• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于贝叶斯网络结构学习的短期强震危险性概率预测

    司震 袁静 张博 陈石

    司震, 袁静, 张博, 陈石, 2026. 基于贝叶斯网络结构学习的短期强震危险性概率预测. 地球科学, 51(1): 43-55. doi: 10.3799/dqkx.2025.186
    引用本文: 司震, 袁静, 张博, 陈石, 2026. 基于贝叶斯网络结构学习的短期强震危险性概率预测. 地球科学, 51(1): 43-55. doi: 10.3799/dqkx.2025.186
    Si Zhen, Yuan Jing, Zhang Bo, Chen Shi, 2026. Probabilistic Prediction of Short-Term Strong Earthquake Hazard Based on Bayesian Network Structure Learning. Earth Science, 51(1): 43-55. doi: 10.3799/dqkx.2025.186
    Citation: Si Zhen, Yuan Jing, Zhang Bo, Chen Shi, 2026. Probabilistic Prediction of Short-Term Strong Earthquake Hazard Based on Bayesian Network Structure Learning. Earth Science, 51(1): 43-55. doi: 10.3799/dqkx.2025.186

    基于贝叶斯网络结构学习的短期强震危险性概率预测

    doi: 10.3799/dqkx.2025.186
    基金项目: 

    民用航天技术预先研究项目 D040203

    2025年度地震预测开放基金项目 XH25001D

    详细信息
      作者简介:

      司震(2002-),男,硕士研究生,主要从事地震危险性概率预测的研究. ORCID:0009-0001-8579-7041. E-mail:24661619@st.cidp.edu.cn

      通讯作者:

      袁静, ORCID: 0000-0002-1155-6093. E-mail: j-yuan11@tsinghua.org.cn

    • 中图分类号: P315.08;P315.5

    Probabilistic Prediction of Short-Term Strong Earthquake Hazard Based on Bayesian Network Structure Learning

    • 摘要: 为提升区域月尺度强震风险预测能力,基于贝叶斯网络结构学习提出区域性月尺度地震危险性概率预测模型.首先利用区域与全球地震目录数据构建预测指标,作为网络节点变量;其次采用群智能算法自动确定各节点阈值及节点间的有向连接;最后通过参数估计,目标节点输出目标区域未来一月内发生MW5.0及以上强震的概率.实验结果显示,模型预报效能指标平均达0.783,经Molchan检验验证,其有效性显著,表明该模型能够充分挖掘地震预测指标与强震之间的潜在因果关系.

       

    • 图  1  全球1960-2024年Mw7.0以上的地震分布

      Fig.  1.  Global distribution of earthquakes with magnitude Mw≥7.0 from 1960 to 2024

      图  2  研究方法的框架与流程

      Fig.  2.  Framework and process of the research methodology

      图  3  模型在测试集上推理结果的混淆矩阵

      Fig.  3.  Confusion matrix for BESBN inference results on the test set

      图  4  不同区域的BESBN网络结构对比

      Fig.  4.  Comparison of BESBN network structures in different regions

      图  5  8个区域中BESBN的条件概率表

      Fig.  5.  Conditional probability tables for BESBN in 8 regions

      图  6  不同区域模型的Molchan图

      Fig.  6.  Molchan plots of models in different regions

      表  1  划定研究区域的范围及构造背景

      Table  1.   Delineation of the extent of the study region and its structural background

      研究区域 划分范围 构造背景
      T01(HH) 红河断裂带周边 印度‒欧亚板块碰撞应力控制, 历史强震反映走滑断层闭锁
      T02(DX) 滇西和澜沧江地震带 滇缅块体走滑‒逆冲复合, 地震机制多样
      T03(HX) 河西走廊、六盘山、兰州、天水 闭锁段应力积累特征突出, 历史强震密集
      T04(TK) 塔里木盆地西南和昆仑山东部 耦合板缘俯冲受印度板块北向推挤, 应力加载引发逆冲型地震丛集
      T05(TS) 天山山脉 印度‒欧亚碰撞远场效应显著, 断层闭锁度高
      T06(FB) 福建省东南沿海、渤海地区和山西东部 历史强震受板块内部弱变形与局部应力集中控制
      T07(TG) 唐古拉山脉东部 唐古拉山脉东缘走滑断裂网络, 地震活动反映高原东向扩展变形机制
      T08(TD) 台湾东部及沿海 高角度逆冲及走滑断层发育, 地震频发源于板块边界强耦合
      下载: 导出CSV

      表  2  贝叶斯网络每个节点的设计细节

      Table  2.   Design specifics of each node in the Bayesian network

      节点 内容 状态0 状态1
      A1 全球10年内MW7.0以上地震频率 平静 活跃
      A2 全国3年内MW6.0以上地震频率 平静 活跃
      B1 区域3月内ML3.0以上地震频率 平静 活跃
      B2 全国1年内MW7.0以上地震频率 平静 活跃
      B3 全国1年内MW5.0以上地震频率 平静 活跃
      C1 区域1月内ML3.0以上地震频率 平静 活跃
      C2 区域MW4.0以上地震平静期天数 长时间平静 平静时间短
      D 下个月是否发生MW5.0以上地震 不发生 发生
      下载: 导出CSV

      表  3  不同算法在8个区域的训练集上性能比较

      Table  3.   Comparison of average performance of different algorithms on training set of 8 regions

      算法 AET ASD AKS 迭代轮数 种群数量
      ACO+HC 243±2.5 2.75±1.24 939.52±10.25 50 40
      SSA+HC 230±3.1 2.12±0.63 1 142.79±1.16 50 40
      GWO+HC 238±1.7 1.83±0.53 1 211.68±3.50 50 40
      WOA+HC 202±18.0 3.58±1.37 1 416.37±2.44 50 40
      BES+HC 203±8.6 1.03±0.11 2 087.29±0.00 50 40
      BES+HC 235±11.3 1.00±0.00 2 099.85±0.00 50 50
      下载: 导出CSV

      表  4  本研究中混淆矩阵的定义

      Table  4.   The definition of confusion matrix in this study

      混淆矩阵 下个月发生MW5.0以上强震 下个月未发生MW5.0以上强震
      后验概率超过报警值 TP FP
      后验概率未超过报警值 FN TN
      下载: 导出CSV

      表  5  不同区域BESBN的阈值

      Table  5.   Thresholds for BESBN in different regions

      模型 αwarn αA1 αA2 αB1 αB2 αB3 αC1 αC2
      BESBN-T01 0.065 6 175.41 21.02 52.93 4.44 52.74 82.20 661.75
      BESBN-T02 0.055 3 192.86 19.98 25.57 3.48 30.24 10.39 151.57
      BESBN-T03 0.047 2 196.42 16.65 9.74 2.48 35.19 2.98 604.50
      BESBN-T04 0.194 8 176.32 17.73 75.16 2.81 45.73 11.43 214.70
      BESBN-T05 0.057 5 209.92 17.16 5.91 3.81 40.36 12.82 669.81
      BESBN-T06 0.014 6 153.80 20.71 7.76 1.90 34.96 3.19 1187.76
      BESBN-T07 0.093 8 147.01 22.26 11.48 4.44 34.78 9.18 607.50
      BESBN-T08 0.159 3 174.15 17.92 2.97 1.42 79.14 13.96 378.22
      下载: 导出CSV

      表  6  不同区域的模型性能比较

      Table  6.   Comparison of model performances in different regions

      研究区域 模型 R Acc AUC FPR
      T01(HH) BESBN-T01
      ETAS
      Poisson
      0.873 0.880 0.980 0.127
      0.742 0.821 0.876 0.179
      0.612 0.746 0.723 0.254
      T02(DX) BESBN-T02 0.649 0.768 0.808 0.240
      ETAS 0.548 0.716 0.745 0.284
      Poisson 0.421 0.642 0.651 0.358
      T03(HX) BESBN-T03 0.892 0.894 0.949 0.107
      ETAS 0.769 0.835 0.882 0.165
      Poisson 0.634 0.752 0.731 0.248
      T04(TK) BESBN-T04 0.659 0.777 0.825 0.250
      ETAS 0.556 0.716 0.748 0.284
      Poisson 0.418 0.627 0.642 0.373
      T05(TS) BESBN-T05 0.825 0.836 0.897 0.175
      ETAS 0.697 0.776 0.824 0.224
      Poisson 0.573 0.701 0.692 0.299
      T06(FB) BESBN-T06 0.832 0.835 0.871 0.168
      ETAS 0.714 0.775 0.812 0.225
      Poisson 0.588 0.695 0.698 0.305
      T07(TG) BESBN-T07 0.790 0.809 0.898 0.210
      ETAS 0.672 0.750 0.821 0.250
      Poisson 0.534 0.676 0.687 0.324
      T08(TD) BESBN-T08 0.740 0.866 0.890 0.136
      ETAS 0.628 0.806 0.823 0.194
      Poisson 0.495 0.731 0.708 0.269
      下载: 导出CSV

      表  7  Molchan检验结果

      Table  7.   Molchan test results

      研究区域 模型 1-S Gavg(0.1τ) Gavg(0.2τ) Gavg Gmax
      T01(HH) BESBN-T01 0.839 7 2.540 1 3.918 4 3.918 4 5.064 6
      ETAS 0.765 5 - 2.197 1 2.781 9 3.490 7
      Poisson 0.717 5 - 1.359 1 2.236 5 3.053 5
      T02(DX) BESBN-T02 0.872 4 4.375 8 4.993 1 4.840 0 5.717 7
      ETAS 0.820 4 1.153 9 2.980 4 3.145 7 4.360 5
      Poisson 0.726 4 - 1.275 1 2.089 5 3.010 1
      T03(HX) BESBN-T03 0.896 9 8.470 7 8.072 5 8.072 5 9.082 6
      ETAS 0.748 6 3.923 8 4.472 9 3.845 7 5.022 0
      Poisson 0.784 5 - 2.882 9 3.240 3 3.954 9
      T04(TK) BESBN-T04 0.818 8 1.741 3 2.745 9 2.966 7 4.510 2
      ETAS 0.746 2 - 1.116 7 2.110 2 3.254 8
      Poisson 0.683 3 - 0.543 4 1.673 0 2.643 8
      T05(TS) BESBN-T05 0.901 2 5.531 3 6.570 4 6.570 4 7.934 6
      ETAS 0.848 5 - 4.151 8 4.151 8 5.605 7
      Poisson 0.703 0 - 2.108 8 2.447 8 3.434 2
      T06(FB) BESBN-T06 0.881 0 5.593 7 6.195 6 6.195 6 6.864 4
      ETAS 0.832 5 - 4.161 6 4.333 2 5.192 5
      Poisson 0.747 7 - 2.165 2 2.825 0 3.242 9
      T07(TG) BESBN-T07 0.817 0 1.777 6 2.729 0 3.178 6 4.228 1
      ETAS 0.762 7 - 1.519 2 2.421 3 3.403 1
      Poisson 0.678 0 - 0.855 8 1.800 0 2.368 4
      T08(TD) BESBN-T08 0.782 8 1.412 3 1.922 1 2.563 8 3.545 5
      ETAS 0.725 4 - 0.930 8 2.004 3 2.835 7
      Poisson 0.614 6 - 0.704 7 1.535 3 2.201 9
      下载: 导出CSV
    • Adeli, H., Panakkat, A., 2009. A Probabilistic Neural Network for Earthquake Magnitude Prediction. Neural Networks, 22(7): 1018-1024. https://doi.org/10.1016/j.neunet.2009.05.003
      Aki, K., 1981. A Probabilistic Synthesis of Precursory Phenomena. In: Simpson D. W., Richards P. G., eds., Earthquake Prediction. American Geophysical Union, Washington, D. C., 566-574. https://doi.org/10.1029/me004p0566
      Al-Betar, M. A., 2017. Β-Hill Climbing: An Exploratory Local Search. Neural Computing and Applications, 28(Suppl. 1): 153-168. https://doi.org/10.1007/s00521-016-2328-2
      Alsattar, H. A., Zaidan, A. A., Zaidan, B. B., 2020. Novel Meta-Heuristic Bald Eagle Search Optimisation Algorithm. Artificial Intelligence Review, 53(3): 2237-2264. https://doi.org/10.1007/s10462-019-09732-5
      Andrić, J. M., Lu, D. G., 2017. Fuzzy Probabilistic Seismic Hazard Analysis with Applications to Kunming City, China. Natural Hazards, 89(3): 1031-1057. https://doi.org/10.1007/s11069-017-3007-z
      Beroza, G. C., Segou, M., Mostafa Mousavi, S., 2021. Machine Learning and Earthquake Forecasting-Next Steps. Nature Communications, 12: 4761. https://doi.org/10.1038/s41467-021-24952-6
      Cooper, G. F., Herskovits, E., 1992. A Bayesian Method for the Induction of Probabilistic Networks from Data. Machine Learning, 9(4): 309-347. https://doi.org/10.1007/BF00994110
      Cornell, C. A., 1968. Engineering Seismic Risk Analysis. Bulletin of the Seismological Society of America, 58(5): 1583-1606. https://doi.org/10.1785/bssa0580051583
      Deng, S. G., Zhou, L. Q., Ma, Y. W., et al., 2019. Research on Probability Prediction of Earthquake Risk Based on Bayesian Theorem. Earthquake Research in China, 35(1): 1-13 (in Chinese with English abstract).
      Dieterich, J., Cayol, V., Okubo, P., 2000. The Use of Earthquake Rate Changes as a Stress Meter at Kilauea Volcano. Nature, 408(6811): 457-460. https://doi.org/10.1038/35044054
      Dorigo, M., Maniezzo, V., Colorni, A., 1996. Ant System: Optimization by a Colony of Cooperating Agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 26(1): 29-41. https://doi.org/10.1109/3477.484436
      Dramsch, J. S., Kuglitsch, M. M., Fernández-Torres, M. Á., et al., 2025. Explainability can Foster Trust in Artificial Intelligence in Geoscience. Nature Geoscience, 18(2): 112-114. https://doi.org/10.1038/s41561-025-01639-x
      Fleming, S. W., Watson, J. R., Ellenson, A., et al., 2021. Machine Learning in Earth and Environmental Science Requires Education and Research Policy Reforms. Nature Geoscience, 14(12): 878-880. https://doi.org/10.1038/s41561-021-00865-3
      He, C. C., Wang, P., Tian, L. Y., et al., 2024. A Novel Structure Learning Method of Bayesian Networks Based on the Neighboring Complete Node Ordering Search. Neurocomputing, 585: 127620. https://doi.org/10.1016/j.neucom.2024.127620
      Jiang, M. M., Zhou, S. Y., Chen, Y. J., et al., 2011. A New Multidimensional Stress Release Statistical Model Based on Coseismic Stress Transfer. Geophysical Journal International, 187(3): 1479-1494. https://doi.org/10.1111/j.1365-246X.2011.05208.x
      Kuglitsch, M. M., Albayrak, A., Luterbacher, J., et al., 2023. When It Comes to Earth Observations in AI for Disaster Risk Reduction, Is It Feast or Famine? A Topical Review. Environmental Research Letters, 18(9): 093004. https://doi.org/10.1088/1748-9326/acf601
      Li, D. M., Zheng, J. C., Yuan, Z. Y., 2025. Probabilistic Prediction of the Earthquake Risk in North China and Test of Forecast Efficiency. Journal of Seismological Research, 48(2): 281-288 (in Chinese with English abstract).
      Liu, H., Zhao, R. Z., Dong, H. B., 2024. Short-Impending Earthquake Prediction Method Based on High-Order Magnetic Anomaly Derivative and High-Order Statistic. Earth Science, 49(8): 2952-2960 (in Chinese with English abstract).
      Liu, H. R., Cai, Y. B., Shi, Q. R., et al., 2023. An Improved Harris Hawks Optimization for Bayesian Network Structure Learning via Genetic Operators. Soft Computing, 27(20): 14659-14672. https://doi.org/10.1007/s00500-023-09107-7
      Ma, Y., Bi, J. M., Dong, D. M., 2024. Seismic Activity Characteristics of the Chinese Continent Based on a "Hybrid" Probability Forecasting Model. Applied Geophysics, 21(4): 1-13. https://doi.org/10.1007/s11770-024-1139-y
      Mirjalili, S., Lewis, A., 2016. The Whale Optimization Algorithm. Advances in Engineering Software, 95: 51-67. https://doi.org/10.1016/j.advengsoft.2016.01.008
      Mirjalili, S., Mirjalili, S. M., Lewis, A., 2014. Grey Wolf Optimizer. Advances in Engineering Software, 69: 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007
      Molchan, G., 2010. Space-Time Earthquake Prediction: The Error Diagrams. In: Savage, M. K., Rhoades, D. A., Smith, E. G. C., et al., eds., Seismogenesis and Earthquake Forecasting: The Frank Evison (Volume Ⅱ). Springer, Basel, 53-63. https://doi.org/10.1007/978-3-0346-0500-7_5
      Molchan, G. M., 1991. Structure of Optimal Strategies in Earthquake Prediction. Tectonophysics, 193(4): 267-276. https://doi.org/10.1016/0040-1951(91)90336-Q
      Ogata, Y., 1988. Statistical Models for Earthquake Occurrences and Residual Analysis for Point Processes. Journal of the American Statistical Association, 83(401): 9-27. https://doi.org/10.1080/01621459.1988.10478560
      Panakkat, A., Adeli, H., 2007. Neural Network Models for Earthquake Magnitude Prediction Using Multiple Seismicity Indicators. International Journal of Neural Systems, 17(1): 13-33. https://doi.org/10.1142/S0129065707000890
      Pei, W. L., Zhou, S. Y., Zhuang, J. C., et al., 2021. Application and Discussion of Statistical Seismology in the Study of Probability Prediction Method of Seismic Risk. Scientia Sinica Terrae, 51(12): 2035-2047 (in Chinese). doi: 10.1360/SSTe-2021-0080
      Peng, K. Y., Yin, X. C., Zhang, L. P., 2006. A Statistical Investigation of the Earthquake Predictions Using LURR. Pure and Applied Geophysics, 163(11): 2353-2362. https://doi.org/10.1007/s00024-006-0124-0
      Shi, H. X., Meng, L. Y., Zhang, X. M., et al., 2018. Decrease in b Value Prior to the Wenchuan Earthquake (Ms 8.0). Chinese Journal of Geophysics, 61(5): 1874-1882 (in Chinese with English abstract).
      Sun, X. L., Xiang, Y., Yang, P. T., 2018. Earthquake Prediction Efficiency Inspection of Water Level in Huize Well and Its Anomaly Mechanism. Acta Seismologica Sinica, 40(2): 185-194 (in Chinese with English abstract).
      Vere-Jones, D., 1978. Earthquake Prediction-A Statistician's View. Journal of Physics of the Earth, 26(2): 129-146. https://doi.org/10.4294/jpe1952.26.129
      Wang, P., Shao, Z. G., Liu, Q., et al., 2019. Probabilistic Forecasting of Earthquakes Based on Multidisciplinary Physical Observations and Its Application in Sichuan and Yunnan. Chinese Journal of Geophysics, 62(9): 3448-3463 (in Chinese with English abstract).
      Wang, R., Chang, Y., Han, P., et al., 2023. Optimized Traffic Light System with AIC and Application to the 2021 M6.7 Yangbi Earthquake Sequence. Entropy, 25(5): 759. https://doi.org/10.3390/e25050759
      Wang, R., Chang, Y., Miao, M., et al., 2021. Assessing Earthquake Forecast Performance Based on b Value in Yunnan Province, China. Entropy, 23(6): 730. https://doi.org/10.3390/e23060730
      Xu, J. K., Zhang, H. M., Chen, X. F., 2015. Rupture Phase Diagrams for a Planar Fault in 3-D Full-Space and Half-Space. Geophysical Journal International, 202(3): 2194-2206. https://doi.org/10.1093/gji/ggv284
      Xu, W. J., Gao, M. T., 2012. Calculation of Upper Limit Earthquake Magnitude for Northeast Seismic Region of China Based on Truncated G-R Model. Chinese Journal of Geophysics, 55(5): 1710-1717 (in Chinese with English abstract).
      Xue, J. K., Shen, B., 2020. A Novel Swarm Intelligence Optimization Approach: Sparrow Search Algorithm. Systems Science & Control Engineering, 8(1): 22-34. https://doi.org/10.1080/21642583.2019.1708830
      Yang, W. T., Tamssaouet, K., Dauzère-Pérès, S., 2024. Bayesian Network Structure Learning Using Scatter Search. Knowledge-Based Systems, 300: 112149. https://doi.org/10.1016/j.knosys.2024.112149
      Zechar, J. D., Jordan, T. H., 2008. Testing Alarm-Based Earthquake Predictions. Geophysical Journal International, 172(2): 715-724. https://doi.org/10.1111/j.1365-246X.2007.03676.x
      Zhang, Z. G., Xu, J. K., Huang, H. Q., et al., 2017. Seismic Characteristics of Supershear and Sub-Rayleigh Earthquakes: Implication from Simple Cases. Geophysical Research Letters, 44(13): 6712-6717. https://doi.org/10.1002/2017GL074158
      邓世广, 周龙泉, 马亚伟, 等, 2019. 基于贝叶斯定理的地震危险性概率预测研究. 中国地震, 35(1): 1-13.
      李冬梅, 郑建常, 苑争一, 2025. 华北地区地震风险概率预测及预报效能检验. 地震研究, 48(2): 281-288.
      刘欢, 赵润卓, 董浩斌, 2024. 基于高阶磁异常导数与高阶统计量的地震短临预测方法. 地球科学, 49(8): 2952-2960. doi: 10.3799/dqkx.2023.144
      裴玮来, 周仕勇, 庄建仓, 等, 2021. 统计地震学在地震危险性概率预测方法研究中的应用与讨论. 中国科学: 地球科学, 51(12): 2035-2047.
      史海霞, 孟令媛, 张雪梅, 等, 2018. 汶川地震前的b值变化. 地球物理学报, 61(5): 1874-1882.
      孙小龙, 向阳, 杨朋涛, 2018. 云南会泽井水位地震预测效能检验及其机理分析. 地震学报, 40(2): 185-194.
      王芃, 邵志刚, 刘琦, 等, 2019. 基于多学科物理观测的地震概率预测方法在川滇地区的应用. 地球物理学报, 62(9): 3448-3463.
      徐伟进, 高孟潭, 2012. 根据截断的G-R模型计算东北地震区震级上限. 地球物理学报, 55(5): 1710-1717.
    • 加载中
    图(6) / 表(7)
    计量
    • 文章访问数:  151
    • HTML全文浏览量:  7
    • PDF下载量:  11
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-06-09
    • 刊出日期:  2026-01-25

    目录

      /

      返回文章
      返回