Shale Oil Mobility Based on Microscopic Wetting Properties of Mineral Components
-
摘要: 页岩油作为重要的非常规能源,其高效开发对保障能源安全具有重要意义.页岩储层呈现低孔低渗、孔隙结构复杂且矿物组成多样的特点,导致润湿性特征极为复杂,而润湿性作为控制油相赋存和流动的关键参数,直接影响页岩油的开发效果.传统润湿性研究主要依赖宏观接触角测量,难以准确揭示纳米级孔隙中的润湿行为及其对油相可动性的控制机理.研究旨在建立页岩储层多尺度润湿性表征方法,并揭示润湿性特征、孔隙结构与油相可动性之间的内在联系.基于古龙页岩样品,采用宏微观接触角测量表征多尺度润湿性特征,利用核磁共振技术独立评价不同尺度孔隙中的油相可动性,通过系统的关联分析探索润湿性对可动性的控制机制.研究发现,微观接触角虽系统性大于宏观值,但两种方法测量趋势高度一致,验证了跨尺度表征的可靠性.与以往单一尺度认知不同,揭示了孔隙结构与可动性需要协同评价:最优储层可能并非大孔占比最高者,而是孔隙结构均衡(大孔占比60%~80%)且各级孔隙可动性均较高的储层;同时发现矿物组分对多尺度孔隙系统采收率具有差异化控制作用,石英含量与大、小孔隙采收率均呈显著正相关,而不同类型黏土矿物表现出尺度依赖的复杂影响.通过关联分析,建立了润湿性与可动性的定性关系以及矿物组分与可动性的定量评价模型.该研究为页岩油储层甜点识别提供了新的评价方法,强调需要综合考虑孔隙结构、润湿性和可动性的协同效应.Abstract: As an important unconventional energy resource, the efficient development of shale oil is of great significance for ensuring energy security. Shale reservoirs exhibit characteristics of low porosity and permeability, complex pore structures, and diverse mineral compositions, resulting in extremely complex wettability characteristics. Wettability, as a key parameter controlling oil phase occurrence and flow, directly affects shale oil development efficiency. Traditional wettability studies mainly rely on macroscopic contact angle measurements, which struggle to accurately reveal wetting behavior in nanoscale pores and its control mechanisms on oil phase mobility. This study aims to establish a multi-scale wettability characterization method for shale reservoirs and reveal the intrinsic relationships among wettability characteristics, pore structure, and oil phase mobility. Based on Gulong shale samples, macro- and microscopic contact angle measurements were employed to characterize multi-scale wettability features, nuclear magnetic resonance technology was used to independently evaluate oil phase mobility in different-scale pores, and systematic correlation analysis was conducted to explore the control mechanisms of wettability on mobility. The study found that although microscopic contact angles are systematically larger than macroscopic values, the measurement trends from both methods are highly consistent, validating the reliability of cross-scale characterization. Different from previous single-scale understanding, this study reveals that pore structure and mobility require synergistic evaluation: optimal reservoirs may not be those with the highest proportion of large pores, but rather those with balanced pore structure (60%-80% large pore proportion) and high mobility in all pore sizes; additionally, mineral components exhibit differentiated control effects on multi-scale pore system recovery rates, with quartz content showing significant positive correlation with both large and small pore recovery rates, while different clay minerals demonstrate scale-dependent complex influences. Through correlation analysis, qualitative relationships between wettability and mobility, as well as quantitative evaluation models between mineral components and mobility, were established. This research provides new evaluation methods for shale oil reservoir sweet spot identification, emphasizing the need to comprehensively consider the synergistic effects of pore structure, wettability, and mobility.
