Hydrochemical Characteristics and Formation-Evolution Analysis of Medium-Low Temperature Geothermal Systems with High Salinity in Coastal Western Guangdong
-
摘要: 沿海地区地热系统易受到海水入侵,导致地热水的盐度升高,降低利用效率,增加利用成本.广东省作为我国重要的中低温地热资源分布区,其沿海地带地热系统的海水入侵情况及其影响作用等仍缺乏系统研究.基于粤西地区35个地热水、1个地下冷水和1个海水的理化数据,综合水化学、同位素及多种图解分析,探讨其水化学特征、海水入侵情况及形成演化.研究结果表明沿海地区地热水明显受到海水入侵影响,具有高盐度的特点,最高混合比例达到41.88%,从内陆到沿海地区,地热水的水化学类型由重碳酸盐型转变为氯化物型.地热水主要补给来源是大气降水,在晚更新世至全新世时期,云开山脉与天露山脉地区的大气降水下渗,与90~126 ℃的热储围岩接触而逐渐升温;而后海进运动使得地热水受到大规模古海水混入,热对流的“抽吸效应”还会加速海水运移,临海地区持续受到海水侵入,最终形成高盐度中低温地热水.Abstract: Coastal geothermal systems are prone to seawater intrusion, which can increase the salinity of geothermal water, reduce its utilization efficiency, and raise operational costs. As a significant region for medium-low temperature geothermal resources in China, the coastal areas of Guangdong Province still lack systematic research on seawater intrusion into geothermal systems and its impacts. This study investigates the hydrochemical characteristics, seawater intrusion extent and formation mechanisms based on physicochemical data from 35 geothermal water samples, one cold groundwater sample and one seawater sample in western Guangdong Province. Comprehensive analyses including hydrochemistry, isotopes and multivariate graphical interpretation methods, are employed to explore these aspects. The research results indicate that coastal geothermal water exhibits visible seawater intrusion characteristics with high salinity levels, demonstrating a maximum mixing proportion reaching 41.88%. The hydrochemical types evolve from bicarbonate-type in inland areas to chloride-type in coastal zones. The geothermal water is primarily recharged by atmospheric precipitation. During the Late Pleistocene to Holocene period, infiltrated meteoric water from the Yunkai Mountain and Tianlu Mountain areas interacted with geothermal reservoir rocks at a temperature of 90-126 ℃, undergoing gradual temperature elevation. Subsequently, marine transgression events induced large-scale paleo-seawater mixing into the geothermal system, where seawater migration was accelerated by thermal convection "pumping effects". Thereafter, sustained seawater intrusion has persistently affected coastal areas, ultimately forming medium-low temperature geothermal water with high salinity characteristics.
-
图 4 研究区地热水年龄与海进时间分布
海平面变化曲线来源于张虎男和赵红梅(1990)
Fig. 4. Distribution of geothermal water age and transgression time in the study area
图 13 粤西高盐度地热水形成演化模型
等温线数据来源于汪啸(2018)
Fig. 13. Formation and evolution model of high-salinity geothermal water in western Guangdong
表 1 地热水热储温度(℃)
Table 1. Geothermal water thermal storage temperature (℃)
ID 临海 ID 内陆 T1 T2 T3 T4 T5 T6 T1 T2 T3 T4 T5 T6 W-01 158 161 106 103 78 73 W-07 259 212 97 93 69 63 W-02 179 168 102 99 74 68 W-08 296 242 92 88 64 57 W-03 279 218 103 100 76 70 W-09 192 190 111 109 84 80 W-04 106 132 86 80 57 49 W-10 189 174 87 81 58 50 W-05 175 173 113 112 86 83 W-13 186 166 115 113 87 84 W-06 193 182 116 115 89 86 W-14 145 135 129 131 103 103 W-11 151 160 93 89 65 58 W-15 169 145 93 89 65 58 W-12 150 149 88 83 60 52 W-16 496 196 121 121 95 93 W-21 144 135 107 105 80 76 W-17 171 159 131 132 104 105 W-23 176 162 131 132 104 105 W-18 175 160 110 108 83 79 W-26 148 160 143 147 117 121 W-19 156 149 124 124 97 96 Z-01 