• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    无监督聚类揭示阿拉斯加Great Sitkin火山喷发前地震活动演化

    戴梦雪 祝可欣 裴军令 赵斐宇 徐荣荣

    戴梦雪, 祝可欣, 裴军令, 赵斐宇, 徐荣荣, 2026. 无监督聚类揭示阿拉斯加Great Sitkin火山喷发前地震活动演化. 地球科学, 51(1): 146-159. doi: 10.3799/dqkx.2025.105
    引用本文: 戴梦雪, 祝可欣, 裴军令, 赵斐宇, 徐荣荣, 2026. 无监督聚类揭示阿拉斯加Great Sitkin火山喷发前地震活动演化. 地球科学, 51(1): 146-159. doi: 10.3799/dqkx.2025.105
    Dai Mengxue, Zhu Kexin, Pei Junling, Zhao Feiyu, Xu Rongrong, 2026. Unsupervised Clustering Reveals Pre-Eruptive Seismicity Evolution at Great Sitkin Volcano, Alaska. Earth Science, 51(1): 146-159. doi: 10.3799/dqkx.2025.105
    Citation: Dai Mengxue, Zhu Kexin, Pei Junling, Zhao Feiyu, Xu Rongrong, 2026. Unsupervised Clustering Reveals Pre-Eruptive Seismicity Evolution at Great Sitkin Volcano, Alaska. Earth Science, 51(1): 146-159. doi: 10.3799/dqkx.2025.105

    无监督聚类揭示阿拉斯加Great Sitkin火山喷发前地震活动演化

    doi: 10.3799/dqkx.2025.105
    基金项目: 

    国家自然科学基金项目 42304145

    国家自然科学基金项目 42430208

    国家重点研发计划项目 2022YFC2807401

    江西省自然科学基金项目 20232BAB213077

    自然资源部深地科学与探测技术实验室开放课题 SL202412

    详细信息
      作者简介:

      戴梦雪(1990-),女,博士,讲师,主要从事火山地震学研究. ORCID:0009-0003-1326-4208. E-mail:daimengxue@ecut.edu.cn

      通讯作者:

      裴军令, E-mail: junlingpei@163.com

    • 中图分类号: P315

    Unsupervised Clustering Reveals Pre-Eruptive Seismicity Evolution at Great Sitkin Volcano, Alaska

    • 摘要: 火山地震活动的时空分异特征为解析岩浆迁移与喷发前兆提供了关键约束.为阐明阿拉斯加Great Sitkin火山2021年喷发前的岩浆活动机制,对该火山喷发前的连续地震波形数据开展了系统性分析,采用模版匹配和双差定位法进行地震事件检测及精定位,并基于无监督学习层次聚类算法,对构建的高精度地震目录进行火山地震活动的分类与时空演化分析.获得的地震目录事件较阿拉斯加火山观测台(AVO)官方目录提升了4倍,层次聚类将这些地震事件划分为长周期地震(LP)和火山构造地震(VT).结果显示,喷发前火山地震活动显著增强,且浅层LP事件在喷发前24 h达到活动峰值,这一现象或为关键喷发前兆信号.该火山此次喷发是由山顶火山口正下方上地壳深度的岩浆积聚和增压引发.

       

    • 图  1  Great Sitkin火山及其周边区域地形图

      三角形表示地震台站,Summit代表火山山顶位置.图a显示了Great Sitkin火山沿阿拉斯加阿留申火山弧的位置

      Fig.  1.  Topographic map of the Great Sitkin volcano and its surrounding area

      图  2  地震目录空间分布对比

      a1、a2. 官方目录;b1、b2. PALM构建目录.圆点表示地震事件,颜色以深度编码,大小按震级缩放.剖面图区域以蓝色虚线框勾绘,沿AB线的深度分布剖面用蓝点表示

      Fig.  2.  Spatial distribution comparison of seismic catalogs

      图  3  频度‒震级分布对比

      实心圆点与实心三角分别代表累积分布与非累积分布,基于PALM构建地震目录和官方地震目录分别用橙色和和蓝色表示

      Fig.  3.  Comparison of frequency-magnitude distribution

      图  4  根据P波谱的差异性将地震活动树状图分为20个集群

      Fig.  4.  Dendrogram of seismic activity divided into 20 clusters based on the differences in P-wave spectra

      图  5  20个事件簇的平均频谱(红色)和中位频谱(黑色)

      Fig.  5.  Average spectra (red) and median spectra (black) of the 20 event clusters

