• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    人工溶采作用下非均质盐湖储卤层渗透系数动态演化机制

    汪子涛 李建森 余冬梅

    汪子涛, 李建森, 余冬梅, 2025. 人工溶采作用下非均质盐湖储卤层渗透系数动态演化机制. 地球科学, 50(12): 4879-4893. doi: 10.3799/dqkx.2025.212
    引用本文: 汪子涛, 李建森, 余冬梅, 2025. 人工溶采作用下非均质盐湖储卤层渗透系数动态演化机制. 地球科学, 50(12): 4879-4893. doi: 10.3799/dqkx.2025.212
    Wang Zitao, Li Jiansen, Yu Dongmei, 2025. Dynamic Evolution Mechanism of Hydraulic Conductivity in Heterogeneous Salt Lake Brine Aquifers during Artificial Solution Mining. Earth Science, 50(12): 4879-4893. doi: 10.3799/dqkx.2025.212
    Citation: Wang Zitao, Li Jiansen, Yu Dongmei, 2025. Dynamic Evolution Mechanism of Hydraulic Conductivity in Heterogeneous Salt Lake Brine Aquifers during Artificial Solution Mining. Earth Science, 50(12): 4879-4893. doi: 10.3799/dqkx.2025.212

    人工溶采作用下非均质盐湖储卤层渗透系数动态演化机制

    doi: 10.3799/dqkx.2025.212
    基金项目: 

    国家重点研发计划青年科学家项目 2023YFC2908600

    青海省“昆仑英才·高端创新创业人才”计划项目 QHKLYC-GDCXCY-2024-049

    国家自然科学基金项目 42502241

    中国博士后科学基金面上资助项目 2024M760016

    详细信息
      作者简介:

      汪子涛(1995-),男,博士后,主要从事盐湖卤水数值模拟研究.ORCID:0000-0002-7776-4282.E-mail:zitao.wang@aust.edu.cn

      通讯作者:

      李建森,博士,副研究员,主要从事盐湖地质学研究.E-mail: lijs@isl.ac.cn

    • 中图分类号: P641

    Dynamic Evolution Mechanism of Hydraulic Conductivity in Heterogeneous Salt Lake Brine Aquifers during Artificial Solution Mining

    • 摘要: 人工溶采技术将储卤层蒸发盐矿物转化为卤水,对盐湖资源开发具有重要意义.然而补水溶矿引发含水层渗透性演化机制尚未得到充分阐述.研究基于Python开发耦合MODFLOW6和PhreeqcRM的数值模拟工具MF6PQC,系统研究卤水反应运移对储卤层渗透系数及溶采过程的影响.结果表明,含水层初始非均质结构决定了渗透系数的时空演变规律.溶矿初期在高渗区优先发生地球化学反应,光卤石等高活性矿物溶解使孔隙度与渗透系数显著增大,并在对流-弥散的正反馈作用下形成优势渗流通道.均质或高渗连通结构有利于溶浸剂均匀波及,而强连通或含低渗隔挡的弱连通地层则使固体矿物无法被有效接触,从而降低整体溶采效果.研究深化对储卤层渗透性变化的认识,为优化卤水溶采提供理论依据.

       

    • 图  1  盐湖补水溶矿过程中各物理场相互作用

      Fig.  1.  Interactions among various physical fields during artificial solution mining

      图  2  基于SNIA的MF6PQC耦合模拟流程

      Fig.  2.  Flowchart of the MF6PQC coupled modeling based on the SNIA

      图  3  模型几何结构与网格剖分

      Fig.  3.  Geometric configuration and mesh discretization of the numerical model

      图  4  初始对数渗透系数随机场分布特征(场景A为均质场)

      Fig.  4.  Initial distributions of the heterogeneous lnK fields (scenario A is the homogeneous base case)

      图  5  不同时刻矿物剩余含量空间分布

      Fig.  5.  Spatial distribution of residual mineral content at different time steps

      图  6  场景B孔隙度和渗透系数时空演化

      Fig.  6.  Spatio-temporal evolution of porosity and K for scenario B

      图  7  不同因素与渗透系数变化Pearson相关性系数(r)

      Fig.  7.  Pearson correlation coefficients relating changes in various factors to the change in ΔK

      图  8  不同因素对渗透系数变化的RF贡献权重(λ)

      Fig.  8.  Contribution weights λ of various factors to the change in ΔK

      图  9  不同非均质场景下渗透系数时空演化特征

      Fig.  9.  Spatio-temporal evolution patterns of K under different heterogeneity scenarios

      图  10  高/低渗区渗透系数均值及变化率

      Fig.  10.  Mean K and its relative change over time within high- and low-K zones

      表  1  蒸发盐矿物及物化参数

      Table  1.   Evaporite minerals and their physicochemical parameters

      矿物名 化学式 分子量
      (g/mol)
      摩尔体积
      (cm3/mol)
      参考含量
      (%)
      密度
      (g/cm3)
      石盐 NaCl 58.43 27.1 45~80 2.17
      光卤石 KMgCl3·6H2O 277.85 173.7 0.9~3.4 1.60
      钾石盐 KCl 74.55 37.5 2~13 1.99
      杂卤石 K2MgCa2(SO4)4·2H2O 602.91 218 2~4 2.78
      石膏 CaSO4·2H2O 172.16 73.9 2~11 2.32
      下载: 导出CSV

      表  2  水文地球化学反应式及平衡常数

      Table  2.   Hydrogeochemical reactions and their equilibrium constants

      矿物 反应式 平衡常数
      石盐 NaCl = Cl- + Na+ 1.57
      光卤石 KMgCl3·6H2O = K+ + Mg2+ + 3Cl- + 6H2O 4.35
      钾石盐 KCl = K+ + Cl- 0.9
      杂卤石 K2MgCa2(SO4)4·2H2O = 2K+ + Mg2+ + 2 Ca2+ + 4 SO42- + 2H2O -13.744
      石膏 CaSO4·2H2O = Ca2+ + SO42- + 2H2O -4.58
      离子交换 Na++X- = NaX 0.00
      K++X- = KX 0.70
      Ca2++2X- = CaX2 0.80
      Mg2++2X- = MgX2 0.60
      下载: 导出CSV

      表  3  溶浸剂与原卤溶剂离子浓度(mol/L)

      Table  3.   Ion concentrations of the injected lixiviant and the native brine

      密度(g/L) pH K+ Na+ Ca2+ Mg2+ Cl- SO42- CO32-
      初始溶剂 1.277 8 6.82 0.444 1 0.387 0 0.011 0 3.638 0 8.023 5 0.051 9 0.000 09
      溶浸剂 1.198 8 7.31 0.000 4 5.328 9 0.000 3 0.000 5 5.189 4 0.070 3 0.000 08
      下载: 导出CSV

      表  4  单位网格初始矿物组分信息(mol/cell)

      Table  4.   Initial mineral composition per grid cell

      矿物名 石盐 光卤石 杂卤石 钾石盐 石膏 X-
      初始含量 77.00 1.78 2.70 0.66 4.39 1.00
      下载: 导出CSV

      表  5  5种模拟场景的定义与参数

      Table  5.   Definitions and parameters of the five scenarios

      场景 分布转换定义 方差 lx lz
      场景A $ f\left(\gamma \right)=10.0 $ 0.00 \ \
      场景B $ f\left(\gamma \right)=\gamma $ 2.12 15 5
      场景C $ f\left(\gamma \right)=\sqrt[]{2}\mathrm{e}\mathrm{r}{\mathrm{f}}^{-1}\left(2\mathrm{e}\mathrm{r}\mathrm{f}\left(\frac{\left|\gamma \right|}{\sqrt[]{2}}\right)-1\right)\times (-1) $ 1.23 15 5
      场景D $ f\left(\gamma \right)=\sqrt[]{2}\mathrm{e}\mathrm{r}{\mathrm{f}}^{-1}\left(2\mathrm{e}\mathrm{r}\mathrm{f}\left(\frac{\left|\gamma \right|}{\sqrt[]{2}}\right)-1\right) $ 2.12 15 5
      场景E $ f\left(\gamma \right)=\frac{2}{\mathrm{\pi }}\mathrm{a}\mathrm{r}\mathrm{c}\mathrm{s}\mathrm{i}\mathrm{n}\left(\sqrt[]{\gamma }\right)=\frac{\mathrm{a}\mathrm{r}\mathrm{c}\mathrm{s}\mathrm{i}\mathrm{n}\left(2\gamma -1\right)}{\mathrm{\pi }}+\frac{1}{2} $ 10 15 5
      注:γ为场景B生成的高斯分布;erf(·)为高斯误差函数.
      下载: 导出CSV

      表  6  非均质场景下光卤石固液转换效率和波及效率(%)

      Table  6.   Carnallite solid-liquid conversion efficiency and affected volume fraction under different heterogeneity scenarios

      光卤石 场景A 场景B 场景C 场景D 场景E
      5年固液转换效率R 44.08 35.27 30.89 30.99 41.91
      5年波及效率S (阈值=5%) 47.65 38.73 33.12 33.49 44.41
      5年波及效率S (阈值=10%) 46.80 37.96 32.62 32.90 43.82
      5年波及效率S (阈值=15%) 46.22 37.5 32.23 32.57 43.42
      下载: 导出CSV
    • Ahmadi, N., Muniruzzaman, M., Sprocati, R., et al., 2022. Coupling Soil/Atmosphere Interactions and Geochemical Processes: A Multiphase and Multicomponent Reactive Transport Approach. Advances in Water Resources, 169: 104303. https://doi.org/10.1016/j.advwatres.2022.104303
      Chang, W. J., Yuan, X. L., Liu, J. B., et al., 2024. Research on the Changes in Physical Properties during the Seepage-Dissolution Process of Potassium Salt-Bearing Reservoir in Qarhan Salt Lake. Journal of Salt Lake Research, 32(1): 99-106(in Chinese with English abstract).
      Chaudhuri, S., Barceló, M. A., Juan, P., et al., 2025. Enhanced Spatial Modeling on Linear Networks Using Gaussian Whittle-Matérn Fields. Stochastic Environmental Research and Risk Assessment, 39(3): 1143-1158. https://doi.org/10.1007/s00477-025-02912-6
      Hao, A. B., Li, W. P., 2003. The Application of Pitzer Theory in the Geochemical Equilibrium Study of High Concentration Brine System with Variable Temperature. Journal of Salt Lake Research, 11(3): 24-30(in Chinese with English abstract).
      Hong, X. L., Xia, S. P., Gao, S. Y., 1994. Dissolution Kinetics of Carnallite. Chinese Journal of Applied Chemistry, 11(3): 26-31(in Chinese with English abstract).
      Hu, S. Y., Ren, J., Li, J. Q., et al., 2022. Permeability and Brine Enrichment Mechanism of Brine Reservoir in the Mahai Salt Lake, Qaidam Basin. Scientia Geographica Sinica, 42(11): 2039-2046(in Chinese with English abstract).
      Huang, H. L., Song, J., Yang, Y., et al., 2024. Reactive Transport Numerical Modeling of Typical Heavy Metal Pollutants in Three-Dimensional Fracture Networks. Earth Science, 49(8): 2879-2890(in Chinese with English abstract).
      Hughes, J. D., Langevin, C. D., Paulinski, S. R., et al., 2024. FloPy Workflows for Creating Structured and Unstructured MODFLOW Models. Ground Water, 62(1): 124-139. https://doi.org/10.1111/gwat.13327
      Kaufmann, G., 2016. Modelling Karst Aquifer Evolution in Fractured, Porous Rocks. Journal of Hydrology, 543: 796-807. https://doi.org/10.1016/j.jhydrol.2016.10.049
      Langevin, C. D., Provost, A. M., Panday, S., et al., 2022 Documentation for the Modflow 6 Groundwater Transport Model: 6-A61. U. S. Geological Survey, U. S. A. .
      Li, H., 2010. Analysis of Environmental Impact Due to Exploitation of K-Li-B Mine and Optimization of Exploitation Scheme in Qinghai West Taijinar Salt Lake (Dissertation). Changan University, Xi'an(in Chinese with English abstract).
      Li, H. K., Lu, C. H., Werner, A. D., et al., 2022. Impacts of Heterogeneity on Aquifer Storage and Recovery in Saline Aquifers. Water Resources Research, 58(5): e2021WR031306. https://doi.org/10.1029/2021wr031306
      Li, J. S., Li, T. W., Ma, Y. Q., et al., 2022. Distribution and Origin of Brine-Type Li-Rb Mineralization in the Qaidam Basin, NW China. Science China Earth Sciences, 65(3): 477-489. https://doi.org/10.1007/s11430-021-9855-6
      Li, M. L., 2023. Dynamic Characteristics of Brine and Its Indicative Effect on Solid-Liquid Transformation Process in the Qarhan Salt Lake (Dissertation). Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining(in Chinese with English abstract).
      Li, R. Q., Liu, C. L., Jiao, P. C., et al., 2020. The Present Situation, Existing Problems, and Countermeasures for Exploitation and Utilization of Low-Grade Potash Minerals in Qarhan Salt Lake, Qinghai Province, China. Carbonates and Evaporites, 35(2): 34. https://doi.org/10.1007/s13146-020-00562-z
      Li, R. Q., Liu, C. L., Jiao, P. C., et al., 2021. Numerical Simulation Analysis on Potash Dissolution Extraction from Low-Grade Solid Potash Ore in Modern Salt Lake: A Case Study from Bieletan Mining Area in the Qarhan Salt Lake. Acta Geologica Sinica, 95(7): 2150-2159(in Chinese with English abstract).
      Lu, P., Zhang, G. R., Apps, J., et al., 2022. Comparison of Thermodynamic Data Files for PHREEQC. Earth-Science Reviews, 225: 103888. https://doi.org/10.1016/j.earscirev.2021.103888
      Luo, Z. J., Wang, X., Dai, J., et al., 2024. Influence of Land Subsidence on Minable Groundwater Resources. Earth Science, 49(1): 238-252(in Chinese with English abstract).
      Müller, S., Schüler, L., Zech, A., et al., 2022. GSTools V1.3: A Toolbox for Geostatistical Modelling in Python. Geoscientific Model Development, 15(7): 3161-3182. https://doi.org/10.5194/gmd-15-3161-2022
      Pardo-Iguzquiza, E., Chica-Olmo, M., 2008. Geostatistics with the Matern Semivariogram Model: A Library of Computer Programs for Inference, Kriging and Simulation. Computers & Geosciences, 34(9): 1073-1079. https://doi.org/10.1016/j.cageo.2007.09.020
      Parkhurst, D. L., Wissmeier, L., 2015. PhreeqcRM: A Reaction Module for Transport Simulators Based on the Geochemical Model PHREEQC. Advances in Water Resources, 83: 176-189. https://doi.org/10.1016/j.advwatres.2015.06.001
      Patrick, A. D., Franklin, W. S., 1998. Physical and Chemical Hydrogeology. Wiley, New York.
      Qaidam Comprehensive Geological and Mineral Exploration Institute, 2023. Research Report on Recoverable Reserves of Brine Potassium Ore in Qaidam Basin. Salt Lake Administration Bureau of Haixi Prefecture, Qinghai Province, Golmud(in Chinese).
      Rehman, M., Hafeez, M. B., Krawczuk, M., 2024. A Comprehensive Review: Applications of the Kozeny-Carman Model in Engineering with Permeability Dynamics. Archives of Computational Methods in Engineering, 31(7): 3843-3855. https://doi.org/10.1007/s11831-024-10094-7
      Ren, Q. H., 2017. The Numerical Simulation of the Evolution Mechanism of Brine under the Supplyment of Humans (Dissertation). Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining(in Chinese with English abstract).
      Song, G., Zhao, Y. Y., Ma, H. T., et al., 2024. Research on the Sedimentary Characteristics of Solid Sylvite after Liquefaction in the Bieletan Area of Qaidam Basin. Acta Geologica Sinica, 98(10): 2873-2882(in Chinese with English abstract).
      Steefel, C. I., Appelo, C. A. J., Arora, B., et al., 2015. Reactive Transport Codes for Subsurface Environmental Simulation. Computational Geosciences, 19(3): 445-478. https://doi.org/10.1007/s10596-014-9443-x
      Sun, Q. M., Gao, M. S., Wen, Z., et al., 2023. Reactive Transport Modeling for the Effect of Pumping Activities on the Groundwater Environment in Muddy Coasts. Journal of Hydrology, 621: 129614. https://doi.org/10.1016/j.jhydrol.2023.129614
      U. S. Geological Survey, 2017. Modflow 6 - Description of Input and Output. U. S. Geological Survey, U. S. A. .
      Vásquez, C., Ortiz, C., Suárez, F., et al., 2013. Modeling Flow and Reactive Transport to Explain Mineral Zoning in the Atacama Salt Flat Aquifer, Chile. Journal of Hydrology, 490: 114-125. https://doi.org/10.1016/j.jhydrol.2013.03.028
      Wang, W. X., 2013. Driving and Dissolving Exploitation of Low-Grade Solid Potassium Research in Qarhan Salt Lake(Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      Wang, X., Jiang, H., Wang, A. L., 2015. Study on the Dissolution Kinetics of K+, Na+ in Low-Grade Salt Mines. Chemistry, 78(11): 1049-1052(in Chinese with English abstract).
      Wang, Z. T., 2024. Groundwater Modeling and Inverse Problem for Brine in Salt Lakes. Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining(in Chinese with English abstract).
      Wang, Z. T., Yue, C., Wang, J. P., 2024. Evaluating Parameter Inversion Efficiency in Heterogeneous Groundwater Models Using Karhunen-Loève Expansion: A Comparative Study of Genetic Algorithm, Ensemble Smoother, and MCMC. Earth Science Informatics, 17(4): 3475-3491. https://doi.org/10.1007/s12145-024-01361-z
      Weisbrod, N., Alon-Mordish, C., Konen, E., et al., 2012. Dynamic Dissolution of Halite Rock during Flow of Diluted Saline Solutions. Geophysical Research Letters, 39(9): 2012GL051306. https://doi.org/10.1029/2012GL051306
      Xie, M. L., Mayer, K. U., Claret, F., et al., 2015. Implementation and Evaluation of Permeability-Porosity and Tortuosity-Porosity Relationships Linked to Mineral Dissolution-Precipitation. Computational Geosciences, 19(3): 655-671. https://doi.org/10.1007/s10596-014-9458-3
      Zhang, Y., Gao, D. L., Ren, Q. H., et al., 2017. Permeability of Unconfined Aquifer under the Dayantan Mine Area near the Kunty Salt Lake in the Qaidam Basin. Arid Zone Research, 34(1): 36-42(in Chinese with English abstract).
      Zhao, X. F., Zhao, Y. J., Jiao, P. C., et al., 2023. The Reservoir Heterogeneity of Reservoirs and Its Impact on the Brine Recovery in the Yiliping Area, Qaidam Basin. Journal of Salt Lake Research, 31(3): 29-34(in Chinese with English abstract).
      Zhou, X., Fang, B., Chen, M. Y., et al., 2006. Numerical Simulation of Brine in Crystalline Halite in the Bieletan Area of the Charham Salt Lake Region, Qinghai Province. Arid Zone Research, 23(2): 258-263(in Chinese with English abstract).
      Zinn, B., Harvey, C. F., 2003. When Good Statistical Models of Aquifer Heterogeneity Go Bad: A Comparison of Flow, Dispersion, and Mass Transfer in Connected and Multivariate Gaussian Hydraulic Conductivity Fields. Water Resources Research, 39(3): 2001WR001146. https://doi.org/10.1029/2001wr001146
      柴达木综合地质矿产勘查院, 2023. 柴达木盆地卤水钾矿可采储量研究报告. 格尔木: 青海省海西州盐湖管理局.
      常文静, 袁小龙, 刘久波, 等, 2024. 察尔汗盐湖含钾盐储层介质渗流-溶解过程中物性参数变化特征研究. 盐湖研究, 32(1): 99-106.
      郝爱兵, 李文鹏, 2003. Pitzer理论在变温高浓卤水体系地球化学平衡研究中的应用. 盐湖研究, 11(3): 24-30.
      洪显兰, 夏树屏, 高世扬, 1994. 钾光卤石溶解动力学. 应用化学, 11(3): 26-31.
      胡舒娅, 任婕, 李吉庆, 等, 2022. 柴达木盆地马海盐湖储卤层渗透特征及卤水富集机制. 地理科学, 42(11): 2039-2046.
      黄鸿蓝, 宋健, 杨蕴, 等, 2024. 三维裂隙网络中典型重金属污染物反应运移数值模拟. 地球科学, 49(8): 2879-2890. doi: 10.3799/dqkx.2022.103
      李辉, 2010. 青海西台吉乃尔盐湖钾锂硼矿开采的环境影响分析及卤水开采方案优化(硕士学位论文). 西安: 长安大学.
      李梦玲, 2023. 察尔汗盐湖卤水动态变化特征及其对固液转化过程的指示作用(硕士学位论文). 西宁: 中国科学院大学(中国科学院青海盐湖研究所).
      李瑞琴, 刘成林, 焦鹏程, 等, 2021. 现代盐湖低品位固体钾盐溶矿数值模拟研究: 以察尔汗盐湖别勒滩矿区为例. 地质学报, 95(7): 2150-2159.
      骆祖江, 王鑫, 代敬, 等, 2024. 地面沉降对地下水可采资源的影响. 地球科学, 49(1): 238-252. doi: 10.3799/dqkx.2022.143
      任倩慧, 2017. 补水背景下卤水动态演化机制数值模拟研究: 以昆特依大盐滩采区为例(博士学位论文). 西宁: 中国科学院大学(中国科学院青海盐湖研究所).
      宋高, 赵元艺, 马宏涛, 等, 2024. 柴达木盆地别勒滩区段固体钾盐液化后矿物沉积特征. 地质学报, 98(10): 2873-2882.
      王文祥, 2013. 察尔汗盐湖低品位固体钾矿驱动溶解液化开采试验研究(博士学位论文). 北京: 中国地质大学.
      王晓, 姜虹, 王爱丽, 2015. 低品位盐矿中K+、Na+的溶解动力学研究. 化学通报, 78(11): 1049-1052.
      汪子涛, 2024. 盐湖地下卤水数值模拟及其参数反演研究. 西宁: 中国科学院大学(中国科学院青海盐湖研究所).
      张岩, 高东林, 任倩慧, 等, 2017. 柴达木盆地昆特依盐湖大盐滩矿区潜水含水层的渗透性. 干旱区研究, 34(1): 36-42.
      赵宪福, 赵艳军, 焦鹏程, 等, 2023. 柴达木盆地一里坪富锂卤水储层非均质性及对卤水开采的影响. 盐湖研究, 31(3): 29-34.
      周训, 方斌, 陈明佑, 等, 2006. 青海省察尔汗盐湖别勒滩区段晶间卤水数值模拟. 干旱区研究, 23(2): 258-263.
    • 加载中
    图(10) / 表(6)
    计量
    • 文章访问数:  100
    • HTML全文浏览量:  8
    • PDF下载量:  4
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-08-12
    • 刊出日期:  2025-12-25

    目录

      /

      返回文章
      返回