233 170 151 156 126 132 W-20 159 149 110 108 83 79 Z-02 235 170 126 127 100 99 W-22 219 157 120 119 93 91 Z-04 178 139 143 147 118 122 W-24 180 151 127 128 101 100 Z-05 223 168 131 132 104 105 W-25 132 127 143 147 117 121 Z-09 107 124 106 103 78 73 Z-03 94 118 55 47 27 14 Z-06 134 140 115 114 88 85 Z-07 135 150 122 122 95 94 Z-08 105 124 116 116 89 87 均值 177 161 116 115 89 87 均值 189 160 111 110 84 81 注:T1:Na-K,T=933/[lg(Na/K)+0.993] -273.15(Arnórsson,1983);T2:Na-K-Ca,T=1 647/[lg(Na/K)+(1/3)(lg(Ca1/2/Na)+2.06)+2.47]-273.15(Fournier and Truesdell, 1973);T3:石英(最大蒸汽损失),T=[1 522/(5.73-lgSiO2)]-273.15(Fournier,1977);T4:石英(无蒸汽损失),T=[1 309/(5.19-lgSiO2)]-273.15(Fournier,1977);T5:玉髓(最大蒸汽损失),T=[1 264/(5.31-lgSiO2)]-273.15(Arnórsson,1983);T6:玉髓(无蒸汽损失),T=[1 032/(4.69-lgSiO2)]-273.15(Fournier,1977). -
Arnórsson, S., 1983. Chemical Equilibria in Icelandic Geothermal Systems—Implications for Chemical Geothermometry Investigations. Geothermics, 12(2-3): 119-128. https://doi.org/10.1016/0375-6505(83)90022-6 Chen, H., Zeng, T. R., Zhu, J. L., et al., 2022. Geochemical Characteristics and Genetic Analysis of Geothermal Fluid in Different Lithologic Areas in Shaoguan Area, Northern Guangdong Province. Mineralogy and Petrology, 42(2): 125-135 (in Chinese with English abstract). Feng, J. Y., 2023. Factors Controlling the Distribution of Granite Reservoirs of Hydrothermal System Type in South China: A Case Study of Huangshadong Geothermal Field in Yuezhong Depression, China. Energy Geoscience, 4(4): 100160. https://doi.org/10.1016/j.engeos.2023.100160 Fournier, R. O., 1977. Chemical Geothermometers and Mixing Models for Geothermal Systems. Geothermics, 5(1-4): 41-50. https://doi.org/10.1016/0375-6505(77)90007-4 Fournier, R. O., Truesdell, A. H., 1973. An Empirical Na-K-Ca Geothermometer for Natural Waters. Geochimica et Cosmochimica Acta, 37(5): 1255-1275. https://doi.org/10.1016/0016-7037(73)90060-4 Gibbs, R. J., 1970. Mechanisms Controlling World Water Chemistry. Science, 170(3962): 1088-1090. https://doi.org/10.1126/science.170.3962.1088 Giggenbach, W. F., 1988. Geothermal Solute Equilibria. Derivation of Na-K-Mg-Ca Geoindicators. Geochimica et Cosmochimica Acta, 52(12): 2749-2765. https://doi.org/10.1016/0016-7037(88)90143-3 Giménez-Forcada, E., 2014. Space/Time Development of Seawater Intrusion: A Study Case in Vinaroz Coastal Plain (Eastern Spain) Using HFE-Diagram, and Spatial Distribution of Hydrochemical Facies. Journal of Hydrology, 517: 617-627. https://doi.org/10.1016/j.jhydrol.2014.05.056 Jiang, W. J., Sheng, Y. Z., Wang, G. C., et al., 2022. Cl, Br, B, Li, and Noble Gases Isotopes to Study the Origin and Evolution of Deep Groundwater in Sedimentary Basins: A Review. Environmental Chemistry Letters, 20(2): 1497-1528. https://doi.org/10.1007/s10311-021-01371-z Jiang, Y., Li, J., Xing, Y. F., et al., 2023. Evaluation of Geochemical Geothermometers with Borehole Geothermal Measurements: A Case Study of the Xiong'an New Area. Earth Science, 48(3): 958-972 (in Chinese with English abstract). Krishna, B., Achari, V. S., 2024. Groundwater for Drinking and Industrial Purposes: a Study of Water Stability and Human Health Risk Assessment from Black Sand Mineral Rich Coastal Region of Kerala, India. Journal of Environmental Management, 351: 119783. https://doi.org/10.1016/j.jenvman.2023.119783 