: Clay Mineralogical and Geochemical Investigations from the Pearl, Red, and Mekong Drainage Basins. Geochemistry, Geophysics, Geosystems, 8(5): Q05005. https://doi.org/10.1029/2006GC001490 Liu, Z. F., Zhao, Y. L., Colin, C., et al., 2016. Source-to-Sink Transport Processes of Fluvial Sediments in the South China Sea. Earth-Science Reviews, 153: 238-273. https://doi.org/10.1016/j.earscirev.2015.08.005 Luo, C., Mahowald, N. M., del Corral, J., 2003. Sensitivity Study of Meteorological Parameters on Mineral Aerosol Mobilization, Transport, and Distribution. Journal of Geophysical Research: Atmospheres, 108(D15): 2003JD003483. https://doi.org/10.1029/2003jd003483 Maher, B. A., Prospero, J. M., Mackie, D., et al., 2010. Global Connections between Aeolian Dust, Climate and Ocean Biogeochemistry at the Present Day and at the Last Glacial Maximum. Earth-Science Reviews, 99(1-2): 61-97. https://doi.org/10.1016/j.earscirev.2009.12.001 Martínez-García, A., Sigman, D. M., Ren, H. J., et al., 2014. Iron Fertilization of the Subantarctic Ocean during the Last Ice Age. Science, 343(6177): 1347-1350. https://doi.org/10.1126/science.1246848 McGee, D., DeMenocal, P. B., Winckler, G., et al., 2013. The Magnitude, Timing and Abruptness of Changes in North African Dust Deposition over the Last 20, 000yr. Earth and Planetary Science Letters, 371: 163-176. https://doi.org/10.1016/j.epsl.2013.03.054 Meinhardt, A. K., Pahnke, K., Böning, P., et al., 2016. Climate Change and Response in Bottom Water Circulation and Sediment Provenance in the Central Arctic Ocean since the Last Glacial. Chemical Geology, 427: 98-108. https://doi.org/10.1016/j.chemgeo.2016.02.019 Meyer, I., Davies, G. R., Stuut, J. W., 2011. Grain Size Control on Sr-Nd Isotope Provenance Studies and Impact on Paleoclimate Reconstructions: An Example from Deep-Sea Sediments Offshore NW Africa. Geochemistry, Geophysics, Geosystems, 12(3): Q03005. https://doi.org/10.1029/2010GC003355 Miller, R. L., Tegen, I., Perlwitz, J., 2004. Surface Radiative Forcing by Soil Dust Aerosols and the Hydrologic Cycle. Journal of Geophysical Research: Atmospheres, 109(D4): 2003JD004085. https://doi.org/10.1029/2003jd004085 Milliman, J. D., Farnsworth, K. L., 2011. River Discharge to the Coastal Ocean-A Global Synthesis. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511781247 Montelli, A., Gulick, S. P. S., Worthington, L. L., et al., 2017. Late Quaternary Glacial Dynamics and Sedimentation Variability in the Bering Trough, Gulf of Alaska. Geology, 45(3): 251-254. https://doi.org/10.1130/g38836.1 Muhs, D. R., 2013. The Geologic Records of Dust in the Quaternary. Aeolian Research, 9: 3-48. https://doi.org/10.1016/j.aeolia.2012.08.001 Ning, D. L., Xiao, X. Y., Tang, S. Q., et al., 2024. Millennial to Orbital Scale Indian Summer Monsoon Evolution Inferred from Grain Size End-Members in Tengchongbeihai Wetland, Southwestern China. Quaternary Science Reviews, 334: 108723. https://doi.org/10.1016/j.quascirev.2024.108723 Prins, M. A., Postma, G., 2000. Effects of Climate, Sea Level, and Tectonics Unraveled for Last Deglaciation Turbidite Records of the Arabian Sea. Geology, 28(4): 375-378. https://doi.org/10.1130/0091-7613(2000)0280375: eocsla>2.3.co;2 doi: 10.1130/0091-7613(2000)0280375:eocsla>2.3.co;2 Prueher, L. M., Rea, D. K., 2001. Volcanic Triggering of Late Pliocene Glaciation: Evidence from the Flux of Volcanic Glass and Ice-Rafted Debris to the North Pacific Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 173(3/4): 215-230. https://doi.org/10.1016/S0031-0182(01)00323-6 Ramaswamy, V., Muraleedharan, P. M., Prakash Babu, C., 2017. Mid-Troposphere Transport of Middle-East Dust over the Arabian Sea and Its Effect on Rainwater Composition and Sensitive Ecosystems over India. Scientific Reports, 7(1): 13676. https://doi.org/10.1038/s41598-017-13652-1 Rea, D. K., 1994. The Paleoclimatic Record Provided by Eolian Deposition in the Deep Sea: The Geologic History of Wind. Reviews of Geophysics, 32(2): 159-195. https://doi.org/10.1029/93rg03257 Rea, D. K., Hovan, S. A., 1995. Grain Size Distribution and Depositional Processes of the Mineral Component of Abyssal Sediments: Lessons from the North Pacific. Paleoceanography, 10(2): 251-258. https://doi.org/10.1029/94pa03355 Rea, D. K., Leinen, M., Janecek, T. R., 1985. Geologic Approach to the Long-Term History of Atmospheric Circulation. Science, 227(4688): 721-725. https://doi.org/10.1126/science.227.4688.721 Rea, D. K., Snoeckx, H., Joseph, L. H., 1998. Late Cenozoic Eolian Deposition in the North Pacific: Asian Drying, Tibetan Uplift, and Cooling of the Northern Hemisphere. Paleoceanography, 13(3): 215-224. https://doi.org/10.1029/98pa00123 Robock, A., 2000. Volcanic Eruptions and Climate. Reviews of Geophysics, 38(2): 191-219. https://doi.org/10.1029/1998rg000054 Rowland, G. H., 2021. Muddying the Waters: Tracing Terrigenous Fluxes to the North Atlantic Ocean (Dissertation). University of Bristol, Bristol. Sarim, M., Xu, J., Zhang, P., et al., 2023. Late Quaternary Clay Mineral and Grain-Size Records from Northwest Australia and Their Implications for Paleoclimate, Ocean Currents, and Paleodrainage of the Bonaparte Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 610: 111353. https://doi.org/10.1016/j.palaeo.2022.111353 Saukel, C., Lamy, F., Stuut, J. W., et al., 2011. Distribution and Provenance of Wind-Blown SE Pacific Surface Sediments. Marine Geology, 280(1-4): 130-142. https://doi.org/10.1016/j.margeo.2010.12.006 Sebastian, T., Nath, B. N., Mascarenhas-Pereira, M. B. L., et al., 2023. A 50 kyr Record of Eolian Sedimentation in the Eastern Arabian Sea-Dust Deposition Changes Synchronous with the Northern Hemisphere Climatic Oscillations. Marine Geology, 459: 107046. https://doi.org/10.1016/j.margeo.2023.107046 Seo, I., Lee, Y., Yoo, C., et al., 2014. Sr‐Nd Isotope Composition and Clay Mineral Assemblages in Eolian Dust from the Central Philippine Sea over the last 600 kyr: Implications for the Transport Mechanism of Asian Dust. Journal of Geophysical Research: Atmospheres, 119: 11, 492-11, 504. https://doi.org/10.1002/2014JD022025 Serno, S., Winckler, G., Anderson, R. F., et al., 2014. Eolian Dust Input to the Subarctic North Pacific. Earth and Planetary Science Letters, 387: 252-263. https://doi.org/10.1016/j.epsl.2013.11.008 Shao, Y. P., Wyrwoll, K. H., Chappell, A., et al., 2011. Dust Cycle: An Emerging Core Theme in Earth System Science. Aeolian Research, 2(4): 181-204. https://doi.org/10.1016/j.aeolia.2011.02.001 Shi, X. F., Li, J. R., Qiao, S. Q., et al., 2023. Research Progress of the Tibetan Plateau-Bay of Bengal "Source-Sink" System since the Last Glacial Maximum. Marine Geology & Quaternary Geology, 43(3): 14-25 (in Chinese with English abstract). Skonieczny, C., McGee, D., Winckler, G., et al., 2019. Monsoon-Driven Saharan Dust Variability over the Past 240, 000 Years. Science Advances, 5: eaav1887. https://doi.org/10.1126/sciadv.aav1887 Song, Z. H., Wan, S. M., Yu, Z. J., et al., 2024. The Major Uplift in Himalayas Was no Earlier than the Miocene: Evidence from Marine Sediment Record in the Bay of Bengal. Palaeogeography, Palaeoclimatology, Palaeoecology, 648: 112275. https://doi.org/10.1016/j.palaeo.2024.112275 Song, Z., Li, Y. L., Zhao, Y., et al., 2024. Holocene Depositional Environment Evolution at Mulanxi Estuary in Fujian Province: Evidences from XRF Core Scanning. Earth Science, 49(6): 2213-2226 (in Chinese with English abstract). Stancin, A. M., Gleason, J. D., Hovan, S. A., et al., 2008. Miocene to Recent Eolian Dust Record from the Southwest Pacific Ocean at 40° S Latitude. Palaeogeography, Palaeoclimatology, Palaeoecology, 261(3-4): 218-233. https://doi.org/10.1016/j.palaeo.2007.12.015 Stuut, J. W., Temmesfeld, F., De Deckker, P., 2014. A 550 ka Record of Aeolian Activity near North West Cape, Australia: Inferences from Grain-Size Distributions and Bulk Chemistry of SE Indian Ocean Deep-Sea Sediments. Quaternary Science Reviews, 83: 83-94. https://doi.org/10.1016/j.quascirev.2013.11.003 Sun, J., Wu, H. C., Huang, W., et al., 2025. Magnetic Records of Quaternary Sediments in the Eastern West Philippine Sea Basin and Its Paleoclimatic Implications. Earth Science, 50(3): 918-933 (in Chinese with English abstract). Suresh, K., Singh, U., Kumar, A., et al., 2021. Provenance Tracing of Long-Range Transported Dust over the Northeastern Arabian Sea during the Southwest Monsoon. Atmospheric Research, 250: 105377. https://doi.org/10.1016/j.atmosres.2020.105377 Syvitski, J. P. M., Peckham, S. D., Hilberman, R., et al., 2003. Predicting the Terrestrial Flux of Sediment to the Global Ocean: A Planetary Perspective. Sedimentary Geology, 162(1-2): 5-24. https://doi.org/10.1016/S0037-0738(03)00232-X Tanaka, T. Y., Chiba, M., 2006. A Numerical Study of the Contributions of Dust Source Regions to the Global Dust Budget. Global and Planetary Change, 52(1-4): 88-104. https://doi.org/10.1016/j.gloplacha.2006.02.002 Tang, X. J., Yu, Z. J., Lu, Z. Y., et al., 2024. Orbital Hydroclimate Variability Revealed by Grain-Size Evidence in the Tropical Pacific Islands since 140 ka. Global and Planetary Change, 236: 104429. https://doi.org/10.1016/j.gloplacha.2024.104429 Tao, S. Q., Wang, A. J., Liu, J. T., et al., 2023. Characteristics of Sedimentary Organic Carbon Burial in the Shallow Conduit Portion of Source-to-Sink Sedimentary Systems in Marginal Seas. Geochimica et Cosmochimica Acta, 353: 92-111. https://doi.org/10.1016/j.gca.2023.05.006 Tofelde, S., Bernhardt, A., Guerit, L., et al., 2021. Times Associated with Source-to-Sink Propagation of Environmental Signals during Landscape Transience. Frontiers in Earth Science, 9: 628315. https://doi.org/10.3389/feart.2021.628315. Wan, S. M., Clift, P. D., Zhao, D. B., et al., 2017. Enhanced Silicate Weathering of Tropical Shelf Sediments Exposed during Glacial Lowstands: A Sink for Atmospheric CO2. Geochimica et Cosmochimica Acta, 200: 123-144. https://doi.org/10.1016/j.gca.2016.12.010 Wan, S. M., Li, A. C., 2004. Research Progress of Marine Eolian Deposition on Paleoclimatology. Advance in Earth Sciences, 19(6): 955-962 (in Chinese with English abstract). Wan, S. M., Li, A. C., Xu, K. H., et al., 2008. Characteristics of Clay Minerals in the Northern South China Sea and Its Implications for Evolution of East Asian Monsoon since Miocene. Earth Science, 33(3): 289-300 (in Chinese with English abstract). Wan, S. M., Sun, Y. B., Nagashima, K., 2020. Asian Dust from Land to Sea: Processes, History and Effect from Modern Observation to Geological Records. Geological Magazine, 157(5): 701-706. https://doi.org/10.1017/s0016756820000333 Wan, S. M., Yu, Z. J., Clift, P. D., et al., 2012. History of Asian Eolian Input to the West Philippine Sea over the Last One Million Years. Palaeogeography, Palaeoclimatology, Palaeoecology, 326: 152-159. https://doi.org/10.1016/j.palaeo.2012.02.015 Wang, J. Z., Li, A. C., Xu, K. H., et al., 2015. Clay Mineral and Grain Size Studies of Sediment Provenances and Paleoenvironment Evolution in the Middle Okinawa Trough since 17 ka. Marine Geology, 366: 49-61. https://doi.org/10.1016/j.margeo.2015.04.007 Wang, W., Xu, Z. K., Li, T. G., et al., 2020. Sources and Origins of Eolian Dust to the Philippine Sea Determined by Major Minerals and Elemental Geochemistry. Geological Magazine, 157(5): 719-728. https://doi.org/10.1017/s0016756819001031 Werner, M., Tegen, I., Harrison, S. P., et al., 2002. Seasonal and Interannual Variability of the Mineral Dust Cycle under Present and Glacial Climate Conditions. Journal of Geophysical Research: Atmospheres, 107(D24): AAC 2-1-AAC 2-19. https://doi.org/10.1029/2002jd002365 West, A. J., Galy, A., Bickle, M., 2005. Tectonic and Climatic Controls on Silicate Weathering. Earth and Planetary Science Letters, 235(1-2): 211-228. https://doi.org/10.1016/j.epsl.2005.03.020 Xiao, W. S., Polyak, L., Zhang, T. L., et al., 2024. Depositional and Circulation Changes at the Chukchi Margin, Arctic Ocean, during the Last Two Glacial Cycles. Global and Planetary Change, 233: 104366. https://doi.org/10.1016/j.gloplacha.2024.104366 Xu, Q. M., Yi, S. W., Xiao, Z. B., et al., 2025. Deciphering the Grain Size Fining and Provenance Variation of Lower Yellow River Fluvial Sediments in Light of Holocene Climatic Changes and Anthropogenic Influences. Geomorphology, 471: 109552. https://doi.org/10.1016/j.geomorph.2024.109552 Xu, Z. K., Li, T. G., Clift, P. D., et al., 2018. Bathyal Records of Enhanced Silicate Erosion and Weathering on the Exposed Luzon Shelf during Glacial Lowstands and Their Significance for Atmospheric CO2 Sink. Chemical Geology, 476: 302-315. https://doi.org/10.1016/j.chemgeo.2017.11.027 Yu, Z. J., 2013. Research on Asian Eolian Input to the West Philippine Sea over the Last One Million Years (Dissertation). Institute of Oceanology Chinese Academy of Sciences, Qingdao (in Chinese with English abstract). Yu, Z. J., Colin, C., Wan, S. M., et al., 2019. Sea Level-Controlled Sediment Transport to the Eastern Arabian Sea over the Past 600 kyr: Clay Minerals and Sr-Nd Isotopic Evidence from IODP Site U1457. Quaternary Science Reviews, 205: 22-34. https://doi.org/10.1016/j.quascirev.2018.12.006 Yu, Z. J., Ruan, J. Y., Song, L. N., et al., 2024. Late Pleistocene Island Weathering and Precipitation in the Western Pacific Warm Pool. NPJ Climate and Atmospheric Science, 7: 91. https://doi.org/10.1038/s41612-024-00642-0 Yu, Z. J., Tang, X. J., Colin, C., et al., 2023. Millennial-Scale Precipitation Variability in the Indo-Pacific Region over the Last 40 kyr. Geophysical Research Letters, 50(2): e2022GL101646. https://doi.org/10.1029/2022gl101646 Yu, Z. J., Wan, S. M., Colin, C., et al., 2016. Co-Evolution of Monsoonal Precipitation in East Asia and the Tropical Pacific ENSO System since 2.36 Ma: New Insights from High-Resolution Clay Mineral Records in the West Philippine Sea. Earth and Planetary Science Letters, 446: 45-55. https://doi.org/10.1016/j.epsl.2016.04.022 Zender, C. S., Bian, H. S., Newman, D., 2003. Mineral Dust Entrainment and Deposition (DEAD) Model: Description and 1990s Dust Climatology. Journal of Geophysical Research (Atmospheres), 108(D14): 4416. https://doi.org/10.1029/2002JD002775 Zhai, L. N., Wu, C. D., Ye, Y. T., et al., 2018. Fluctuations in Chemical Weathering on the Yangtze Block during the Ediacaran-Cambrian Transition: Implications for Paleoclimatic Conditions and the Marine Carbon Cycle. Palaeogeography, Palaeoclimatology, Palaeoecology, 490: 280-292. https://doi.org/10.1016/j.palaeo.2017.11.006 Zhang, X. Y., Deng, B., Du, J. Z., 2023. A Historical Sedimentary Record of Glacial Activity in Krossfjorden, Arctic. Journal of East China Normal University (Natural Science), (3): 43-52 (in Chinese with English abstract). Zhang, C., Yang, S. Y., Huang, X. T., et al., 2022. Sea Level Change and Kuroshio Intrusion Dominated Taiwan Sediment Source-to-Sink Processes in the Northeastern South China Sea over the Past 244 Kyrs. Quaternary Science Reviews, 287: 107558. https://doi.org/10.1016/j.quascirev.2022.107558 Zhao, D. B., Wan, S. M., Lu, Z. Y., et al., 2020. Response of Heterogeneous Rainfall Variability in East Asia to Hadley Circulation Reorganization during the Late Quaternary. Quaternary Science Reviews, 247: 106562. https://doi.org/10.1016/j.quascirev.2020.106562 Zhou, L., Jiang, Z. X., Larrasoaña, J. C., et al., 2024. Aridity Record of the Arabian Peninsula for the Last 200 kyr: Environmental Magnetic Evidence from the Western Equatorial Indian Ocean. Quaternary Science Reviews, 341: 108876. https://doi.org/10.1016/j.quascirev.2024.108876 Zimanowski, B., Wohletz, K., Dellino, P., et al., 2003. The Volcanic Ash Problem. Journal of Volcanology and Geothermal Research, 122(1-2): 1-5. https://doi.org/10.1016/S0377-0273(02)00471-7 陈金霞, 李铁刚, 南青云, 2009. 冲绳海槽千年来陆源物质输入历史与东亚季风变迁. 地球科学, 34(5): 811-818. doi: 10.3321/j.issn:1000-2383.2009.05.013 黄晓璇, 王汝建, 肖文申, 等, 2018. 西北冰洋楚科奇海台晚第四纪以来陆源沉积物搬运机制及其古环境意义. 海洋地质与第四纪地质, 38(2): 52-62. 石学法, 李景瑞, 乔淑卿, 等, 2023. 末次盛冰期以来青藏高原‒孟加拉湾"源‒汇" 系统研究进展. 海洋地质与第四纪地质, 43(3): 14-25. 宋震, 李亚龙, 赵云, 等, 2024. 基于XRF岩心扫描证据的福建木兰溪河口全新世沉积环境演化重建. 地球科学, 49(6): 2213-2226. doi: 10.3799/dqkx.2024.037 孙军, 吴怀春, 黄威, 等, 2025. 西菲律宾海盆东部第四纪沉积物磁学记录及其古气候意义. 地球科学, 50(3): 918-933 万世明, 李安春, 2004. 海洋风尘沉积的古气候学研究进展. 地球科学进展, 19(6): 955-962. 万世明, 李安春, 胥可辉, 等, 2008. 南海北部中新世以来粘土矿物特征及东亚古季风记录. 地球科学, 33(3): 289-300. doi: 10.3321/j.issn:1000-2383.2008.03.001 于兆杰, 2013. 近百万年以来西菲律宾海风尘沉积研究(硕士学位论文). 青岛: 中国科学院海洋研究所. 张鑫悦, 邓兵, 杜金洲, 2023. 北极克罗斯峡湾冰川活动的沉积记录. 华东师范大学学报(自然科学版), (3): 43-52. -