-
Key words:
- shale oil /
- microscopic wetting /
- mobility evaluation /
- recovery factor /
- petroleum geology
-
表 1 页岩样品矿物组成特征汇总
Table 1. Summary of mineral composition characteristics of shale samples
编号 全岩矿物含量(%) 黏土矿物相对含量(%) 石英 钾长石 斜长石 方解石 黄铁矿 铁白云石 黏土矿物 伊蒙混层 伊利石 绿泥石 混层比(%S) ZY1 36.1 13.1 9.4 8.4 0 0 33 38 28 34 10 GY2 29 1.2 18.5 0 4.8 0 46.5 33 62 5 10 GY3 39.8 1.1 12 1.8 4.2 0 41.1 17 79 4 10 GY4 26.8 0.8 19.1 6.8 2 5.5 39 24 50 26 5 表 2 页岩样品基础物性参数
Table 2. Basic physical properties of shale samples
样品编号 直径(cm) 长度(cm) 孔隙度(%) 渗透率(mD) ZY1 2.55 4.28 6.11 0.49 GY2 2.58 4.18 6.66 0.47 GY3 2.61 4.25 9.72 2.04 GY4 2.58 4.19 9.6 0.064 表 3 页岩样品可动性评价结果
Table 3. Mobility evaluation of shale samples
样品编号 大孔比例(%) 小孔比例(%) 大孔可动性(%) 小孔可动性(%) ZY1 71.25 28.75 19.18 24.75 GY2 46.64 53.36 6.03 22.03 GY3 93.12 6.88 18.94 37.04 -
AlOmier, A., Cha, D., Ayirala, S., et al., 2024. Novel Fabrication of Mixed Wettability Micromodels for Pore-Scale Studies of Fluid-Rock Interactions. Lab on a Chip, 24(4): 882-895. https://doi.org/10.1039/D3LC01009k AlRatrout, A., Blunt, M. J., Bijeljic, B., 2018. Wettability in Complex Porous Materials, the Mixed-Wet State, and Its Relationship to Surface Roughness. PNAS, 115(36): 8901-8906. https://doi.org/10.1073/pnas.1803734115 Arif, M., Zhang, Y. H., Iglauer, S., 2021. Shale Wettability: Data Sets, Challenges, and Outlook. Energy & Fuels, 35(4): 2965-2980. https://doi.org/10.1021/acs.energyfuels.0c04120 Cassie, A. B. D., Baxter, S., 1944. Wettability of Porous Surfaces. Transactions of the Faraday Society, 40: 546-551. https://doi.org/10.1039/TF9444000546 Donald, A. M., 2003. The Use of Environmental Scanning Electron Microscopy for Imaging Wet and Insulating Materials. Nature Materials, 2(8): 511-516. https://doi.org/10.1038/nmat898 Drelich, J., Miller, J. D., Good, R. J., 1996. The Effect of Drop (Bubble) Size on Advancing and Receding Contact Angles for Heterogeneous and Rough Solid Surfaces as Observed with Sessile-Drop and Captive-Bubble Techniques. Journal of Colloid and Interface Science, 179(1): 37-50. https://doi.org/10.1006/jcis.1996.0186 Hashemi, L., Glerum, W., Farajzadeh, R., et al., 2021. Contact Angle Measurement for Hydrogen/Brine/Sandstone System Using Captive-Bubble Method Relevant for Underground Hydrogen Storage. Advances in Water Resources, 154: 103964. https://doi.org/10.1016/j.advwatres.2021.103964 He, W. Y., Liu, B., Zhang, J. Y., et al., 2023. Geological Characteristics and Key Scientific and Technological Problems of Gulong Shale Oil in Songliao Basin. Earth Science, 48(1): 49-62(in Chinese with English abstract). Huo, X., Sun, L. H., Li, B. W., et al., 2023. Influencing Factors and Research Progress of Shale Reservoir Wettability. Applied Chemical Industry, 52(12): 3354-3358, 3364(in Chinese with English abstract). Jasper, W. J., Rasipuram, S., 2017. Relationship between Contact Angle and Contact Line Radius for Micro to Atto Liter Size Oil Droplets. Journal of Molecular Liquids, 248: 920-926. https://doi.org/10.1016/j.molliq.2017.10.134 Klauser, W., von Kleist-Retzow, F. T., Fatikow, S., 2022. Line Tension and Drop Size Dependence of Contact Angle at the Nanoscale. Nanomaterials, 12(3): 369. https://doi.org/10.3390/nano12030369 Kou, H. B., Li, W. G., Zhang, X. Y., et al., 2019. Temperature-Dependent Coefficient of Surface Tension Prediction Model without Arbitrary Parameters. Fluid Phase Equilibria, 484: 53-59. https://doi.org/10.1016/j.fluid.2018.11.024 Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2012. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. AAPG Bulletin, 96(6): 1071-1098. https://doi.org/10.1306/08171111061 Moore, D. M., Reynolds, R. C., 1997. X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, New York. Ni, J. W., Cao, Z. Y., Pan, J., et al., 2024. Study on Construction of Micro-Nano Structure and Hydrophobicity of Ni-Ti Alloy Surface. Machine Tool & Hydraulics, 52(4): 44-49, 55(in Chinese with English abstract). Oosterlaken, B. M., de With, G., 2022. How Reliable are Surface Tension Data? Accounts of Materials Research, 3(9): 894-899. https://doi.org/10.1021/accountsmr.2c00129 Ou, J. F., Amirfazli, A., Chini, S. F., 2025. The Sessile Drop Work of Adhesion Revisited. International Journal of Adhesion and Adhesives, 136: 103872. https://doi.org/10.1016/j.ijadhadh.2024.103872 Ponomar, M., Krasnyuk, E., Butylskii, D., et al., 2022. Sessile Drop Method: Critical Analysis and Optimization for Measuring the Contact Angle of an Ion-Exchange Membrane Surface. Membranes, 12(8): 765. https://doi.org/10.3390/membranes12080765 Rao, S. H., Deng, Y. J., Cai, W. J., et al., 2021. Study of the Contact Angle of Water Droplet on the Surface of Natural K-Feldspar with the Combination of Ar+ Polishing and Atomic Force Microscopy Scanning. Chemical Engineering Science, 241: 116705. https://doi.org/10.1016/j.ces.2021.116705 Sarkar, S., Roy, T., Roy, A., et al., 2021. Revisiting the Supplementary Relationship of Dynamic Contact Angles Measured by Sessile-Droplet and Captive-Bubble Methods: Role of Surface Roughness. Journal of Colloid and Interface Science, 581: 690-697. https://doi.org/10.1016/j.jcis.2020.07.098 Shi, K. Y., Chen, J. Q., Pang, X. Q., et al., 2024. A Review of Methods for Measuring the Wettability of Reservoir Minerals. Special Oil & Gas Reservoirs, 31(2): 1-9(in Chinese with English abstract). Sun, L. D., Jia, C. Z., Zhang, J. F., et al., 2024. Resource Potential of Gulong Shale Oil in the Key Areas of Songliao Basin. Acta Petrolei Sinica, 45(12): 1699-1714(in Chinese with English abstract). Sun, L. D., Liu, H., He, W. Y., et al., 2021. An Analysis of Major Scientific Problems and Research Paths of Gulong Shale Oil in Daqing Oilfield, NE China. Petroleum Exploration and Development, 48(3): 453-463(in Chinese with English abstract). Tzitzilis, D., Tsekeridis, C., Ntakoumis, I., et al., 2024. Transition of Liquid Drops on Microstructured Hygrophobic Surfaces from the Impaled Wenzel State to the "Fakir" Cassie-Baxter State. Langmuir, 40(26): 13422-13427. https://doi.org/10.1021/acs.langmuir.4c00618 Wan, X. F., Liu, C. C., Zhao, D. F., et al., 2023. Hotspot and Development Trend of Shale Oil Research. Earth Science, 48(2): 793-813(in Chinese with English abstract). Wang, X. Y., Ke, P., Du, F., 2024. Research on the Dynamic Contact Angle Model for the Droplet Impact Process. Applied Mathematics and Mechanics, 45(9): 1133-1146(in Chinese with English abstract). Wang, Z. N., Luo, X. R., Liu, K. Y., et al., 2021. Impact of Chlorites on the Wettability of Tight Oil Sandstone Reservoirs in the Upper Triassic Yanchang Formation, Ordos Basin, China. Science China: Earth Sciences, 51(7): 1123-1134(in Chinese). Wei, Y. Q., Zhang, J., Jiang, B., et al., 2025. Tribological Properties for the Interaction of Point Contact Interface. Tribology, 46(2): 1-13(in Chinese with English abstract). Xiang, L. Y., Li, C. D., Li, H. L., et al., 2022. Surface Wettability of Ca-Montmorillonite Based on Molecular Dynamics Simulation. Science Technology and Engineering, 22(36): 15952-15958(in Chinese with English abstract). Yang, T., 2022. Research on Micromechanical Properties of Breccia Based on Atomic Force Microscope. Fly Ash Comprehensive Utilization, 36(3): 29-35, 93(in Chinese with English abstract). Yang, Y., Cai, M., Chu, Y. P., et al., 2024. Effect of Wettability on Fracturing Fluid Microscale Flow in Shale Oil Reservoirs. International Journal of Hydrogen Energy, 67: 500-505. https://doi.org/10.1016/j.ijhydene.2024.04.212 Yu, C., Zhang, Y. P., Wang, Z. H., et al., 2024. The Influence of Mineral Wettability on the Adsorption of Shale Gas. Journal of Atomic and Molecular Physics, 41(2): 41-50(in Chinese with English abstract). Yu, Y. J., Wang, H. Y., Liu, D. X., et al., 2023. Development Status and Feasibility Evaluation Index System of Continental Shale Oil Demonstration Area in China. Earth Science, 48(1): 191-205(in Chinese with English abstract). Yuan, S. Y., Lei, Z. D., Li, J. S., et al., 2023. Key Theoretical and Technical Issues and Countermeasures for Effective Development of Gulong Shale Oil, Daqing Oilfield, NE China. Petroleum Exploration and Development, 50(3): 562-572(in Chinese with English abstract). Zhang, B., Wang, J. J., Liu, Z. P., et al., 2014. Beyond Cassie Equation: Local Structure of Heterogeneous Surfaces Determines the Contact Angles of Microdroplets. Scientific Reports, 4: 5822. https://doi.org/10.1038/srep05822 Zhang, H. L., Xu, Z. J., Sun, W., et al., 2023. Hydroxylation Structure of Quartz Surface and Its Molecular Hydrophobicity. Applied Surface Science, 612: 155884. https://doi.org/10.1016/j.apsusc.2022.155884 Zhou, B., Wang, W. M., Guo, H. K., et al., 2004. Measurement on Scale of Wettability of Porous Media with NMR Methods. Earth Science, 29(4): 495-499(in Chinese with English abstract). Zhou, X. H., Chen, D. X., Xia, Y. X., et al., 2022. Spontaneous Imbibition Characteristics and Influencing Factors of Chang 7 Shale Oil Reservoirs in Longdong Area, Ordos Basin. Earth Science, 47(8): 3045-3055(in Chinese with English abstract). Zou, C. N., Yang, Z., Zhang, G. S., et al., 2023. Theory, Technology and Practice of Unconventional Oil and Gas Geology. Earth Science, 48(6): 2376-2397(in Chinese with English abstract). 何文渊, 柳波, 张金友, 等, 2023. 松辽盆地古龙页岩油地质特征及关键科学问题探索. 地球科学, 48(1): 49-62. doi: 10.3799/dqkx.2022.320 霍旭, 孙灵辉, 李博文, 等, 2023. 页岩储层润湿性的影响因素及研究进展. 应用化工, 52(12): 3354-3358, 3364. 倪家伟, 曹自洋, 潘杰, 等, 2024. 镍钛合金表面微纳结构构建及其疏水性能研究. 机床与液压, 52(4): 44-49, 55. 施砍园, 陈君青, 庞雄奇, 等, 2024. 储层矿物润湿性的测量方法综述. 特种油气藏, 31(2): 1-9. 孙龙德, 贾承造, 张君峰, 等, 2024. 松辽盆地古龙页岩油重点地区资源潜力. 石油学报, 45(12): 1699-1714. 孙龙德, 刘合, 何文渊, 等, 2021. 大庆古龙页岩油重大科学问题与研究路径探析. 石油勘探与开发, 48(3): 453-463. 万晓帆, 刘丛丛, 赵德锋, 等, 2023. 页岩油研究热点与发展趋势. 地球科学, 48(2): 793-813. doi: 10.3799/dqkx.2022.443 王翔宇, 柯鹏, 杜锋, 2024. 液滴冲击过程动态接触角模型研究. 应用数学和力学, 45(9): 1133-1146. 王忠楠, 罗晓容, 刘可禹, 等, 2021. 鄂尔多斯盆地上三叠统延长组致密砂岩储层绿泥石对润湿性的影响. 中国科学: 地球科学, 51(7): 1123-1134. 蔚远江, 王红岩, 刘德勋, 等, 2023. 中国陆相页岩油示范区发展现状及建设可行性评价指标体系. 地球科学, 48(1): 191-205. 魏永峭, 张晋, 蒋兵, 等, 2025. 基于点接触界面相互作用的摩擦学性能研究. 摩擦学学报, 46(2): 1-13. 项林语, 李长冬, 李浩林, 等, 2022. 基于分子动力学模拟的钙基蒙脱石表面润湿性研究. 科学技术与工程, 22(36): 15952-15958. 杨涛, 2022. 基于原子力显微镜的角砾岩微观力学性质研究. 粉煤灰综合利用, 36(3): 29-35, 93. 余曹, 张玉苹, 汪周华, 等, 2024. 页岩矿物不同润湿性表征与吸附微观机理. 原子与分子物理学报, 41(2): 41-50. 袁士义, 雷征东, 李军诗, 等, 2023. 古龙页岩油有效开发关键理论技术问题与对策. 石油勘探与开发, 50(3): 562-572. 周波, 王为民, 郭和坤, 等, 2004. 孔隙介质润湿性的核磁共振刻度特征的测量. 地球科学, 29(4): 495-499. http://www.earth-science.net/article/id/1514 周小航, 陈冬霞, 夏宇轩, 等, 2022. 鄂尔多斯盆地陇东地区长7段页岩油储层自发渗吸特征及影响因素. 地球科学, 47(8): 3045-3055. doi: 10.3799/dqkx.2022.208 邹才能, 杨智, 张国生, 等, 2023. 非常规油气地质学理论技术及实践. 地球科学, 48(6): 2376-2397. doi: 10.3799/dqkx.2023.091 -




下载: