Dynamic Evolution Mechanism of Hydraulic Conductivity in Heterogeneous Salt Lake Brine Aquifers during Artificial Solution Mining
-
摘要: 人工溶采技术将储卤层蒸发盐矿物转化为卤水,对盐湖资源开发具有重要意义.然而补水溶矿引发含水层渗透性演化机制尚未得到充分阐述.研究基于Python开发耦合MODFLOW6和PhreeqcRM的数值模拟工具MF6PQC,系统研究卤水反应运移对储卤层渗透系数及溶采过程的影响.结果表明,含水层初始非均质结构决定了渗透系数的时空演变规律.溶矿初期在高渗区优先发生地球化学反应,光卤石等高活性矿物溶解使孔隙度与渗透系数显著增大,并在对流-弥散的正反馈作用下形成优势渗流通道.均质或高渗连通结构有利于溶浸剂均匀波及,而强连通或含低渗隔挡的弱连通地层则使固体矿物无法被有效接触,从而降低整体溶采效果.研究深化对储卤层渗透性变化的认识,为优化卤水溶采提供理论依据.Abstract: Artificial solution mining technology, which converts evaporite minerals in brine aquifers into brine, is crucial for the sustainable development of salt lake resources. However, the dynamic evolution of aquifer hydraulic conductivity induced by mineral dissolution during water injection remains insufficiently understood, hindering accurate process prediction. In this study, a Python-based modeling tool, MF6PQC, coupling MODFLOW6 and PhreeqcRM, was developed to systematically investigate the effects of reactive transport on the hydraulic conductivity of brine aquifers and the overall solution mining process. Simulation results show that aquifer heterogeneity governs the spatiotemporal evolution of hydraulic conductivity. During the early stage of dissolution mining, hydrogeochemical reactions preferentially occur in high permeability zones. The dissolution of highly reactive minerals such as carnallite significantly enhances porosity and hydraulic conductivity, ultimately forming preferential flow paths driven by positive advection-dispersion feedback. Relatively homogeneous aquifers or those with extensive, well-connected high-permeability zones facilitate uniform lixiviant distribution and achieve higher solid-to-liquid conversion efficiency. In contrast, strongly preferential or poorly connected formations interrupted by low permeability barriers limit mineral contact and dissolution, thereby reducing overall solution mining efficiency. This study deepens the understanding of hydraulic conductivity evolution in brine aquifers during water injection and provides a theoretical basis for optimizing salt lake brine resource exploitation.
-
表 1 蒸发盐矿物及物化参数
Table 1. Evaporite minerals and their physicochemical parameters
矿物名 化学式 分子量
(g/mol)摩尔体积
(cm3/mol)参考含量
(%)密度
(g/cm3)石盐 NaCl 58.43 27.1 45~80 2.17 光卤石 KMgCl3·6H2O 277.85 173.7 0.9~3.4 1.60 钾石盐 KCl 74.55 37.5 2~13 1.99 杂卤石 K2MgCa2(SO4)4·2H2O 602.91 218 2~4 2.78 石膏 CaSO4·2H2O 172.16 73.9 2~11 2.32 表 2 水文地球化学反应式及平衡常数
Table 2. Hydrogeochemical reactions and their equilibrium constants
矿物 反应式 平衡常数 石盐 NaCl = Cl- + Na+ 1.57 光卤石 KMgCl3·6H2O = K+ + Mg2+ + 3Cl- + 6H2O 4.35 钾石盐 KCl = K+ + Cl- 0.9 杂卤石 K2MgCa2(SO4)4·2H2O = 2K+ + Mg2+ + 2 Ca2+ + 4 SO42- + 2H2O -13.744 石膏 CaSO4·2H2O = Ca2+ + SO42- + 2H2O -4.58 离子交换 Na++X- = NaX 0.00 K++X- = KX 0.70 Ca2++2X- = CaX2 0.80 Mg2++2X- = MgX2 0.60 表 3 溶浸剂与原卤溶剂离子浓度(mol/L)
Table 3. Ion concentrations of the injected lixiviant and the native brine