      图  6  在特征空间中对20个集群进行重新分组

      Fig.  6.  Reclustering of the 20 clusters in a feature space

      图  7  频率指数分布

      Fig.  7.  Frequency index distributions

      图  8  整个研究期间的地震频度分布

      Fig.  8.  Earthquake frequency distribution during the entire study period

      图  9  2019年7月至10月震源分布

      a1、a2. A、B、C组;b1、b2. D组

      Fig.  9.  Earthquake hypocenter distributions from July to October, 2019

      图  10  2020年1月至7月震源分布

      a1、a2. A、B、C组;b1、b2. D组

      Fig.  10.  Earthquake hypocenter distributions from January to July, 2020

      图  11  2021年5月地震频度分布

      Fig.  11.  Earthquake frequency distribution in May 2021

      图  12  2021年5月25日至26日震源分布

      a1、a2. A、B、C组;b1、b2. D组

      Fig.  12.  Earthquake hypocenter distributions from May 25 to 26, 2021

      表  1  Great Sitkin火山纵波速度模型

      Table  1.   P-wave velocity model of the Great Sitkin volcano

      纵波速度(km/s) 深度(km)
      2.5 0.0(‒1.7)
      3.0 0.5(‒1.2)
      3.7 1.7(0.0)
      4.1 2.2(0.5)
      4.5 2.7(1.0)
      4.9 3.0(1.6)
      5.8 4.0(2.3)
      6.6 7.0(5.3)
      6.68 8.0(6.3)
      6.8 11.0(9.3)
      6.92 14.0(12.3)
      7.04 17.0(15.3)
      7.16 20.0(18.3)
      7.28 23.0(21.3)
      8.05 40.0(38.7)
      注:模型顶部设定在海平面以上1.7 km以匹配火山的大致峰顶高度.括号中的数字表示相对于海平面的深度,负值表示海平面以上的高度.本模型采用的VP/VS比值为1.85.
      下载: 导出CSV
    • Allen, R. V., 1978. Automatic Earthquake Recognition and Timing from Single Traces. Bulletin of the Seismological Society of America, 68(5): 1521-1532. https://doi.org/10.1785/bssa0680051521
      Alvarez, R., Camacho, M., 2023. Plumbing System of Hunga Tonga HungaHa'apai Volcano. Journal of Earth Science, 34(3): 706-716. https://doi.org/10.1007/s12583-022-1792-0
      Baillard, C., Crawford, W. C., Ballu, V., et al., 2014. An Automatic Kurtosis-Based P- and S-Phase Picker Designed for Local Seismic Networks. Bulletin of the Seismological Society of America, 104(1): 394-409. https://doi.org/10.1785/0120120347
      Buurman, H., West, M. E., 2010. Seismic Precursors to Volcanic Explosions during the 2006 Eruption of Augustine Volcano. In: Power, J. A., Coombs, M. L., Freymueller, J. T., eds., The 2006 Eruption of Augustine Volcano, Alaska. U. S. Geological Survey Professional Paper, Washington D. C., 41-57. https://pubs.usgs.gov/pp/1769/chapters/p1769_chapter02.pdf
      Chouet, B. A., Matoza, R. S., 2013. A Multi-Decadal View of Seismic Methods for Detecting Precursors of Magma Movement and Eruption. Journal of Volcanology and Geothermal Research, 252: 108-175. https://doi.org/10.1016/j.jvolgeores.2012.11.013
      Cui, X., Li, Z. F., Huang, H., 2021. Subdivision of Seismicity beneath the Summit Region of Kilauea Volcano: Implications for the Preparation Process of the 2018 Eruption. Geophysical Research Letters, 48(20): e2021GL094698. https://doi.org/10.1029/2021GL094698
      Dixon, J. P., Cameron, C. E., Iezzi, A. M., et al., 2020.2017 Volcanic Activity in Alaska—Summary of Events and Response of the Alaska Volcano Observatory. Scientific Investigations Report. U. S. Geological Survey, Reston. https://doi.org/10.3133/sir20205102
      Duque, A., González, K., Pérez, N., et al., 2020. Exploring the Unsupervised Classification of Seismic Events of Cotopaxi Volcano. Journal of Volcanology and Geothermal Research, 403: 107009. https://doi.org/10.1016/j.jvolgeores.2020.107009
      Falsaperla, S., Graziani, S., Nunnari, G., et al., 1996. Automatic Classification of Volcanic Earthquakes by Using Multi-Layered Neural Networks. Natural Hazards, 13(3): 205-228. https://doi.org/10.1007/BF00215816
      Falsaperla, S., Martinelli, B., Schick, R., 1992. Seismic Activity at Stromboli (Southern Italy) for the Period 1983-1986. In: Gasperini, P., Scarpa, R., Aki, K., eds., Volcanic Seismology. Springer-Verlag, New York, 267-278. https://doi.org/10.1007/978-3-642-77008-1_20
      Hibert, C., Provost, F., Malet, J. P., et al., 2017. Automatic Identification of Rockfalls and Volcano-Tectonic Earthquakes at the Piton de la Fournaise Volcano Using a Random Forest Algorithm. Journal of Volcanology and Geothermal Research, 340: 130-142. https://doi.org/10.1016/j.jvolgeores.2017.04.015
      Jiang, G. J., Zhang, L. F., Zhao, Y. N., et al., 2024. Research on Microseismic Activity in Three Gorges Reservoir Based on PALM Automatic Detection Method. Journal of Geodesy and Geodynamics, 44(7): 753-758 (in Chinese with English abstract).
      Ketner, D., Power, J., 2013. Characterization of Seismic Events during the 2009 Eruption of Redoubt Volcano, Alaska. Journal of Volcanology and Geothermal Research, 259: 45-62. https://doi.org/10.1016/j.jvolgeores.2012.10.007
      Klein, F. W., 2002. User's Guide to HYPOINVERSE-2000, a Fortran Program to Solve for Earthquake Locations and Magnitudes. Open-File Report. U. S. Geological Survey, Reston. https://doi.org/10.3133/ofr02171
      Langet, N., 2014. Détection et Caractérisation Massives de Phénomènes Sismologiques pour la Surveillance D'événements Traditionnels et la Recherche Systématique de Phénomènes Rares (Dissertation). Université de Strasbourg, Strasbourg.
      Liu, G. M., Wang, L. J., Kang, J. H., et al., 2023. Application of Volcanic Seismic Monitoring in Volcanic Eruption Prediction. Earthquake Research in China, 39(2): 425-437 (in Chinese with English abstract).
      Lu, T. R., Duan, M. Q., Li, Z. Y., et al., 2025. A Review of Research Progress in Artificial Intelligence-Based Seismic Classification. Progress in Geophysics, 40(1): 25-47 (in Chinese with English abstract).
      Maggi, A., Ferrazzini, V., Hibert, C., et al., 2017. Implementation of a Multistation Approach for Automated Event Classification at Piton de la Fournaise Volcano. Seismological Research Letters, 88(3): 878-891. https://doi.org/10.1785/0220160189
      Matoza, R. S., Shearer, P. M., Okubo, P. G., 2014. High-Precision Relocation of Long-Period Events beneath the Summit Region of Kīlauea Volcano, Hawaii, from 1986 to 2009. Geophysical Research Letters, 41(10): 3413-3421. https://doi.org/10.1002/2014GL059819
      Meyer, K., Biggs, J., Aspinall, W., 2021. A Bayesian Reassessment of the Relationship between Seismic Moment and Magmatic Intrusion Volume during Volcanic Unrest. Journal of Volcanology and Geothermal Research, 419: 107375. https://doi.org/10.1016/j.jvolgeores.2021.107375
      Moran, S., Stihler, S., Power, J., 2002. A Tectonic Earthquake Sequence Preceding the April-May 1999 Eruption of Shishaldin Volcano, Alaska. Bulletin of Volcanology, 64(8): 520-524. https://doi.org/10.1007/s00445-002-0226-1
      Nakada, S., Shimizu, H., Ohta, K., 1999. Overview of the 1990-1995 Eruption at Unzen Volcano. Journal of Volcanology and Geothermal Research, 89(1-4): 1-22. https://doi.org/10.1016/S0377-0273(98)00118-8
      Orr, T. R., Dietterich, H. R., Fee, D., et al., 2024.2021 Volcanic Activity in Alaska and the Common Wealth of the Northern Mariana Islands—Summary of Events and Response of the Alaska Volcano Observatory. Scientific Investigations Report. U. S. Geological Survey, Reston. https://doi.org/10.3133/sir20245014
      Orr, T. R., Dietterich, H. R., Grapenthin, R., et al., 2025.2022 Volcanic Activity in Alaska and the Northern Mariana Islands—Summary of Events and Response of the Alaska Volcano Observatory. Scientific Investigations Report. U. S. Geological Survey, Reston. https://doi.org/10.3133/sir20245108
      Permana, T., Nishimura, T., Nakahara, H., et al., 2022. Classification of Volcanic Tremors and Earthquakes Based on Seismic Correlation: Application at Sakurajima Volcano, Japan. Geophysical Journal International, 229(2): 1077-1097. https://doi.org/10.1093/gji/ggab517
      Pesicek, J. D., Thurber, C. H., DeShon, H. R., et al., 2008. Three-Dimensional P-Wave Velocity Structure and Precise Earthquake Relocation at Great Sitkin Volcano, Alaska. Bulletin of the Seismological Society of America, 98(5): 2428-2448. https://doi.org/10.1785/0120070213
      Power, J. A., Roman, D. C., 2024. Event Classification, Seismicity, and Eruption Forecasting at Great Sitkin Volcano, Alaska: 1999-2023. Journal of Volcanology and Geothermal Research, 454: 108182. https://doi.org/10.1016/j.jvolgeores.2024.108182
      Roman, D. C., Moran, S. C., Power, J. A., 2004. Temporal and Spatial Variation of Local Stress Fields before and after the 1992 Eruptions of Crater Peak Vent, Mount Spurr Volcano, Alaska. Bulletin of the Seismological Society of America, 94(6): 2366-2379. https://doi.org/10.1785/0120030259
      Seydoux, L., Balestriero, R., Poli, P., et al., 2020. Clustering Earthquake Signals and Background Noises in Continuous Seismic Data with Unsupervised Deep Learning. Nature communications, 11(1): 3972. https://doi.org/10.1038/s41467-020-17841-x
      Waldhauser, F., Ellsworth, W. L., 2000. A Double-Difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Fault, California. Bulletin of the Seismological Society of America, 90(6): 1353-1368. https://doi.org/10.1785/0120000006
      Waythomas, C. F., Miller, T. P., Nye, C. J., et al., 2003. Preliminary Volcano-Hazard Assessment for Great Sitkin Volcano, Alaska. Open-File Report. U. S. Geological Survey, Anchorage. https://doi.org/10.3133/ofr03112
      Wech, A. G., Thelen, W. A., 2015. Linking Magma Transport Structures at Kīlauea Volcano. Geophysical Research Letters, 42(17): 7090-7097. https://doi.org/10.1002/2015GL064869
      Withers, M., Aster, R., Young, C., et al., 1998. A Comparison of Select Trigger Algorithms for Automated Global Seismic Phase and Event Detection. Bulletin of the Seismological Society of America, 88(1): 95-106. https://doi.org/10.1785/bssa0880010095
      Woods, J., Donaldson, C., White, R. S., et al., 2018. Long-Period Seismicity Reveals Magma Pathways above a Laterally Propagating Dyke during the 2014-15 Bárðarbunga Rifting Event, Iceland. Earth and Planetary Science Letters, 490: 216-229. https://doi.org/10.1016/j.epsl.2018.03.020
      Xiao, Y., Shan, B., Liu, C. L., et al., 2024. Stress Triggering and Seismic Hazard Assessment of the 2022 Lushan MS6.1 Earthquake. Earth Science, 49(8): 2979-2991 (in Chinese with English abstract).
      Yang, X. T., Roman, D. C., Haney, M., et al., 2023. Double Reservoirs Imaged below Great Sitkin Volcano, Alaska, Explain the Migration of Volcanic Seismicity. Geophysical Research Letters, 50(11): e2022GL102438. https://doi.org/10.1029/2022GL102438
      Yao, Y., Yang, Z. S., Zhou, S. Y., 2023. Seismicity in Zemuhe Fault Zone Based on Dense Seismic Array. Acta Seismologica Sinica, 45(6): 985-995 (in Chinese with English abstract).
      Zhang, M., Wen, L. X., 2015. An Effective Method for Small Event Detection: Match and Locate (M & L). Geophysical Journal International, 200(3): 1523-1537. https://doi.org/10.1093/gji/ggu466
      Zhou, Y. J., Yue, H., Fang, L. H., et al., 2022. An Earthquake Detection and Location Architecture for Continuous Seismograms: Phase Picking, Association, Location, and Matched Filter (PALM). Seismological Research Letters, 93(1): 413-425. https://doi.org/10.1785/0220210111
      Zhu, W. Q., Beroza, G. C., 2019. PhaseNet: A Deep-Neural-Network-Based Seismic Arrival-Time Picking Method. Geophysical Journal International, 216(1): 261-273. https://doi.org/10.1093/gji/ggy423
      江功劲, 张丽芬, 赵艳南, 等, 2024. 基于PALM自动检测方法的三峡库区微震活动研究. 大地测量与地球动力学, 44(7): 753-758.
      刘国明, 王良俊, 康建红, 等, 2023. 火山地震监测在火山喷发预测中的应用. 中国地震, 39(2): 425-437.
      陆天然, 段梦乔, 李子怡, 等, 2025. 人工智能地震分类研究进展综述. 地球物理学进展, 40(1): 25-47.
      肖阳, 单斌, 刘成利, 等, 2024.2022年芦山MS6.1地震应力触发及地震危险性分析. 地球科学, 49(8): 2979-2991. doi: 10.3799/dqkx.2023.053
      姚远, 杨周胜, 周仕勇, 2023. 基于密集台阵的则木河断裂带地震活动性研究. 地震学报, 45(6): 985-995.
    • 加载中
    图(12) / 表(1)
    计量
    • 文章访问数:  242
    • HTML全文浏览量:  11
    • PDF下载量:  10
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-04-30
    • 刊出日期:  2026-01-25

    目录

      /

      返回文章
      返回