• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于离散元的冻融循环作用下根土复合体抗剪特性研究

    石振明 朱鑫 刘毛毛 何光尧 夏成志

    石振明, 朱鑫, 刘毛毛, 何光尧, 夏成志, 2025. 基于离散元的冻融循环作用下根土复合体抗剪特性研究. 地球科学, 50(10): 3761-3775. doi: 10.3799/dqkx.2025.188
    引用本文: 石振明, 朱鑫, 刘毛毛, 何光尧, 夏成志, 2025. 基于离散元的冻融循环作用下根土复合体抗剪特性研究. 地球科学, 50(10): 3761-3775. doi: 10.3799/dqkx.2025.188
    Shi Zhenming, Zhu Xin, Liu Maomao, He Guangyao, Xia Chengzhi, 2025. Research on Shear Resistance of Rooted Soil under Freeze-Thaw Cycles Based on DEM. Earth Science, 50(10): 3761-3775. doi: 10.3799/dqkx.2025.188
    Citation: Shi Zhenming, Zhu Xin, Liu Maomao, He Guangyao, Xia Chengzhi, 2025. Research on Shear Resistance of Rooted Soil under Freeze-Thaw Cycles Based on DEM. Earth Science, 50(10): 3761-3775. doi: 10.3799/dqkx.2025.188

    基于离散元的冻融循环作用下根土复合体抗剪特性研究

    doi: 10.3799/dqkx.2025.188
    基金项目: 

    国家重点研发计划项目 2023YFC3008300

    国家自然科学基金-博士生基础研究项目 424B2055

    详细信息
      作者简介:

      石振明(1968-),男,教授,博士,主要从事地质灾害与防治技术方面研究工作.ORCID:0009-0003-4124-2911. E-mail:shi_tongji@tongji.edu.cn

      通讯作者:

      刘毛毛(1996-),男,博士研究生,从事边坡地质灾害研究.E-mail: 2210054@tongji.edu.cn

    • 中图分类号: P642

    Research on Shear Resistance of Rooted Soil under Freeze-Thaw Cycles Based on DEM

    • 摘要:

      为探究冻融循环下草本植物根系土抗剪性能及细观损伤机制,以狼尾草根土复合体为对象,构建了典型的三维根系模型,通过离散元方法模拟水-冰颗粒相变膨胀效应来表征冻融损伤过程,并基于室内试验数据标定了根土复合体三维直接剪切数值模型,系统探究了冻融循环次数、剪切速率以及法向荷载对根土复合体剪切强度、损伤机制和根土复合体抗剪协同作用机制的影响.研究发现:(1)根系的加入可以显著提升土体的抗剪强度,而竖直根系的锚固作用在其中起到了主要作用,须根可进一步增强三维加筋效应;(2)剪切峰值强度和加载速率与法向荷载呈正相关,但二者对冻融损伤造成土体抗剪强度衰减的内在规律影响较小;(3)冻融损伤主要体现在冻融进程中相变产生体积变化破坏试样颗粒粘结,降低剪切过程中根土间作用力,进而削弱其抗剪性能.研究结果揭示了植物根系固土与冻融循环的相互作用机制,为寒区边坡工程的生态加固设计提供了参考依据,特别在极端冻融循环工况下具有重要工程指导价值.

       

    • 图  1  试验流程示意图

      Fig.  1.  Schematic diagram of the test process

      图  2  冻融损伤破坏示意图

      Fig.  2.  Schematic diagram of freeze-thaw damage

      图  3  根土复合体数值模型示意图

      Fig.  3.  Schematic of the numerical model of root-soil complex

      图  4  试验与数值剪切应力-位移曲线对比

      Fig.  4.  Comparison of experimental and numerical shear stress-displacement curves

      图  5  冻融下剪切峰值强度变化对比

      Fig.  5.  Comparison of peak shear strength change under freeze-thaw

      图  6  素土孔隙率变化云图

      a.冻融0次;b.冻融10次

      Fig.  6.  Cloud plot of change in porosity of vegetal soil

      图  7  数值模拟冻融下剪切峰值强度示意图

      Fig.  7.  Schematic diagram of peak shear strength under numerical simulation of freeze-thaw

      图  8  冻融循环作用后不同剪切速率下峰值强度变化

      Fig.  8.  Changes in peak strength at different shear rates after freeze-thaw cycles