密度(g/L) pH K+ Na+ Ca2+ Mg2+ Cl- SO42- CO32- 初始溶剂 1.277 8 6.82 0.444 1 0.387 0 0.011 0 3.638 0 8.023 5 0.051 9 0.000 09 溶浸剂 1.198 8 7.31 0.000 4 5.328 9 0.000 3 0.000 5 5.189 4 0.070 3 0.000 08 表 4 单位网格初始矿物组分信息(mol/cell)
Table 4. Initial mineral composition per grid cell
矿物名 石盐 光卤石 杂卤石 钾石盐 石膏 X- 初始含量 77.00 1.78 2.70 0.66 4.39 1.00 表 5 5种模拟场景的定义与参数
Table 5. Definitions and parameters of the five scenarios
场景 分布转换定义 方差 lx lz 场景A $ f\left(\gamma \right)=10.0 $ 0.00 \ \ 场景B $ f\left(\gamma \right)=\gamma $ 2.12 15 5 场景C $ f\left(\gamma \right)=\sqrt[]{2}\mathrm{e}\mathrm{r}{\mathrm{f}}^{-1}\left(2\mathrm{e}\mathrm{r}\mathrm{f}\left(\frac{\left|\gamma \right|}{\sqrt[]{2}}\right)-1\right)\times (-1) $ 1.23 15 5 场景D $ f\left(\gamma \right)=\sqrt[]{2}\mathrm{e}\mathrm{r}{\mathrm{f}}^{-1}\left(2\mathrm{e}\mathrm{r}\mathrm{f}\left(\frac{\left|\gamma \right|}{\sqrt[]{2}}\right)-1\right) $ 2.12 15 5 场景E $ f\left(\gamma \right)=\frac{2}{\mathrm{\pi }}\mathrm{a}\mathrm{r}\mathrm{c}\mathrm{s}\mathrm{i}\mathrm{n}\left(\sqrt[]{\gamma }\right)=\frac{\mathrm{a}\mathrm{r}\mathrm{c}\mathrm{s}\mathrm{i}\mathrm{n}\left(2\gamma -1\right)}{\mathrm{\pi }}+\frac{1}{2} $ 10 15 5 注:γ为场景B生成的高斯分布;erf(·)为高斯误差函数. 表 6 非均质场景下光卤石固液转换效率和波及效率(%)
Table 6. Carnallite solid-liquid conversion efficiency and affected volume fraction under different heterogeneity scenarios
光卤石 场景A 场景B 场景C 场景D 场景E 5年固液转换效率R 44.08 35.27 30.89 30.99 41.91 5年波及效率S (阈值=5%) 47.65 38.73 33.12 33.49 44.41 5年波及效率S (阈值=10%) 46.80 37.96 32.62 32.90 43.82 5年波及效率S (阈值=15%) 46.22 37.5 32.23 32.57 43.42 -
Ahmadi, N., Muniruzzaman, M., Sprocati, R., et al., 2022. Coupling Soil/Atmosphere Interactions and Geochemical Processes: A Multiphase and Multicomponent Reactive Transport Approach. Advances in Water Resources, 169: 104303. https://doi.org/10.1016/j.advwatres.2022.104303 Chang, W. J., Yuan, X. L., Liu, J. B., et al., 2024. Research on the Changes in Physical Properties during the Seepage-Dissolution Process of Potassium Salt-Bearing Reservoir in Qarhan Salt Lake. Journal of Salt Lake Research, 32(1): 99-106(in Chinese with English abstract). Chaudhuri, S., Barceló, M. A., Juan, P., et al., 2025. Enhanced Spatial Modeling on Linear Networks Using Gaussian Whittle-Matérn Fields. Stochastic Environmental Research and Risk Assessment, 39(3): 1143-1158. https://doi.org/10.1007/s00477-025-02912-6 Hao, A. B., Li, W. P., 2003. The Application of Pitzer Theory in the Geochemical Equilibrium Study of High Concentration Brine System with Variable Temperature. Journal of Salt Lake Research, 11(3): 24-30(in Chinese with English abstract). Hong, X. L., Xia, S. P., Gao, S. Y., 1994. Dissolution Kinetics of Carnallite. Chinese Journal of Applied Chemistry, 11(3): 26-31(in Chinese with English abstract). Hu, S. Y., Ren, J., Li, J. Q., et al., 2022. Permeability and Brine Enrichment Mechanism of Brine Reservoir in the Mahai Salt Lake, Qaidam Basin. Scientia Geographica Sinica, 42(11): 2039-2046(in