• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    祁连山西端大雪山北山断裂晚第四纪构造变形特征

    萧千皓 袁道阳 文亚猛 于锦超 陈艳文 孙浩

    萧千皓, 袁道阳, 文亚猛, 于锦超, 陈艳文, 孙浩, 2026. 祁连山西端大雪山北山断裂晚第四纪构造变形特征. 地球科学, 51(1): 329-344. doi: 10.3799/dqkx.2025.235
    引用本文: 萧千皓, 袁道阳, 文亚猛, 于锦超, 陈艳文, 孙浩, 2026. 祁连山西端大雪山北山断裂晚第四纪构造变形特征. 地球科学, 51(1): 329-344. doi: 10.3799/dqkx.2025.235
    Xiao Qianhao, Yuan Daoyang, Wen Yameng, Yu Jinchao, Chen Yanwen, Sun Hao, 2026. Late Quaternary Tectonic Deformation Characteristics of Daxue Shan Bei Shan Fault in the Western Qilian Mountains. Earth Science, 51(1): 329-344. doi: 10.3799/dqkx.2025.235
    Citation: Xiao Qianhao, Yuan Daoyang, Wen Yameng, Yu Jinchao, Chen Yanwen, Sun Hao, 2026. Late Quaternary Tectonic Deformation Characteristics of Daxue Shan Bei Shan Fault in the Western Qilian Mountains. Earth Science, 51(1): 329-344. doi: 10.3799/dqkx.2025.235

    祁连山西端大雪山北山断裂晚第四纪构造变形特征

    doi: 10.3799/dqkx.2025.235
    基金项目: 

    第三次新疆综合科学考察项目 2022xjkk1305

    第二次青藏高原综合科学考察研究项目 2019QZKK0901

    详细信息
      作者简介:

      萧千皓(2000-),男,硕士,主要从事活动构造与构造地貌研究. ORCID:0009-0000-0813-2065. E-mail:xiaoqh2023@lzu.edu.cn

      通讯作者:

      袁道阳,E-mail: yuandy@lzu.edu.cn

    • 中图分类号: P546

    Late Quaternary Tectonic Deformation Characteristics of Daxue Shan Bei Shan Fault in the Western Qilian Mountains

    • 摘要: 位于青藏高原北部边缘、祁连山西端的石包城‒昌马盆地内部及其边缘活动构造众多,构造活动强烈,其中的石包城-鹰嘴山断裂作为盆地内部一条规模最大的逆断裂‒褶皱带,构造变形样式复杂,断错地貌清晰.基于高精度无人机SfM(Structure-from-Motion)摄影测量,结合野外实地调查对断错地貌的精细解译,分析了石包城‒鹰嘴山断裂东段的大雪山北山断裂段的最新活动特征、构造变形样式,并利用宇宙成因核素方法对关键断错地貌面定年,进而通过对多级阶地的变形方式和变形量分析及相应的地貌面年龄,计算其晚第四纪变形速率.结果表明:大雪山北山断裂由两排断裂组成,其中前缘断裂的逆冲作用在盆地内部形成了多条逆断裂‒褶皱带,而后缘断裂则发育与褶皱作用相关的弯矩正断层,构成典型的逆断裂‒断弯褶皱组合形态.断裂活动使得前缘断裂(鲁家埃段)穿过的T3T4阶地分别产生了(6.56±0.34)m和(16.09±1.13)m的垂直位移量,结合阶地年龄计算得到该段断裂晚第四纪的垂直滑动速率约为(0.15±0.01)mm/a,水平缩短速率约为(0.12±0.02)mm/a,断裂总体逆冲速率约为(0.19±0.03)mm/a.其深部滑脱面向南延伸至野马河‒大雪山主断裂约深(2.7±0.5)km处,构成一典型的薄皮状逆断裂‒褶皱变形带,这一结构样式为该断裂系向盆地内部前展式挤压扩展的结果.

       

    • 图  1  青藏高原东北缘活动断裂分布

      F1. 阿尔金断裂;F2. 三危山断裂;F3. 南截山断裂;F4. 野马河‒大雪山断裂;F5. 昌马断裂;F6. 旱峡‒大黄沟断裂;F7. 花海断裂;F8. 玉门‒北大河断裂;F9. 黑山‒金塔南山断裂;F10. 慕少梁断裂;F11. 党河南山断裂;F12. 疏勒南山断裂;F13. 佛洞庙‒红崖子断裂;F14. 合黎山断裂;F15. 托勒山北缘断裂;F16. 肃南‒祁连断裂;F17. 榆木山断裂;F18. 龙首山断裂;F19. 桃花拉山‒阿右旗断裂;F20. 柴达木盆地北缘断裂;F21. 宗务隆山断裂;F22. 鄂拉山断裂;F23. 青海南山断裂;F24. 大通山断裂;F25. 祁连‒海原断裂;F26. 日月山断裂;F27. 皇城‒双塔断裂;F28. 河西堡‒四道山断裂;F29. 玛雅雪山断裂

      Fig.  1.  Distribution of active faults in the northeast margin of Tibetan Plateau

      图  2  昌马‒石包城盆地活动断裂分布

      Fig.  2.  Distribution of active faults in the Shibaocheng-Changma Basin

      图  3  大雪山北山断裂段空间几何展布

      Fig.  3.  The spatial geometric distribution of faults in the Daxue Shan Bei Shan Fault

      图  4  鲁家埃段高分辨率无人机影像解译及精细地貌填图

      Fig.  4.  High-resolution UAV image interpretation and detailed geomorphic mapping of the Lujiaai Section

      图  5  老洼崖河坝段高分辨率无人机影像解译及精细地貌填图

      Fig.  5.  High-resolution unmanned aerial vehicle image interpretation and detailed geomorphic mapping of Laowayaheba Section

      图  6  大雪山北山断裂红岸河坝段西侧褶皱高分辨率无人机影像解译及剖面图

      Fig.  6.  High-resolution unmanned aerial vehicle image interpretation and cross-sectional diagram of western folds in the Honganheba Section along the Daxue Shan Bei Shan Fault

      图  7  大雪山北山断裂红岸河坝段东侧褶皱高分辨率无人机影像解译及剖面图

      Fig.  7.  High-resolution unmanned aerial vehicle image interpretation and cross-sectional diagram of eastern folds in the Honganheba Section along the Daxue Shan Bei Shan Fault

      图  8  采样具体地点及照片

      Fig.  8.  Sampling specific locations and photos

      图  9  不同阶地地形点剖面

      Fig.  9.  Cross-sectional profiles of topographic points across multiple terrace levels

      图  10  鲁家埃段T4地表深部滑脱面形态

      Fig.  10.  The morphology of the deep surface detachment in the T4 of the Lujiaai Section

      图  11  断裂深部构造模型

      深部断层及电阻率修改自Meyer et al.(1998)Bedrosian et al.(2001)

      Fig.  11.  Model of deep structural faults

      表  1  10Be采样及测年信息

      Table  1.   10Be sampling and dating information

      样品编号 年龄(ka) 经度(°) 纬度(°) 海拔(m) 10Be浓度(at/g) 误差(at/g) 遮蔽系数
      23-LJA-10Be-T0 96.630 6 39.699 0 2 835 661 308.1 19 168.6 1
      23-LJA-10Be-T3 39.95±1.85 96.630 1 39.699 9 2 840 1 219 660 35 934.26 1
      23-LJA-10Be-T4 112.44±5.11 96.632 0 39.699 6 2 852 3 423 505 61 001.79 1
      下载: 导出CSV

      表  2  鲁家埃段深部滑脱面参数

      Table  2.   Parameters of deep slip surface of Lujiaai Section

      剖面编号 α2 h1(m) h2(m) H1(m) H2(m) S (m) D (m)
      P4 15°±2° 18±3 6±2 458.5±4 1 138.5±8 24.2±5 12.55±2
      P3 10°±3° 5.2±2 1.2±1 523.6±4 1 046.4±6 6.9±1 4.8±1
      下载: 导出CSV
    • Avouac, J. P., Tapponnier, P., 1993. Kinematic Model of Active Deformation in Central Asia. Geophysical Research Letters, 20(10): 895-898. https://doi.org/10.1029/93gl00128
      Bedrosian, P. A., Unsworth, M. J., Wang, F., 2001. Structure of the Altyn Tagh Fault and Daxue Shan from Magnetotelluric Surveys: Implications for Faulting Associated with the Rise of the Tibetan Plateau. Tectonics, 20(4): 474-486. https://doi.org/10.1029/2000tc001215
      Burbank, D. W., Anderson, R. S., 2013. Tectonic Geomorphology, Second Edition. Environmental & Engineering Geoscience, 19(2): 198-200. https://doi.org/10.2113/gseegeosci.19.2.198
      Chen, Y. W., Li, S. W., Yuan, D. Y., et al., 2025. Geological and Geomorphologic Evidence of Late Quaternary Activity in the Middle Segment of the Hanxia-Dahuanggou Fault in the Northern Margin of Qilian Shan. Geological Bulletin of China, 1-12 (in Chinese with English abstract). https://link.cnki.net/urlid/11.4648.P.20250115.1058.010
      Du, J. X., Fu, B. H., Guo, Q., et al., 2020. Segmentation and Termination of the Surface Rupture Zone Produced by the 1932 Ms 7.6 Changma Earthquake: New Insights into the Slip Partitioning of the Eastern Altyn Tagh Fault System. Lithosphere, 12(1): 19-39. https://doi.org/10.1130/l1113.1
      Gosse, J. C., Phillips, F. M., 2001. Terrestrial In Situ Cosmogenic Nuclides: Theory and Application. Quaternary Science Reviews, 20(14): 1475-1560. https://doi.org/10.1016/S0277-3791(00)00171-2
      He, W. G., Zhang, B., Wu, M., et al., 2018. Paleoseismology on the Yemahe Segment of the Yemahe-Daxueshan Fault Revealed by Trench Study. Seismology and Geology, 40(1): 261-275 (in Chinese with English abstract).
      Hu, X. F., Pan, B. T., Kirby, E., et al., 2015. Rates and Kinematics of Active Shortening along the Eastern Qilian Shan, China, Inferred from Deformed Fluvial Terraces. Tectonics, 34(12): 2478-2493. https://doi.org/10.1002/2015tc003978
      Kohl, C. P., Nishiizumi, K., 1992. Chemical Isolation of Quartz for Measurement of In-Situ-Produced Cosmogenic Nuclides. Geochimica et Cosmochimica Acta, 56(9): 3583-3587. https://doi.org/10.1016/0016-7037(92)90401-4
      Li, M., Xiao, Q. B., Yu, G., 2020. Electrical Structure of the Altyn Tagh Fault at the Changma Section and Its Tectonic Significance. Chinese Journal of Geophysics, 63(11): 4125-4143 (in Chinese with English abstract).
      Li, Y. K., Harbor, J., 2009. Cosmogenic Nuclides and Geomorphology: Theory, Limitations, and Applications. In: Ferrari, D. M., Guiseppi, A. R., eds., Geomorphology and Plate Tectonics. Nova Science Publishers, Hauppauge, 1-33.
      Liu, J. R., Ren, Z. K., Zheng, W. J., et al., 2020. Late Quaternary Slip Rate of the Aksay Segment and Its Rapidly Decreasing Gradient along the Altyn Tagh Fault. Geosphere, 16(6): 1538-1557. https://doi.org/10.1130/ges02250.1
      Liu, K., Li, H. B., Wang, C. Z., et al., 2019. Comprehensive Analysis of Deep and Shallow Structures in the Eastern Altyn Tagh Fault Zone. Acta Petrologica Sinica, 35(6): 1833-1847 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.06.12
      Liu, X. W., Yuan, D. Y., Yao, Y. S., et al., 2021. Paleoearthquake Characteristics in Dunhuang Segment of the Sanweishan Fault. Seismology and Geology, 43(6): 1398-1411 (in Chinese with English abstract).
      Luo, H., He, W. G., Wang, D. W., et al., 2013. Study on the Slip Rate of Changma Fault in Qilian Mountains Since Late Pleistocene. Seismology and Geology, 35(4): 765-777 (in Chinese with English abstract).
      Luo, H., He, W. G., Yuan, D. Y., et al., 2015. Slip Rate of Yema River-Daxue Mountain Fault since the Late Pleistocene and Its Implications on the Deformation of the Northeastern Margin of the Tibetan Plateau. Acta Geologica Sinica-English Edition, 89(2): 561-574. https://doi.org/10.1111/1755-6724.12447
      Luo, H., He, W. G., Yuan, D. Y., et al., 2016. New Insight on Paleoearthquake Activity along Changma Fault Zone. China Earthquake Engineering Journal, 38(4): 632-637, 668 (in Chinese with English abstract).
      Luo, H., Xu, X. W., Liu, X. L., et al., 2020. The Structural Deformation Pattern in the Eastern Segment of the Altyn Tagh Fault. Acta Geologica Sinica, 94(3): 692-706 (in Chinese with English abstract).
      Mériaux, A. S., Tapponnier, P., Ryerson, F. J., et al., 2005. The Aksay Segment of the Northern Altyn Tagh Fault: Tectonic Geomorphology, Landscape Evolution, and Holocene Slip Rate. Journal of Geophysical Research: Solid Earth, 110(B4): B04404. https://doi.org/10.1029/2004jb003210
      Meyer, B., Tapponnier, P., Bourjot, L., et al., 1998. Crustal Thickening in Gansu-Qinghai, Lithospheric Mantle Subduction, and Oblique, Strike-Slip Controlled Growth of the Tibet Plateau. Geophysical Journal International, 135(1): 1-47. https://doi.org/10.1046/j.1365-246X.1998.00567.x
      Peltzer, G., Tapponnier, P., Armijo, R., 1989. Magnitude of Late Quaternary Left-Lateral Displacements along the North Edge of Tibet. Science, 246(4935): 1285-1289. https://doi.org/10.1126/science.246.4935.1285
      Ren, G. X., 2021. Late Quaternary Activity and Tectonic Transition of the Sinistral Slip Faults, Eastern Tian Shan (Dissertation). Institute of Geology, China Earthquake Administration, Beijing (in Chinese with English abstract).
      Replumaz, A., Tapponnier, P., 2003. Reconstruction of the Deformed Collision Zone between India and Asia by Backward Motion of Lithospheric Blocks. Journal of Geophysical Research: Solid Earth, 108(B6): 2285. https://doi.org/10.1029/2001jb000661
      Royden, L. H., Burchfiel, B. C., King, R. W., et al., 1997. Surface Deformation and Lower Crustal Flow in Eastern Tibet. Science, 276(5313): 788-790. https://doi.org/10.1126/science.276.5313.788
      Tapponnier, P., Peltzer, G., Le Dain, A. Y., et al., 1982. Propagating Extrusion Tectonics in Asia: New Insights from Simple Experiments with Plasticine. Geology, 10(12): 611-616. https://doi.org/10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2 doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
      Tapponnier, P., Xu, Z. Q., Roger, F., et al., 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(5547): 1671-1677. https://doi.org/10.1126/science.105978
      Thompson, S. C., Weldon, R. J., Rubin, C. M., et al., 2002. Late Quaternary Slip Rates across the Central Tien Shan, Kyrgyzstan, Central Asia. Journal of Geophysical Research: Solid Earth, 107(B9): 2203. https://doi.org/10.1029/2001jb000596
      Wittlinger, G., Tapponnier, P., Poupinet, G., et al., 1998. Tomographic Evidence for Localized Lithospheric Shear along the Altyn Tagh Fault. Science, 282(5386): 74-76. https://doi.org/10.1126/science.282.5386.74
      Wu, M., 2017. Study on the Segmental Activities of the Yema He-Daxue Shan Fault (Dissertation). Lanzhou Institute of Seismology, China Earthquake Administration, Lanzhou (in Chinese with English abstract).
      Xu, Q., Hetzel, R., Hampel, A., et al., 2021. Slip Rate of the Danghe Nan Shan Thrust Fault from 10Be Exposure Dating of Folded River Terraces: Implications for the Strain Distribution in Northern Tibet. Tectonics, 40(4): e2020TC006584. https://doi.org/10.1029/2020tc006584
      Xu, Z. Q., Li, H. B., Tang, Z. M., et al., 2011. The Transformation of the Terrain Structures of the Tibet Plateau through Large-Scale Strike-Slip Faults. Acta Petrologica Sinica, 27(11): 3157-3170 (in Chinese with English abstract).
      Yan, B., Chen, P., Gao, Y., 2024. Stepwise Decrease in Strike-Slip Rate along the Eastern Altyn Tagh Fault and Its Relation to the Qilian Shan Thrust System, Northeastern Tibetan Plateau. Journal of Structural Geology, 179: 105037. https://doi.org/10.1016/j.jsg.2023.105037
      Zhang, B., Allen, M. B., Yao, Y. S., et al., 2024. Geometry, Slip Rate, and the Latest Earthquake of the Jinta Nanshan Fault: Interactions of the Altyn Tagh Fault and the Qilian Shan at the Northern Margin of the Tibetan Plateau. Tectonophysics, 876: 230271. https://doi.org/10.1016/j.tecto.2024.230271
      Zhang, N., 2016. Geometry and Kinematics of the Eastern End of the Algyn Tagh Fault (Dissertation). Institute of Geology, China Earthquake Administration, Beijing (in Chinese with English abstract).
      陈艳文, 李树武, 袁道阳, 等, 2025. 祁连山北缘旱峡‒大黄沟断裂中段晚第四纪活动的地质地貌证据. 地质通报, 1-12. https://link.cnki.net/urlid/11.4648.P.20250115.1058.010
      何文贵, 张波, 吴明, 等, 2018. 野马河‒大雪山断裂野马河段探槽古地震特征. 地震地质, 40(1): 261-275.
      李满, 肖骑彬, 喻国, 2020. 阿尔金走滑断裂带昌马段的电性结构样式及构造意义. 地球物理学报, 63(11): 4125-4143.
      刘亢, 李海兵, 王长在, 等, 2019. 阿尔金断裂带东段地区深浅部构造综合分析. 岩石学报, 35(6): 1833-1847.
      刘兴旺, 袁道阳, 姚赟胜, 等, 2021. 三危山断裂敦煌段古地震活动特征. 地震地质, 43(6): 1398-1411.
      罗浩, 何文贵, 王定伟, 等, 2013. 祁连山昌马断裂晚更新世滑动速率. 地震地质, 35(4): 765-777.
      罗浩, 何文贵, 袁道阳, 等, 2016. 昌马断裂带古地震活动特征的新认识. 地震工程学报, 38(4): 632-637, 668.
      罗浩, 徐锡伟, 刘小利, 等, 2020. 阿尔金断裂东段的构造转换模式. 地质学报, 94(3): 692-706.
      任光雪, 2021. 东天山左旋走滑断裂晚第四纪活动与构造转换(博士学位论文). 北京: 中国地震局地质研究所.
      吴明, 2017. 野马河‒大雪山断裂分段活动性研究(硕士学位论文). 兰州: 中国地震局兰州地震研究所.
      许志琴, 李海兵, 唐哲民, 等, 2011. 大型走滑断裂对青藏高原地体构架的改造. 岩石学报, 27(11): 3157-3170.
      张宁, 2016. 阿尔金断裂东端部的几何结构与运动特征(硕士学位论文). 北京: 中国地震局地质研究所.
    • 加载中
    图(11) / 表(2)
    计量
    • 文章访问数:  104
    • HTML全文浏览量:  8
    • PDF下载量:  9
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-07-30
    • 刊出日期:  2026-01-25

    目录

      /

      返回文章
      返回