      图  9  不同加载速率应力传递路径

      Fig.  9.  Stress transfer paths for different loading rates

      图  10  冻融循环作用后不同法向荷载下峰值强度变化

      Fig.  10.  Variation of peak strength under different normal loads after freeze-thaw cycles

      图  11  法向荷载施加过程中孔隙率变化

      Fig.  11.  Porosity changes during normal load application

      图  12  不同冻融次数后根土复合体中微裂隙数量占比

      Fig.  12.  Percentage of microfractures in root-soil complexes after different freeze-thaw times

      图  13  不同冻融次数后两类试样总裂隙数

      Fig.  13.  Total number of fissures in the two types of specimens after different freeze-thaw times

      图  14  各工况下剪切过程产生剪切裂隙情况

      Fig.  14.  Generation of shear cleavage by shear process under various working conditions

      图  15  各工况下剪切过程产生张拉裂隙情况

      Fig.  15.  Generation of tension cracks by shear process under various working conditions

      图  16  各工况下剪切过程产生总裂隙情况

      Fig.  16.  Total fissure generation by shear process under various operating conditions

      图  17  剪切峰值应力处试样力链分布

      Fig.  17.  Force chain distribution of specimen at peak shear stress

      图  18  冻融循环下剪切后典型力学参数变化情况

      Fig.  18.  Changes in typical mechanical parameters after shear under freeze-thaw cycles

      图  19  模型颗粒转角示意图

      Fig.  19.  Schematic of the corner of a model particle

      图  20  剪切完成时颗粒转角对比

      Fig.  20.  Comparison of particle corners at the completion of the shear

      图  21  冻融循环下剪切过程中根系接触力与倾斜角

      Fig.  21.  Root contact force and inclination angle during shearing under freeze-thaw cycles

      表  1  土的基本物理性质

      Table  1.   Basic physical properties of soil

      材料特性 数值
      比重 2.72
      塑限(WP, %) 16.5
      液限(WL, %) 31.7
      塑性指数(Ip) 15.6
      最佳含水率(%) 17
      最大干密度(kg/m3) 1 790
      土样类型 粉质黏土
      下载: 导出CSV

      表  2  根系基本特征

      Table  2.   Basic properties of the root system

      根系直径范围(mm) 总长度(mm) 总表面积(cm2) 总体积(cm3) 相对含量(%)
      0~0.5 319.11 15.67 0.10 3.90
      0.5~1.0 111.21 26.76 0.53 20.40
      1.0~1.5 122.65 46.42 1.41 54.40
      1.5~2.0 17.65 9.29 0.39 15.00
      2.0~2.5 3.54 2.42 0.13 5.10
      2.5~3.0 0.45 0.40 0.03 1.20
      下载: 导出CSV

      表  3  数值模型参数设置

      Table  3.   Numerical model parameter settings

      参数 取值
      土体密度(kg/m3) 1 790
      土颗粒最大粒径(mm) 2.0
      土颗粒最小粒径(mm) 1.6
      水密度(kg/m3) 1 000
      水颗粒最大粒径(mm) 0.7
      水颗粒最小粒径(mm) 0.5
      根密度(kg/m3) 450
      根半径(mm) 0.5
      下载: 导出CSV

      表  4  数值模型接触参数设置

      Table  4.   Numerical model contact parameter settings

      颗粒接触 线性刚度(N/m) 平行粘结刚度(N/m) 法向切向刚度比 摩擦系数 颗粒间拉伸强度(kPa) 颗粒间粘聚力(kPa)
      土-土 8e6 8e6 4.0 0.35 1.3e2 1.3e2
      土-水 2e7 2e7 1.5 0.5 2e5 2e5
      土-根 2e7 2e7 1.5 0.6 5e4 5e4
      水-水 1e9 1e9 1.5 0.5 2e5 2e5
      水-根 1e7 1e7 1.5 0.5 2e5 2e5
      根-根 3.5e8 3.5e8 1.5 0.5 3e4 3e4
      下载: 导出CSV

      表  5  数值模拟试验工况设计表

      Table  5.   Design of numerical simulation test condition

      试验对象 冻融次数 法向荷载(kPa) 加载速率(m/s)
      发育须根的根土复合体 0, 1, 3, 5, 10 50 0.01, 0.05, 0.1, 0.5
      100
      200
      300
      下载: 导出CSV
    • Bao, W. X., Wu, Q., Wu, Q., et al., 2024. Mechanical Properties of Ili Salinized Loess under Freeze-Thaw Conditions. Chinese Journal of Rock Mechanics and Engineering, 43(7): 1775-1787(in Chinese with English abstract).
      Böhm, W., 1979. Root Parameters and Their Measurement. Methods of Studying Root Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, 125-138. https://doi.org/10.1007/978-3-642-67282-8_12
      Cai, G. H., Liu, S. Y., Du, G. Y., et al., 2021. Mechanical Performances and Microstructural Characteristics of Reactive MgO-Carbonated Silt Subjected to Freezing-Thawing Cycles. Journal of Rock Mechanics and Geotechnical Engineering, 13(4): 875-884. https://doi.org/10.1016/j.jrmge.2021.03.005
      Fan, X. R., Wang, H. L., 2023. Application of Plant-Based Ecological Slope Protection in River Management. Port & Waterway Engineering, (S2): 15-19(in Chinese with English abstract).
      Hoseinian, S. H., Hemmat, A., Esehaghbeygi, A., et al., 2022. Development of a Dual Sideway-Share Subsurface Tillage Implement: Part 1. Modeling Tool Interaction with Soil Using DEM. Soil and Tillage Research, 215: 105201. https://doi.org/10.1016/j.still.2021.105201
      Huang, Y., Ding, J. W., Sun, W. C., et al., 2023. Evaluating the Shear Behavior of Rooted Soil by Discrete Element Method Simulations in Two Dimensions. Plant and Soil, 493(1): 355-373. https://doi.org/10.1007/s11104-023-06234-w
      Jamshidi, R. J., Lake, C. B., Barnes, C. L., 2015. Examining Freeze/Thaw Cycling and Its Impact on the Hydraulic Performance of Cement-Treated Silty Sand. Journal of Cold Regions Engineering, 29(3): 04014014. https://doi.org/10.1061/(asce)cr.1943-5495.0000081
      Ji, X. L., 2020. Numerical Simulation of Root Distribution on the Slope Protection. China Sciencepaper, 15(6): 652-656(in Chinese with English abstract).
      Ji, X. L., Yang, P., 2013. Effects of Roots of Bermuda Grass on the Stability of Slopes. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 42(5): 531-535(in Chinese with English abstract).
      Lang, R. Q., Pei, L. X., Sun, L. Q., et al., 2024. Experimental Study on Unconsolidated Mechanical Properties of Soft Clay under Freeze-Thaw Cycles with Confining Pressure. Chinese Journal of Geotechnical Engineering, 46(S2): 43-48(in Chinese with English abstract).
      Li, T. G., Kong, L. W., Guo, A. G., 2021. The Deformation and Microstructure Characteristics of Expansive Soil under Freeze-Thaw Cycles with Loads. Cold Regions Science and Technology, 192: 103393. https://doi.org/10.1016/j.coldregions.2021.103393
      Liu, J. N., Li, M. L., Jiang, Y. J., et al., 2024. Microscopic Damage Evolution of Moraine Soils under Freeze-Thaw Cycles Based on PFC2D Simulation. Earth Science: 1-18. (2024-12-18) (in Chinese with English abstract).
      Liu, M. M., Shi, Z. M., Li, B., et al., 2024. Analysis of Dynamic Response and Failure Mode of Bedding Rock Slopes Subject to Strong Earthquakes Based on DEM-FDM Coupling. Earth Science, 49(8): 2799-2812(in Chinese with English abstract).
      Liu, Q., Huang, J. K., Zhang, Z. W., et al., 2024. Effect of Freeze-Thaw Cycles on the Shear Strength of Root-Soil Composite. Materials, 17(2): 285. https://doi.org/10.3390/ma17020285
      Meng, S. Y., Zhao, G. Q., Yang, Y. Y., 2020. Impact of Plant Root Morphology on Rooted-Soil Shear Resistance Using Triaxial Testing. Advances in Civil Engineering, 2020(1): 8825828. https://doi.org/10.1155/2020/8825828
      Musa, A., Liu, Y., Wang, A. Z., et al., 2016. Characteristics of Soil Freeze–Thaw Cycles and Their Effects on Water Enrichment in the Rhizosphere. Geoderma, 264: 132-139. https://doi.org/10.1016/j.geoderma.2015.10.008
      Oorthuis, R., Vaunat, J., Hürlimann, M., et al., 2021. Slope Orientation and Vegetation Effects on Soil Thermo-Hydraulic Behavior. An Experimental Study. Sustainability, 13(1): 14. https://doi.org/10.3390/su13010014
      Peng, J. B., Zhang, Y. S., Huang, D., et al., 2023. Interaction Disaster Effects of the Tectonic Deformation Sphere, Rock Mass Loosening Sphere, Surface Freeze-Thaw Sphere and Engineering Disturbance Sphere on the Tibetan Plateau. Earth Science, 48(8): 3099-3114(in Chinese with English abstract).
      Potyondy, D. O., Cundall, P. A., 2004. A Bonded-Particle Model for Rock. International Journal of Rock Mechanics and Mining Sciences, 41(8): 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
      Sadeghi, S. H., Raeisi, M. B., Hazbavi, Z., 2018. Influence of Freeze-Only and Freezing-Thawing Cycles on Splash Erosion. International Soil and Water Conservation Research, 6(4): 275-279. https://doi.org/10.1016/j.iswcr.2018.07.004
      Song, B. Y., Nakamura, D., Kawaguchi, T., et al., 2025. Quantifying the Shear Behavior of Fine-Grained Soil with Herbaceous Plant Roots under Freeze-Thaw Conditions Using X-Ray CT Scan. Soil and Tillage Research, 246: 106326. https://doi.org/10.1016/j.still.2024.106326
      Song, X. H., Tan, Y., Lu, Y., 2024. Microscopic Analyses of the Reinforcement Mechanism of Plant Roots in Different Morphologies on the Stability of Soil Slopes under Heavy Rainfall. CATENA, 241: 108018. https://doi.org/10.1016/j.catena.2024.108018
      Song, Y. J., Sun, Y. W., Li, C. J., et al., 2023. Meso-Fracture Evolution Characteristics of Freeze-Thawed Sandstone Based on Discrete Element Method Simulation. Rock and Soil Mechanics, 44(12): 3602-3616(in Chinese with English abstract).
      Sun, L. C., Lou, P. J., Pan, C., et al., 2024. A Study on Microscopic Damage Characteristics of Freeze-Thaw Sandstone Cyclic Loading and Unloading Based on DEM. Frontiers in Materials, 11: 1521874. https://doi.org/10.3389/fmats.2024.1521874
      Tang, M. G., Xu, Q., Deng, W. F., et al., 2022. Degradation Law of Mechanical Properties of Typical Rock in Sichuan-Tibet Traffic Corridor under Freeze-Thaw and Unloading Conditions. Earth Science, 47(6): 1917-1931(in Chinese with English abstract).
      Terzaghi, M., Kompatscher, K., Sobotik, M., et al., 2025. Key Role of Specific Above- and Below-Ground Morphological Traits of Ornamental Plant Species on Preventing Freeze-Thaw Soil Erosion on Steep Slopes. Plant and Soil. https://doi.org/10.1007/s11104-025-07671-5
      Tian, S., Zhao, Y., Si, H., et al., 2024. Experimental Study on Freeze-Thaw Damage Characteristics and Mechanical Properties of Fractured Rock Mass of Surface Mine Slope in Cold Region. Journal of China Coal Society, 49(12): 4687-4700(in Chinese with English abstract).
      Wang, R. H., Jing, Z. X., Luo, H., et al., 2024. Effect of Freeze‒Thaw Cycles on Root-Soil Composite Mechanical Properties and Slope Stability. PLoS One, 19(4): e0302409. https://doi.org/10.1371/journal.pone.0302409
      Xu, J., Wang, Z. Q., Ren, J. W., et al., 2018. Mechanism of Shear Strength Deterioration of Loess during Freeze-Thaw Cycling. Geomechanics and Engineering, 14(4): 307-314. https://doi.org/10.12989/gae.2018.14.4.307
      Yang, W. H., Zhang, D. W., Yan, Q., et al., 2020. Numerical Analysis on Stability of Slope Reinforced by Combination of Deep and Shallow Roots. Journal of Southeast University (Natural Science Edition), 50(1): 161-168(in Chinese with English abstract).
      Yu, J., Zhang, B., Zhao, J. R., et al., 2024. An Improved Model for Discrete Element Method Simulation of Spatial Gradient Distributions of Freeze-Thaw-Induced Damage to Sandstone. Computers and Geotechnics, 171: 106412. https://doi.org/10.1016/j.compgeo.2024.106412
      Zhang, Y. L., Zhang, Z. Z., Hu, W. H., et al., 2023. Evolution and Influencing Mechanisms of the Yili Loess Mechanical Properties under Combined Wetting-Drying and Freeze-Thaw Cycling. Materials, 16(13): 4727. https://doi.org/10.3390/ma16134727
      Zhang, Y., Pang, Z. L., Zhu, Q., et al., 2024. Time-Sensitive Effects of Vegetation Restoration on Slowing down Soil Erosion: Evidence from Northeastern China with Mollisols. CATENA, 246: 108406. https://doi.org/10.1016/j.catena.2024.108406
      Zheng, Z. D., Shi, Z. M., Wang, M. X., et al., 2025. Fatigue Fracture and Energy Evolution Characteristics of Sandstone under Water–Ice Phase Transitions via the Discrete Element Method. Computers and Geotechnics, 179: 107023. https://doi.org/10.1016/j.compgeo.2024.107023
      Zhou, X. L., Fu, D. S., Wan, J., et al., 2023. The Shear Strength of Root–Soil Composites in Different Growth Periods and Their Effects on Slope Stability. Applied Sciences, 13(19): 11116. https://doi.org/10.3390/app131911116
      Zhu, H. B., Zhao, H. R., Bai, L. Z., et al., 2022. Mechanical Characteristics of Rice Root-Soil Complex in Rice-Wheat Rotation Area. Agriculture, 12(7): 1045. https://doi.org/10.3390/agriculture12071045
      包卫星, 吴倩, 吴谦, 等, 2024. 冻融循环作用下伊犁盐渍化黄土力学特性. 岩石力学与工程学报, 43(7): 1775-1787.
      范昕然, 王海琳, 2023. 植物型生态护坡在河道治理中的应用. 水运工程, (增刊2): 15-19.
      嵇晓雷, 2020. 植物根系分布对边坡护坡效应的数值模拟. 中国科技论文, 15(6): 652-656.
      嵇晓雷, 杨平, 2013. 狗牙根根系形态对边坡稳定性的影响. 福建农林大学学报(自然科学版), 42(5): 531-535.
      郎瑞卿, 裴璐熹, 孙立强, 等, 2024. 软黏土带压冻融循环下不固结力学特性试验研究. 岩土工程学报, 46(增刊2): 43-48.
      刘佳诺, 李明俐, 姜元俊, 等, 2024. 基于PFC2D的冻融循环作用下冰碛土微观损伤研究. 地球科学: 1-18. (2024-12-18).
      刘毛毛, 石振明, 李博, 等, 2024. 基于DEM-FDM耦合的顺层岩质边坡强震动力响应及破坏模式分析. 地球科学, 49(8): 2799-2812. doi: 10.3799/dqkx.2023.062
      彭建兵, 张永双, 黄达, 等, 2023. 青藏高原构造变形圈-岩体松动圈-地表冻融圈-工程扰动圈互馈灾害效应. 地球科学, 48(8): 3099-3114. doi: 10.3799/dqkx.2023.137
      宋勇军, 孙银伟, 李晨婧, 等, 2023. 基于离散元法模拟的冻融砂岩细观破裂演化特征研究. 岩土力学, 44(12): 3602-3616.
      汤明高, 许强, 邓文锋, 等, 2022. 冻融及加卸荷条件下川藏交通廊道典型岩石力学特性的劣化规律. 地球科学, 47(6): 1917-1931. doi: 10.3799/dqkx.2021.260
      田森, 赵映, 司鹄, 等, 2024. 寒区露天矿岩质边坡裂隙岩体冻融损伤特征及力学特性试验研究. 煤炭学报, 49(12): 4687-4700.
      杨文辉, 章定文, 闫茜, 等, 2020. 深浅根混种法加固边坡稳定性的数值分析. 东南大学学报(自然科学版), 50(1): 161-168.
    • 加载中
    图(21) / 表(5)
    计量
    • 文章访问数:  159
    • HTML全文浏览量:  25
    • PDF下载量:  12
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-06-30
    • 刊出日期:  2025-10-25

    目录

      /

      返回文章
      返回