Chinese with English abstract). Huang, H. L., Song, J., Yang, Y., et al., 2024. Reactive Transport Numerical Modeling of Typical Heavy Metal Pollutants in Three-Dimensional Fracture Networks. Earth Science, 49(8): 2879-2890(in Chinese with English abstract). Hughes, J. D., Langevin, C. D., Paulinski, S. R., et al., 2024. FloPy Workflows for Creating Structured and Unstructured MODFLOW Models. Ground Water, 62(1): 124-139. https://doi.org/10.1111/gwat.13327 Kaufmann, G., 2016. Modelling Karst Aquifer Evolution in Fractured, Porous Rocks. Journal of Hydrology, 543: 796-807. https://doi.org/10.1016/j.jhydrol.2016.10.049 Langevin, C. D., Provost, A. M., Panday, S., et al., 2022 Documentation for the Modflow 6 Groundwater Transport Model: 6-A61. U. S. Geological Survey, U. S. A. . Li, H., 2010. Analysis of Environmental Impact Due to Exploitation of K-Li-B Mine and Optimization of Exploitation Scheme in Qinghai West Taijinar Salt Lake (Dissertation). Changan University, Xi'an(in Chinese with English abstract). Li, H. K., Lu, C. H., Werner, A. D., et al., 2022. Impacts of Heterogeneity on Aquifer Storage and Recovery in Saline Aquifers. Water Resources Research, 58(5): e2021WR031306. https://doi.org/10.1029/2021wr031306 Li, J. S., Li, T. W., Ma, Y. Q., et al., 2022. Distribution and Origin of Brine-Type Li-Rb Mineralization in the Qaidam Basin, NW China. Science China Earth Sciences, 65(3): 477-489. https://doi.org/10.1007/s11430-021-9855-6 Li, M. L., 2023. Dynamic Characteristics of Brine and Its Indicative Effect on Solid-Liquid Transformation Process in the Qarhan Salt Lake (Dissertation). Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining(in Chinese with English abstract). Li, R. Q., Liu, C. L., Jiao, P. C., et al., 2020. The Present Situation, Existing Problems, and Countermeasures for Exploitation and Utilization of Low-Grade Potash Minerals in Qarhan Salt Lake, Qinghai Province, China. Carbonates and Evaporites, 35(2): 34. https://doi.org/10.1007/s13146-020-00562-z Li, R. Q., Liu, C. L., Jiao, P. C., et al., 2021. Numerical Simulation Analysis on Potash Dissolution Extraction from Low-Grade Solid Potash Ore in Modern Salt Lake: A Case Study from Bieletan Mining Area in the Qarhan Salt Lake. Acta Geologica Sinica, 95(7): 2150-2159(in Chinese with English abstract). Lu, P., Zhang, G. R., Apps, J., et al., 2022. Comparison of Thermodynamic Data Files for PHREEQC. Earth-Science Reviews, 225: 103888. https://doi.org/10.1016/j.earscirev.2021.103888 Luo, Z. J., Wang, X., Dai, J., et al., 2024. Influence of Land Subsidence on Minable Groundwater Resources. Earth Science, 49(1): 238-252(in Chinese with English abstract). Müller, S., Schüler, L., Zech, A., et al., 2022. GSTools V1.3: A Toolbox for Geostatistical Modelling in Python. Geoscientific Model Development, 15(7): 3161-3182. https://doi.org/10.5194/gmd-15-3161-2022 Pardo-Iguzquiza, E., Chica-Olmo, M., 2008. Geostatistics with the Matern