Kuang, J., Qi, S. H., Hu, X. Y., 2021. New Insights into Crust and Upper Mantle Structure in Guangdong Province, China and Its Geothermal Implications. Energies, 14(8): 2236. https://doi.org/10.3390/en14082236 Li, J. X., Sagoe, G., Li, Y. L., 2020. Applicability and Limitations of Potassium-Related Classical Geothermometers for Crystalline Basement Reservoirs. Geothermics, 84: 101728. https://doi.org/10.1016/j.geothermics.2019.101728 Li, J. X., Xu, Y. D., Lin, W. J., 2024. The Applicability of Traditional Chemical Geothermometers. Earth Science Frontiers, 31(6): 145-157 (in Chinese with English abstract). Li, X., Ye, S. Y., 2016. Progress in Seawater Intrusion. Marine Geology & Quaternary Geology, 36(6): 211-217 (in Chinese with English abstract). Li, Y. M., Tian, J., Cheng, Y. Z., et al., 2021. Existence of High Temperature Geothermal Resources in the Igneous Rock Regions of South China. Frontiers in Earth Science, 9: 728162. https://doi.org/10.3389/feart.2021.728162 Li, Y. N., Bai, X. M., Huang, C. S., et al., 2024. Genesis of Geothermal Waters in Zhongshan City, China: Hydrochemical and H-O-C Isotopic Implications. Water, 16(13): 1765. https://doi.org/10.3390/w16131765 Li, Z. W., Zhang, X. Y., Zhang, M. Z., et al., 2020. Comparison of Indicators for the Assessment of Saltwater Intrusion in Coastal Aquifers: Taking Aquifers in Pearl River Estuary as an Example. Marine Environmental Science, 39(1): 16-24 (in Chinese with English abstract). Luo, J., Li, Y. M., Tian, J., et al., 2022. Geochemistry of Geothermal Fluid with Implications on Circulation and Evolution in Fengshun-Tangkeng Geothermal Field, South China. Geothermics, 100: 102323. https://doi.org/10.1016/j.geothermics.2021.102323 Mao, X. M., Zhu, D. B., Ndikubwimana, I., et al., 2021. The Mechanism of High-Salinity Thermal Groundwater in Xinzhou Geothermal Field, South China: Insight from Water Chemistry and Stable Isotopes. Journal of Hydrology, 593: 125889. https://doi.org/10.1016/j.jhydrol.2020.125889 Möller, D., 1990. The Na/Cl Ratio in Rainwater and the Seasalt Chloride Cycle. Tellus B, 42(3): 254-262. https://doi.org/10.1034/j.1600-0889.1990.t01-1-00004.x Nath, B., Jean, J. S., Lee, M. K., et al., 2008. Geochemistry of High Arsenic Groundwater in Chia-Nan Plain, Southwestern Taiwan: Possible Sources and Reactive Transport of Arsenic. Journal of Contaminant Hydrology, 99(1-4): 85-96. https://doi.org/10.1016/j.jconhyd.2008.04.005 Ndikubwimana, I., Mao, X. M., Zhu, D. B., et al., 2020. Geothermal Evolution of Deep Parent Fluid in Western Guangdong, China: Evidence from Water Chemistry, Stable Isotopes and Geothermometry. Hydrogeology Journal, 28(8): 2947-2961. https://doi.org/10.1007/s10040-020-02222-x Nitschke, F., Held, S., Neumann, T., et al., 2018. Geochemical Characterization of the Villarrica Geothermal System, Southern Chile, Part Ⅱ: Site-Specific Re-Evaluation of SiO2 and Na-K Solute Geothermometers. Geothermics, 74: 217-225. https://doi.org/10.1016/j.geothermics.2018.03.006 Pang, Z. H., Hu, S. B., Wang, J. Y., 2012. A Roadmap to Geothermal Energy Development in China. Science & Technology Review, 30(32): 18-24 (in Chinese with English abstract). Reed, M., Spycher, N., 1984. Calculation of pH and Mineral Equilibria in Hydrothermal Waters with Application to Geothermometry and Studies of Boiling and Dilution. Geochimica et Cosmochimica Acta, 48(7): 1479-1492. https://doi.org/10.1016/0016-7037(84)90404-6 Truesdell, A. H., Fournier, R. O., 1977. Procedure for Estimating the Temperature of a Hot-Water Component in a Mixed Water by Using a Plot of Dissolved Silica Versus Enthalpy. Journal of Research of the US Geological Survey, 5(1): 49-52. Vengosh, A., Rosenthal, E., 1994. Saline Groundwater in Israel: Its Bearing on the Water Crisis in the Country. Journal of Hydrology, 156(1-4): 389-430. https://doi.org/10.1016/0022-1694(94)90087-6 Wang, S. J., Zhang, M., Huang, X. L., et al., 2024. Geothermometry Calculation and Geothermal Fluid Evolution of Karst Geothermal Reservoir in Longmen County, Guangdong Province. Earth Science, 49(3): 992-1004 (in Chinese with English abstract). Wang, S., Kuang, J., Huang, X. L., et al., 2022. Upwelling of Mantle-Derived Material in Southeast China: Evidence from Noble Gas Isotopes. Acta Geologica Sinica-English Edition, 96(1): 100-110. https://doi.org/10.1111/1755-6724.14686 Wang, X., 2018. Formation Conditions and Hydrogeochemical Characteristicsof the Geothermal Water in Typical Coastal Geothermal Field with Deep Faults, Guangdong Province (Dissertation). China University of Geosciences (Wuhan), Wuhan (in Chinese with English abstract) Wang, Y. B., Liu, S. W., Chen, C. Q., et al., 2024. Compilation of Terrestrial Heat Flow Data in Continental China (5th Edition). Chinese Journal of Geophysics, 67(11): 4233-4265 (in Chinese with English abstract). Wang, Y. C., Gu, H. Y., Li, D., et al., 2021. Hydrochemical Characteristics and Genesis Analysis of Geothermal Fluid in the Zhaxikang Geothermal Field in Cuona County, Southern Tibet. Environmental Earth Sciences, 80(11): 415. https://doi.org/10.1007/s12665-021-09577-8 Wang, Y. J., Fan, W. M., Zhang, G. W., et al., 2013. Phanerozoic Tectonics of the South China Block: Key Observations and Controversies. Gondwana Research, 23(4): 1273-1305. https://doi.org/10.1016/j.gr.2012.02.019 Wei, Z. G., Huang, S. P., Xu, J. W., et al., 2024. Geochemical Evolution of Geothermal Waters in the Pearl River Delta Region, South China: Insights from Water Chemistry and Isotope Geochemistry. Journal of Hydrology: Regional Studies, 51: 101670. https://doi.org/10.1016/j.ejrh.2024.101670 Wei, Z. G., Shao, H. B., Tang, L., et al., 2021. Hydrogeochemistry and Geothermometry of Geothermal Waters from the Pearl River Delta Region, South China. Geothermics, 96: 102164. https://doi.org/10.1016/j.geothermics.2021.102164 Xiong, B., Xu, H., Tang, S. L., et al., 2024. Genetic Mechanisms of Hot Dry Rock Geothermal Resources in Central Inner Mongolia. Coal Geology & Exploration, 52(1): 36-45 (in Chinese with English abstract). Xu, F. Y. M., Lu, G. P., 2017. Hydrochemical Characteristics of Xinzhou Geothermal Field, Coastal Guangdong and the Hydrodynamic Characteristics of Seawater Intrusion in the Field. Safety and Environmental Engineering, 24(1): 1-10 (in Chinese with English abstract). Yang, C., Qu, W. G., Ren, W. H., et al., 2024. Hydrochemical Characteristics and Formation Mechanism of Geothermal Water in Yinchuan Basin. Science Technology and Engineering, 24(30): 12874-12884 (in Chinese with English abstract). Yuan, J. F., 2013. Hydrogeochemistry of the Geothermal Systems in Coastal Areas of Guangdong Province, South China (Dissertation). China University of Geosciences (Wuhan), Wuhan (in Chinese with English abstract). Yuan, J. F., Xu, F., Zheng, T. L., 2022. The Genesis of Saline Geothermal Groundwater in the Coastal Area of Guangdong Province: Insight from Hydrochemical and Isotopic Analysis. Journal of Hydrology, 605: 127345. https://doi.org/10.1016/j.jhydrol.2021.127345 Zhang, H. N., Zhao, H. M., 1990. Preliminary Study on Late Pleistocene-Holocene Sea-Level Changes along the South China Coast. Acta Oceanologica Sinica, 12(5): 620-630 (in Chinese). Zhang, L., Chen, S., Zhang, C., 2019. Geothermal Power Generation in China: Status and Prospects. Energy Science & Engineering, 7(5): 1428-1450. https://doi.org/10.1002/ese3.365 Zhang, R. Q., Liang, X., Jin, M. G., et al., 2018. Fundamentals of Hydrogeology (7th Edition). Geological Publishing House, Beijing (in Chinese). Zhao, B. Y., Wang, S., Chen, F., et al., 2024. Hydrogeochemical Characteristics and Genesis of Medium-High Temperature Geothermal System in Northeast Margin of Pamir Plateau. Earth Science, 49(10): 3736-3748 (in Chinese with English abstract). Zhao, C. R., Yang, J. L., Xiao, G. Q., et al., 2012. Hydrogeochemical Reactions and Hydrogeological Model for Sea Water Intrusion Processes in the Daweijia Water Source Area, Dalian City. Geological Survey and Research, 35(2): 154-160 (in Chinese with English abstract). Zhou, Z. M., Ma, C. Q., Qi, S. H., et al., 2020. Late Mesozoic High-Heat-Producing (HHP) and High-Temperature Geothermal Reservoir Granitoids: The Most Significant Geothermal Mechanism in South China. Lithos, 366: 105568. https://doi.org/10.1016/j.lithos.2020.105568 Zhu, D. B., Mao, X. M., He, Y. Y., et al., 2020. Research on 14C Age Correction for Mixed Groundwater in Lateral Flow of Discharge Zones. Geological Review, 66(S1): 51-53 (in Chinese). Zhu, J. L., Hu, K. Y., Lu, X. L., et al., 2015. A Review of Geothermal Energy Resources, Development, and Applications in China: Current Status and Prospects. Energy, 93: 466-483. https://doi.org/10.1016/j.energy.2015.08.098 陈珲, 曾土荣, 朱金林, 等, 2022. 粤北韶关地区不同岩性区地热流体地球化学特征及成因分析. 矿物岩石, 42(2): 125-135. 姜颖, 李捷, 邢一飞, 等, 2023. 基于钻孔测温的地球化学温度计适宜性评价: 以雄安新区为例. 地球科学, 48(3): 958-972. 李洁祥, 许亚东, 蔺文静, 2024. 传统水化学地热温度计的适用性分析. 地学前缘, 31(6): 145-157. 李雪, 叶思源, 2016. 海水入侵调查方法研究进展. 海洋地质与第四纪地质, 36(6): 211-217. 李志威, 张晓影, 张明珠, 等, 2020. 海水入侵指标对比分析与评价: 以珠江口地下水含水层为例. 海洋环境科学, 39(1): 16-24. 庞忠和, 胡圣标, 汪集旸, 2012. 中国地热能发展路线图. 科技导报, 30(32): 18-24. 王思佳, 张敏, 黄学莲, 等, 2024. 广东省龙门岩溶热储温度计算及流体演化特征. 地球科学, 49(3): 992-1004. 汪啸, 2018. 广东沿海典型深大断裂带地热水系统形成条件及水文地球化学特征(博士学位论文). 武汉: 中国地质大学(武汉). 王一波, 刘绍文, 陈超强, 等, 2024. 中国陆域大地热流数据汇编(第五版). 地球物理学报, 67(11): 4233-4265. 熊波, 许浩, 唐淑玲, 等, 2024. 内蒙古中部干热岩地热资源成因机制研究. 煤田地质与勘探, 52(1): 36-45. 徐钫一鸣, 卢国平, 2017. 广东海岸带型新洲地热田水化学及海水入侵水动力特征. 安全与环境工程, 24(1): 1-10. 杨超, 屈文岗, 任文豪, 等, 2024. 银川盆地地热水水化学特征及形成机理. 科学技术与工程, 24(30): 12874-12884. 袁建飞, 2013. 广东沿海地热系统水文地球化学研究(博士学位论文). 武汉: 中国地质大学(武汉). 张虎男, 赵红梅, 1990. 华南沿海晚更新世晚期‒全新世海平面变化的初步探讨. 海洋学报, 12(5): 620-630. 张人权, 梁杏, 靳孟贵, 等, 2018. 水文地质学基础(第7版). 北京: 地质出版社. 赵钵渊, 王帅, 陈锋, 等, 2024. 帕米尔高原东北缘中高温地热流体水文地球化学特征及成因机制. 地球科学, 49(10): 3736-3748. 赵长荣, 杨吉龙, 肖国强, 等, 2012. 大连大魏家水源地海水入侵过程中水文地球化学作用分析及定量模拟. 地质调查与研究, 35(2): 154-160. 朱东波, 毛绪美, 何耀烨, 等, 2020. 排泄区地下水横向径流混合14C年龄校正研究. 地质论评, 66(S1): 51-53. -