Semivariogram Model: A Library of Computer Programs for Inference, Kriging and Simulation. Computers & Geosciences, 34(9): 1073-1079. https://doi.org/10.1016/j.cageo.2007.09.020 Parkhurst, D. L., Wissmeier, L., 2015. PhreeqcRM: A Reaction Module for Transport Simulators Based on the Geochemical Model PHREEQC. Advances in Water Resources, 83: 176-189. https://doi.org/10.1016/j.advwatres.2015.06.001 Patrick, A. D., Franklin, W. S., 1998. Physical and Chemical Hydrogeology. Wiley, New York. Qaidam Comprehensive Geological and Mineral Exploration Institute, 2023. Research Report on Recoverable Reserves of Brine Potassium Ore in Qaidam Basin. Salt Lake Administration Bureau of Haixi Prefecture, Qinghai Province, Golmud(in Chinese). Rehman, M., Hafeez, M. B., Krawczuk, M., 2024. A Comprehensive Review: Applications of the Kozeny-Carman Model in Engineering with Permeability Dynamics. Archives of Computational Methods in Engineering, 31(7): 3843-3855. https://doi.org/10.1007/s11831-024-10094-7 Ren, Q. H., 2017. The Numerical Simulation of the Evolution Mechanism of Brine under the Supplyment of Humans (Dissertation). Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining(in Chinese with English abstract). Song, G., Zhao, Y. Y., Ma, H. T., et al., 2024. Research on the Sedimentary Characteristics of Solid Sylvite after Liquefaction in the Bieletan Area of Qaidam Basin. Acta Geologica Sinica, 98(10): 2873-2882(in Chinese with English abstract). Steefel, C. I., Appelo, C. A. J., Arora, B., et al., 2015. Reactive Transport Codes for Subsurface Environmental Simulation. Computational Geosciences, 19(3): 445-478. https://doi.org/10.1007/s10596-014-9443-x Sun, Q. M., Gao, M. S., Wen, Z., et al., 2023. Reactive Transport Modeling for the Effect of Pumping Activities on the Groundwater Environment in Muddy Coasts. Journal of Hydrology, 621: 129614. https://doi.org/10.1016/j.jhydrol.2023.129614 U. S. Geological Survey, 2017. Modflow 6 - Description of Input and Output. U. S. Geological Survey, U. S. A. . Vásquez, C., Ortiz, C., Suárez, F., et al., 2013. Modeling Flow and Reactive Transport to Explain Mineral Zoning in the Atacama Salt Flat Aquifer, Chile. Journal of Hydrology, 490: 114-125. https://doi.org/10.1016/j.jhydrol.2013.03.028 Wang, W. X., 2013. Driving and Dissolving Exploitation of Low-Grade Solid Potassium Research in Qarhan Salt Lake(Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract). Wang, X., Jiang, H., Wang, A. L., 2015. Study on the Dissolution Kinetics of K+, Na+ in Low-Grade Salt Mines. Chemistry, 78(11): 1049-1052(in Chinese with English abstract). Wang, Z. T., 2024. Groundwater Modeling and Inverse Problem for Brine in Salt Lakes. Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining(in Chinese with English abstract). Wang, Z. T., Yue, C., Wang, J. P., 2024. Evaluating Parameter Inversion Efficiency in Heterogeneous Groundwater Models Using Karhunen-Loève Expansion: A Comparative Study of Genetic Algorithm, Ensemble Smoother, and MCMC. Earth Science Informatics, 17(4): 3475-3491. https://doi.org/10.1007/s12145-024-01361-z Weisbrod, N., Alon-Mordish, C., Konen, E., et al., 2012. Dynamic Dissolution of Halite Rock during Flow of Diluted Saline Solutions. Geophysical Research Letters, 39(9): 2012GL051306. https://doi.org/10.1029/2012GL051306 Xie, M. L., Mayer, K. U., Claret, F., et al., 2015. Implementation and Evaluation of Permeability-Porosity and Tortuosity-Porosity Relationships Linked to Mineral Dissolution-Precipitation. Computational Geosciences, 19(3): 655-671. https://doi.org/10.1007/s10596-014-9458-3 Zhang, Y., Gao, D. L., Ren, Q. H., et al., 2017. Permeability of Unconfined Aquifer under the Dayantan Mine Area near the Kunty Salt Lake in the Qaidam Basin. Arid Zone Research, 34(1): 36-42(in Chinese with English abstract). Zhao, X. F., Zhao, Y. J., Jiao, P. C., et al., 2023. The Reservoir Heterogeneity of Reservoirs and Its Impact on the Brine Recovery in the Yiliping Area, Qaidam Basin. Journal of Salt Lake Research, 31(3): 29-34(in Chinese with English abstract). Zhou, X., Fang, B., Chen, M. Y., et al., 2006. Numerical Simulation of Brine in Crystalline Halite in the Bieletan Area of the Charham Salt Lake Region, Qinghai Province. Arid Zone Research, 23(2): 258-263(in Chinese with English abstract). Zinn, B., Harvey, C. F., 2003. When Good Statistical Models of Aquifer Heterogeneity Go Bad: A Comparison of Flow, Dispersion, and Mass Transfer in Connected and Multivariate Gaussian Hydraulic Conductivity Fields. Water Resources Research, 39(3): 2001WR001146. https://doi.org/10.1029/2001wr001146 柴达木综合地质矿产勘查院, 2023. 柴达木盆地卤水钾矿可采储量研究报告. 格尔木: 青海省海西州盐湖管理局. 常文静, 袁小龙, 刘久波, 等, 2024. 察尔汗盐湖含钾盐储层介质渗流-溶解过程中物性参数变化特征研究. 盐湖研究, 32(1): 99-106. 郝爱兵, 李文鹏, 2003. Pitzer理论在变温高浓卤水体系地球化学平衡研究中的应用. 盐湖研究, 11(3): 24-30. 洪显兰, 夏树屏, 高世扬, 1994. 钾光卤石溶解动力学. 应用化学, 11(3): 26-31. 胡舒娅, 任婕, 李吉庆, 等, 2022. 柴达木盆地马海盐湖储卤层渗透特征及卤水富集机制. 地理科学, 42(11): 2039-2046. 黄鸿蓝, 宋健, 杨蕴, 等, 2024. 三维裂隙网络中典型重金属污染物反应运移数值模拟. 地球科学, 49(8): 2879-2890. doi: 10.3799/dqkx.2022.103 李辉, 2010. 青海西台吉乃尔盐湖钾锂硼矿开采的环境影响分析及卤水开采方案优化(硕士学位论文). 西安: 长安大学. 李梦玲, 2023. 察尔汗盐湖卤水动态变化特征及其对固液转化过程的指示作用(硕士学位论文). 西宁: 中国科学院大学(中国科学院青海盐湖研究所). 李瑞琴, 刘成林, 焦鹏程, 等, 2021. 现代盐湖低品位固体钾盐溶矿数值模拟研究: 以察尔汗盐湖别勒滩矿区为例. 地质学报, 95(7): 2150-2159. 骆祖江, 王鑫, 代敬, 等, 2024. 地面沉降对地下水可采资源的影响. 地球科学, 49(1): 238-252. doi: 10.3799/dqkx.2022.143 任倩慧, 2017. 补水背景下卤水动态演化机制数值模拟研究: 以昆特依大盐滩采区为例(博士学位论文). 西宁: 中国科学院大学(中国科学院青海盐湖研究所). 宋高, 赵元艺, 马宏涛, 等, 2024. 柴达木盆地别勒滩区段固体钾盐液化后矿物沉积特征. 地质学报, 98(10): 2873-2882. 王文祥, 2013. 察尔汗盐湖低品位固体钾矿驱动溶解液化开采试验研究(博士学位论文). 北京: 中国地质大学. 王晓, 姜虹, 王爱丽, 2015. 低品位盐矿中K+、Na+的溶解动力学研究. 化学通报, 78(11): 1049-1052. 汪子涛, 2024. 盐湖地下卤水数值模拟及其参数反演研究. 西宁: 中国科学院大学(中国科学院青海盐湖研究所). 张岩, 高东林, 任倩慧, 等, 2017. 柴达木盆地昆特依盐湖大盐滩矿区潜水含水层的渗透性. 干旱区研究, 34(1): 36-42. 赵宪福, 赵艳军, 焦鹏程, 等, 2023. 柴达木盆地一里坪富锂卤水储层非均质性及对卤水开采的影响. 盐湖研究, 31(3): 29-34. 周训, 方斌, 陈明佑, 等, 2006. 青海省察尔汗盐湖别勒滩区段晶间卤水数值模拟. 干旱区研究, 23(2): 258-263. -




下载: