|
An, R., Kong, L., Zhang, X., et al, 2022. Effects of Dry-wet Cycles on Three-dimensional Pore Structure and Permeability Characteristics of Granite Residual Soil Using X-ray Micro Computed Tomography. Journal of Rock Mechanics and Geotechnical Engineering, 14(3): 851–860. https://doi.org/10.1016/j.jrmge.2021.10.004 |
|
Auflič, M. J., Herrera, G., Mateos, R. M., et al., 2023. Landslide Monitoring Techniques in the Geological Surveys of Europe. Landslides, 20(5): 951–965. https://doi.org/10.1007/s10346-022-02007-1 |
|
Ayalew, L., Yamagishi, H., 2005. The Application of GIS-based Logistic Regression for Landslide Susceptibility Mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65(1): 15–31. https://doi.org/10.1016/j.geomorph.2004.06.010 |
|
Bai, H. L., 2022. Study on rainfall initiation mechanism and early-warning modelof granite residual soil landslide (Dissertation). Chengdu University of Technology(in Chinese with English abstract). |
|
Bai, J., Ju, N. P., Zhang, C. Q., et al., 2020. Characteristics and Successful Early Warning Case of Xingyi Landslide in Guizhou Province. Journal of Engineering Geology, 28(6): 1246–1258(in Chinese with English abstract). |
|
Bru, G., Fernández-Merodo, J. A., García-Davalillo, J. C., et al., 2018. Site Scale Modeling of Slow-moving Landslides, A 3D Viscoplastic Finite Element Modeling Approach. Landslides, 15(2): 257–272. https://doi.org/10.1007/s10346-017-0867-y |
|
Bui, D. T., Tsangaratos, P., Nguyen, V. T., et al., 2020. Comparing the Prediction Performance of a Deep Learning Neural Network Model with Conventional Machine Learning Models in Landslide Susceptibility Assessment. Catena, 188: 104426. https://doi.org/10.1016/j.catena.2019.104426 |
|
Chen, B., Zhang, C. C., Li, Z. H., et al., 2024. Developmental Characteristics and Controlling Factors of Landslides Triggered by Extreme Rainfalls on 16 June 2024 in Longyan,Fujian Province. Geomatics and Information Science of Wuhan University, 49(11): 2145–2155(in Chinese with English abstract). |
|
Chen, S., Liu, H. J., You, Y. L., et al., 2014. Evaluation of High-Resolution Precipitation Estimates from Satellites during July 2012 Beijing Flood Event Using Dense Rain Gauge Observations. Plos One, 9(4): e89681. https://doi.org/10.1371/journal.pone.0089681 |
|
Chen, X. H., Ma, T. H., Li, C. J., et al., 2018. The Catastrophic 13 November 2015 Rock-debris Slide in Lidong, South-western Zhejiang (China): A Landslide Triggered by a Combination of Antecedent Rainfall and Triggering Rainfall. Geomatics, Natural Hazards and Risk, 9(1): 608–623. https://doi.org/10.1080/19475705.2018.1455750 |
|
Conforti, M., Pascale, S., Robustelli, G., et al., 2014. Evaluation of Prediction Capability of the Artificial Neural Networks for Mapping Landslide Susceptibility in the Turbolo River Catchment (Northern Calabria, Italy). Catena, 113: 236–250. https://doi.org/10.1016/j.catena.2013.08.006 |
|
Cong, W. Q., Li, T. F., Pan, M., et al., 2008. Research on Dynamic Predictive Model of Regional Rainfall- Triggered Geologic Hazard Based on Unsaturated Flow Theory. Acta Scientiarum Naturalium Universitatis Pekinensis, 44(2): 212–216(in Chinese with English abstract). |
|
Dai, H. C., 2022. Study on formation mechanism and movement process of landslide debris flow in No. 1 gully of Mibei village, Longchuan County (Dissertation). Chengdu University of Technology(in Chinese with English abstract). |
|
Deng, Z. C., Lan, H. X., Li, L. P., et al., 2025. Vegetation-induced Modifications in Hydrological Processes and the Consequential Dynamic Effects of Slope Stability. Catena, 251: 108793. https://doi.org/10.1016/j.catena.2025.108793 |
|
Ding, H., Xue, L., Shang, J. S., et al., 2024. Study on Synergistic Action of Tap-like Arbor Root System and Anti-slide piles by Physical Model Experiment of Landslides. Landslides, 21(7): 1707–1717. https://doi.org/10.1007/s10346-024-02248-2 |
|
Dou, H. Q., Jian, W. X., Wang, H., et al., 2023. Review of failure mechanism and early warning model of landslides induced by typhoon and associated rainstorm in high vegetation coverage area. Journal of Natural Disasters, 32(2): 1–15(in Chinese with English abstract). |
|
Dou, J., Xiang, Z. L., Xu, Q., et al., 2023. Application and Development Trend of Machine Learning in Landslide Intelligent Disaster Prevention and Mitigation. Earth Science, 48(5): 1657–1674(in Chinese with English abstract). |
|
Dou, J., Yamagishi, H., Pourghasemi, H. R., et al., 2015. An Integrated Artificial Neural Network Model for the Landslide Susceptibility Assessment of Osado Island, Japan. Natural Hazards, 78(3): 1749–1776. https://doi.org/10.1007/s11069-015-1799-2 |
|
El-Hadidy, S. M., 2021. The Relationship between Urban Heat Islands and Geological Hazards in Mokattam Plateau, Cairo, Egypt. The Egyptian Journal of Remote Sensing and Space Science, 24(3): 547–557. https://doi.org/10.1016/j.ejrs.2021.02.004 |
|
Feng, H. J., Zhou, A. G., Tang, X. M., et al., 2017. Susceptibility Analysis of Factors Controlling Rainfalltriggered Landslides Using Certainty Factor Method. Journal of Engineering Geology, 25(2): 436–446(in Chinese with English abstract). |
|
Feng, W. K., Bai, H. L., Lan, B., et al., 2022. Spatial–temporal Distribution and Failure Mechanism of Group-occurring Landslides in Mibei village, Longchuan County, Guangdong, China. Landslides, 19(8): 1957–1970. https://doi.org/10.1007/s10346-022-01904-9 |
|
Feng, W. K., Hu, R., Bai, H. L., et al., 2022. Formation Mechanism of Rainfall Residual Layer of Granite Landslide. Science Technology and Engineering, 22(18): 7799–7809(in Chinese with English abstract). |
|
Feng, W. K., Zhao, J. C., Yi, X. Y., et al., 2025. Characteristics and Drivers of Clustered Landslides Induced by the Extreme Rainstorm on June 16 in the Fujian-Guangdong-Jiangxi Junction Area. Earth Science, 2025-06-03: 1-16. (in Chinese with English abstract). |
|
Ferrario, M. F., Livio, F., 2024. Rapid Mapping of Landslides Induced by Heavy Rainfall in the Emilia-Romagna (Italy) Region in May 2023. Remote Sensing, 16(1): 122. https://doi.org/10.3390/rs16010122 |
|
Gan, B. R., Yang, X. G., Zhou, J. W., 2019. GIS-based Remote Sensing Analysis of the Spatial-temporal Evolution of Landslides in A Hydropower Reservoir in Southwest China. Geomatics, Natural Hazards and Risk, 10(1): 2291–2312. https://doi.org/10.1080/19475705.2019.1685599 |
|
Gariano, S. L., Guzzetti, F., 2016. Landslides in A Changing Climate. Earth Science Reviews, 162: 227–252. https://doi.org/10.1016/j.earscirev.2016.08.011 |
|
Goetz, J. N., Brenning, A., Petschko, H., et al., 2015. Evaluating Machine Learning and Statistical Prediction Techniques for Landslide Susceptibility Modeling. Computers & Geosciences, 81: 1–11. https://doi.org/10.1016/j.cageo.2015.04.007 |
|
Gonzalez, F. C. G., Cavacanti, M. D. C. R., Nahas Ribeiro, W., et al., 2024. A Systematic Review on Rainfall Thresholds for Landslides Occurrence. Heliyon, 10(1): e23247. https://doi.org/10.1016/j.heliyon.2023.e23247 |
|
Gu, T. F., Wang, J. D., Lin, H., et al., 2021. The Spatiotemporal Relationship between Landslides and Mechanisms at the Heifangtai Terrace, Northwest China. Water, 13(22): 3275. https://doi.org/10.3390/w13223275 |
|
Guillard, C., Zezere, J., 2012. Landslide Susceptibility Assessment and Validation in the Framework of Municipal Planning in Portugal: The Case of Loures Municipality. Environmental Management, 50(4): 721–735. https://doi.org/10.1007/s00267-012-9921-7 |
|
Habumugisha, J. M., Chen, N. S., Rahman, M., et al., 2022. Landslide Susceptibility Mapping with Deep Learning Algorithms. Sustainability, 14(3): 1734. https://doi.org/10.3390/su14031734 |
|
Han, S., Liu, M. J., Wu, J. B., et al., 2022. Risk assessment of slope disasters induced by typhoon-rainfall in the southeast coastal area, China: A case study of the Shiyang north slope. Journal of Geomechanics, 28(4): 583–595(in Chinese with English abstract). |
|
Havenith, H.B., Torgoev, A., Schlögel, R., et al., 2015. Tien Shan Geohazards Database: Landslide Susceptibility Analysis. Geomorphology, 249: 32–43. https://doi.org/10.1016/j.geomorph.2015.03.019 |
|
He, M. C., Ren, S. L., Tao, Z. G., 2021. Remote monitoring and forecasting system of Newton force for landslide geological hazards and its engineering application. Chinese Journal of Rock Mechanics and Engineering, 40(11): 2161–2172(in Chinese with English abstract). |
|
Hencher, S. R., 2010. Preferential Flow Paths Through Soil and Rock and Their Association with Landslides. Hydrological Processes, 24(12): 1610-1630. https://doi.org/10.1002/hyp.7721 |
|
Hu, B. L., Su, L. J., Zhang, C. L., et al., 2024. Mobility Characteristics of Rainfall-triggered Shallow Landslides in a Forest Area in Mengdong, China. Landslides, 21(9): 2101–2117. https://doi.org/10.1007/s10346-024-02267-z |
|
Huang, F. M., Chen, J. W., Liu, W. P., et al., 2022. Regional Rainfall-induced Landslide Hazard Warning Based on Landslide Susceptibility Mapping and A Critical Rainfall Threshold. Geomorphology, 408: 108236. https://doi.org/10.1016/j.geomorph.2022.108236 |
|
17-9778-0 |
|
Huang, Y., He, Z. Y., 2025. Research progress on rainfall-triggered landslide risk assessment under the context of climate change. The Chinese Journal of Geological Hazard and Control, 36(2): 13-27(in Chinese with English abstract). |
|
Iverson, R. M., 2000. Landslide Triggering by Rain Infiltration. Water Resources Research, 36(7): 1897–1910. https://doi.org/10.1029/2000WR900090 |
|
Jian, W. B., Hu, H. R., Luo, Y. H., et al., 2017. Experimental Study on Deterioration of Granitic Residual Soil Strength in Wetting-Drying Cycles. Journal of Engineering Geology, 25(3): 592–597(in Chinese with English abstract). |
|
Jiang, T., Cui, S. H., Ran, Y., 2023. Analysis of landslide mechanism induced by excavation and rainfall: A case study of the Qianjin square landslide in Wanyuan City, Sichuan Province. The Chinese Journal of Geological Hazard and Control, 34(3): 20-30(in Chinese with English abstract). |
|
Jiang, T., Li, L. F., Xue, L., et al., 2022. Physical Model Experiment on Slope Protection Effect of Arbor Species System. Science Technology and Engineering, 22(35): 15546–15553(in Chinese with English abstract). |
|
Kang, C., Chen, W. W., Zhang, F. Y., et al., 2011. Application of deterministic model to analyzing stability of hillslope of loess gully area. Rock and Soil Mechanics, 32(1): 207–210, 260(in Chinese with English abstract). |
|
Kang, J. T., Wu, Q., Tang, H. M., et al., 2019. Strength Degradation Mechanism of Soft and Hard Interbedded Rock Masses of Badong Formation Caused by Rock/Discontinuity Degradation. Earth Science, 44(11): 3950-3960(in Chinese with English abstract). |
|
Kuang, J. M., Ng, A. H. M., Ge, L. L., 2022. Displacement Characterization and Spatial-Temporal Evolution of the 2020 Aniangzhai Landslide in Danba County Using Time-Series InSAR and Multi-Temporal Optical Dataset. Remote Sensing, 14(1): 68. https://doi.org/10.3390/rs14010068 |
|
Kuradusenge, M., Kumaran, S., Zennaro, M., 2020. Rainfall-Induced Landslide Prediction Using Machine Learning Models: The Case of Ngororero District, Rwanda. International Journal of Environmental Research and Public Health, 17(11): 4147. https://doi.org/10.3390/ijerph17114147 |
|
Laimer, H. J., 2017. Anthropogenically Induced Landslides – A Challenge for Railway Infrastructure in Mountainous Regions. Engineering Geology, 222: 92–101. https://doi.org/10.1016/j.enggeo.2017.03.015 |
|
Lan, H. X., Wang, L. J., Zhou, C. H., 2003. Study on the key landslide factor by means of GlS in Xiaojiang Valley, Yunnan. The Chinese Journal of Geological Hazard and Control, 14(1): 103-109(in Chinese with English abstract). |
|
23-02568-0 |
|
Lei, W. K., Dong, H. Y., Chen, P., et al., 2020. Improved Green-Ampt infiltration model of soil slope considering inclination. Hydro-Science and Engineering, 6: 101–107(in Chinese). |
|
Li, C. S., Kong, L. W., Zhang, B. X., et al., 2024. Determination of Damage Evolution Characteristics in Granite Residual Soil Shear Bands by Micro-CT-based Advanced Digital Volume Correlation. Engineering Geology, 333: 107505. https://doi.org/10.1016/j.enggeo.2024.107505 |
|
Li, C., Zhang, R. T., Zhu, J. B., et al., 2024. Model Test Study on Response of Weathered Rock Slope to Rainfall Infiltration under Different Conditions. Journal of Earth Science, 35(4): 1316-1333. https://doi.org/10.1007/s12583-022-1704-3 |
|
Li, K., Sun, P., Wang, H. J., et al., 2024. Insight into Failure Mechanisms of Rainfall Induced Mudstone Landslide Controlled by Structural Planes: from Laboratory Experiments. Engineering Geology, 343: 107774. https://doi.org/10.1016/j.enggeo.2024.107774 |
|
Li, M. H., Zhang, L., Dong, J., et al., 2019. Characterization of pre- and post-failure displacements of the Huangnibazi landslide in Li County with multi-source satellite observations. Engineering Geology, 257: 105140. https://doi.org/10.1016/j.enggeo.2019.05.017 |
|
Li, Q. Q., Wang, W., Huang, L., et al., 2022. Analysis on lag effect of typhoon-induced landslide: A case study of typhoon “Lekima” in Qingtian County, Zhejiang Province. The Chinese Journal of Geological Hazard and Control, 33(6): 10–19(in Chinese with English abstract). |
|
Li, T. F., Li, X., Yuan, W. N., et al., 2011. Current Status and Prospects of Landslide Geohazards Induced by Underground Mining. Journal of Engineering Geology, 19(06): 831-838(in Chinese with English abstract). |
|
Liu, C., Shi, B., Shao, Y. X., et al., 2013. Experimental and Numerical Investigation of the Effect of the Urban Heat Island on Slope Stability. Bulletin of Engineering Geology and the Environment, 72(3): 303–310. https://doi.org/10.1007/s10064-013-0476-5 |
|
Liu, G., Wang, B., Sun, Q., et al., 2025. New Insights Into the Reservoir Landslide Deformation Mechanism From InSAR and Numerical Simulation Technology. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 18: 2908–2927. https://doi.org/10.1109/JSTARS.2024.3523294 |
|
Liu, Y. H., Ma, S. W., Dong, L. H., et al., 2024. A comparative study of regional rainfall-induced landslide early warning models based on RF、 CNN and MLP algorithms. Frontiers in Earth Science, 12: 1419421. https://doi.org/10.3389/feart.2024.1419421 |
|
Liu, W. P., Song, X. Q., Luo, J., et al., 2020. The Processes and Mechanisms of Collapsing Erosion for Granite Residual Soil in Southern China. Journal of Soils and Sediments, 20(2): 992–1002. https://doi.org/10.1007/s11368-019-02467-4 |
|
Liu, Y. H., Fang, R. K., Su, Y. C., et al., 2021. Machine learning Based Model for Warning of Regional Landslide Disasters. Journal of Engineering Geology, 29(1): 116–124(in Chinese with English abstract). |
|
Liu, Y. H., Wen, M. S., Su, Y. C., et al., 2016. Characteristics of geo-hazards induced by typhoon rainstorm and evaluation of geo-hazards early warning. Hydrogeology & Engineering Geology, 43(5): 119–126(in Chinese with English abstract). |
|
Lo, C. M., Lee, C. F., Huang, W. K., 2016. Failure Mechanism Analysis of Rainfall-induced Landslide at Pingguang Stream in Taiwan: Mapping, Investigation, and Numerical Simulation. Environmental Earth Sciences, 75(21): 1422. https://doi.org/10.1007/s12665-016-6228-7 |
|
Lollino, P., Cotecchia, F., Elia, G., et al., 2016. Interpretation of Landslide Mechanisms Based on Numerical Modelling: Two Case-histories. European Journal of Environmental and Civil Engineering, 20(9): 1032–1053. https://doi.org/10.1080/19648189.2014.985851 |
|
Lucieer, A., Jong, S. M. D., Turner, D., 2014. Mapping Landslide Displacements Using Structure from Motion (SfM) and Image Correlation of Multi-temporal UAV Photography. Progress in Physical Geography, 38(1): 97–116. https://doi.org/10.1177/0309133313515293 |
|
Luo, Y., He, S. M., He, J. C., 2014. Effect of Rainfall Patterns on Stability of Shallow Landslide. Earth Science-Journal of China University of Geosciences, 39(9): 1357–1363(in Chinese with English abstract). |
|
Lv, Q., Wu, J. Y., Liu, Z. H., et al., 2024. The Fuyang Shallow Landslides Triggered by an Extreme Rainstorm on 22 July 2023 in Zhejiang, China. Landslides, 21(11): 2725–2740. https://doi.org/10.1007/s10346-024-02314-9 |
|
Ma, T. H., Li, C. J., Lu, Z. M., et al., 2015. Rainfall Intensity–duration Thresholds for the Initiation of Landslides in Zhejiang Province, China. Geomorphology, 245: 193–206. https://doi.org/10.1016/j.geomorph.2015.05.016 |
|
Ma, X. J., Yu, Z. H., Liu, M., et al., 2025. Mechanical Properties and Critical State Characteristics of Maize Root-soil Composites at Different Soil Depths. Biosystems Engineering, 250: 163–173. https://doi.org/10.1016/j.biosystemseng.2024.12.014 |
|
Ma, Y., Yu, B., He, Y. X., et al., 2023. Rainfall threshold and development characteristics of shallow landslides induced by rainfall: A case study of the "June 10th, 2019" disaster in the Dajishan area, Quannan County, Jiangxi Province. Geology and Exploration, 59(5): 1065–1073(in Chinese). |
|
Manconi, A., Giordan, D., 2016. Landslide Failure Forecast in Near-real-time. Geomatics, Natural Hazards and Risk, 7(2): 639–648. https://doi.org/10.1080/19475705.2014.942388 |
|
Marjanović, M., Kovačević, M., Bajat, B., et al., 2011. Landslide Susceptibility Assessment Using SVM Machine Learning Algorithm. Engineering Geology, 123(3): 225–234. https://doi.org/10.1016/j.enggeo.2011.09.006 |
|
Martelloni, G., Segoni, S., Fanti, R., et al., 2012. Rainfall Thresholds for the Forecasting of Landslide Occurrence at Regional Scale. Landslides, 9(4): 485–495. https://doi.org/10.1007/s10346-011-0308-2 |
|
Meng, S. Y., Zhang, T. Y., Zhao, G. Q., et al., 2025. Time-varying Mechanisms of Hydraulic Properties of Root-soil Composites under Plant Root Decay. Journal of Hydrology, 658: 133192. https://doi.org/10.1016/j.jhydrol.2025.133192 |
|
Meng, Z., Wu, Q., Lu, S., et al., 2022. Investigation on Microstructure Deterioration of Sliding-prone Formation in Badong Formation Based on CT Scanning. Safety and Environmental Engineering, 29(4): 11–23, 45(in Chinese with English abstract). |
|
Moradi, S., Huisman, J. A., Vereecken, H., et al., 2024. Comparing Different Coupling and Modeling Strategies in Hydromechanical Models for Slope Stability Assessment. Water, 16(2): 312. https://doi.org/10.3390/w16020312 |
|
Ng, C. W. W., Wang, B., Tung, Y. K., 2001. Three-dimensional Numerical Investigations of Groundwater Responses in an Unsaturated Slope Subjected to Various Rainfall Patterns. Canadian Geotechnical Journal, 38(5): 1049–1062. https://doi.org/10.1139/t01-057 |
|
Nie, W., Tian, C. C., Song, D. Q., et al., 2025. Disaster Process and Multisource Information Monitoring and Warning Method for Rainfall-triggered Landslide: a Case Study in the Southeastern Coastal Area of China. Natural Hazards, 121(3): 2535–2564. https://doi.org/10.1007/s11069-024-06897-3 |
|
Pradhan, B., Lee, S., 2010. Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environmental Modelling & Software, 25(6): 747–759. https://doi.org/10.1016/j.envsoft.2009.10.016 |
|
Prasetyaningtiyas, G. A., Kamchoom, V., Leung, A. K., et al., 2024. Hydromechanical Behaviour of A Slope Reinforced by Grass Roots under Rainfall Conditions. Ecological Engineering, 209: 107427. https://doi.org/10.1016/j.ecoleng.2024.107427 |
|
23-02064-0 |
|
Rossi, M., Luciani, S., Valigi, D., et al., 2017. Statistical Approaches for the Definition of Landslide Rainfall Thresholds and Their Uncertainty Using Rain Gauge and Satellite Data. Geomorphology, 285: 16–27. https://doi.org/10.1016/j.geomorph.2017.02.001 |
|
Sameen, M. I., Pradhan, B., Lee, S., 2020. Application of Convolutional Neural Networks Featuring Bayesian Optimization for Landslide Susceptibility Assessment. Catena, 186: 104249. https://doi.org/10.1016/j.catena.2019.104249 |
|
Sato, T,, Shuin, Y., 2025. Variation in the frequency and characteristics of landslides in response to changes in forest cover and rainfall in Japan over the last century: A literature review. Catena, 249: 108639. https://doi.org/10.1016/j.catena.2024.108639 |
|
Scaringi, G., Fan, X. M., Xu, Q., et al., 2018. Some Considerations on the Use of Numerical Methods to Simulate Past Landslides and Possible New Failures: the Case of the Recent Xinmo Landslide (Sichuan, China). Landslides, 15(7): 1359–1375. https://doi.org/10.1007/s10346-018-0953-9 |
|
Segoni, S., Piciullo, L., Gariano, S. L., 2018. A Review of the Recent Literature on Rainfall Thresholds for Landslide Occurrence. Landslides, 15(8): 1483–1501. https://doi.org/10.1007/s10346-018-0966-4 |
|
Segoni, S., Ajin, R. S., Nocentini, N., et al., 2024. Insights Gained from the Review of Landslide Susceptibility Assessment Studies in Italy. Remote Sensing, 16(23): 4491. https://doi.org/10.3390/rs16234491 |
|
Shen, J., Dong, Y. S., Jian, W. B., et al., 2020. Study on Evolution Process of Landslides Triggering by Typhoon Rainstorm. Journal of Engineering Geology, 28(6): 1290–1299(in Chinese with English abstract). |
|
Singh, A. K., 2010. Landslide Management: Concept and Philosophy. Disaster Prevention and Management, 19(1): 119–134. https://doi.org/10.1108/09653561011022180 |
|
Song, X. H., Tan, Y., 2024. Experimental Study on the Stability of Vegetated Earthen Slopes under Intense Rainfall. Soil and Tillage Research, 238: 106028. https://doi.org/10.1016/j.still.2024.106028 |
|
Song, X. H., Tan, Y., Lu, Y., 2024. Microscopic Analyses of the Reinforcement Mechanism of Plant Roots in Different Morphologies on the Stability of Soil Slopes under Heavy Rainfall. Catena, 241: 108018. https://doi.org/10.1016/j.catena.2024.108018 |
|
Sun, D. L., Wen, H. J., Wang, D. Z., et al., 2020. A Random Forest Model of Landslide Susceptibility Mapping Based on Hyperparameter Optimization Using Bayes Algorithm. Geomorphology, 362: 107201. https://doi.org/10.1016/j.geomorph.2020.107201 |
|
Sun, Q., Zhang, T. L., Wu, J. B., et al., 2022. Promoting effect of vegetation on the landslide induced by typhoon rainstorm. Geological Survey of China, 9(4): 66–73(in Chinese). |
|
41. https://doi.org/10.1007/s10346-024-02403-9 |
|
Tang, H. M., Wasowski, J., Juang, C. H., 2019. Geohazards in the Three Gorges Reservoir Area, China – Lessons Learned from Decades of Research. Engineering Geology, 261: 105267. https://doi.org/10.1016/j.enggeo.2019.105267 |
|
Terajima, T., Miyahira, E., Miyajima, H., et al., 2014. How Hydrological Factors Initiate Instability in A Model Sandy Slope. Hydrological Processes, 28(23): 5711–5724. https://doi.org/10.1002/hyp.10048 |
|
Thai Pham, B., Shirzadi, A., Shahabi, H., et al., 2019. Landslide Susceptibility Assessment by Novel Hybrid Machine Learning Algorithms. Sustainability, 11(16): 4386. https://doi.org/10.3390/su11164386 |
|
Thirugnanam, H., Uhlemann, S., Reghunadh, R., et al., 2022. Review of Landslide Monitoring Techniques With IoT Integration Opportunities. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15: 5317–5338. https://doi.org/10.1109/JSTARS.2022.3183684 |
|
Tien Bui, D., Pradhan, B., Lofman, O., et al., 2012. Landslide Susceptibility Assessment in the Hoa Binh Province of Vietnam: A Comparison of the Levenberg–Marquardt and Bayesian Regularized Neural Networks. Geomorphology, 171–172: 12–29. https://doi.org/10.1016/j.geomorph.2012.04.023 |
|
Tsai, T. L., 2008. The Influence of Rainstorm Pattern on Shallow Landslide. Environment Geology, 53(7): 1563–1569. https://doi.org/10.1007/s00254-007-0767-x |
|
Wang, F., Chen, F., Deng, H., et al., 2024. An Improved Monitoring Strategy for Shallow Rainfall-induced Landslides under Critical Site-specific Recognition. Landslides, 21(10): 2569–2581. https://doi.org/10.1007/s10346-024-02298-6 |
|
Wang, L., Zhang, K. Y., Chen, Y. S., et al., 2024. Progressive Deformation Mechanism of Colluvial Landslides Induced by Rainfall: Insights from Long-term Field Monitoring and Numerical Study. Landslides, 21(12): 3069–3086. https://doi.org/10.1007/s10346-024-02344-3 |
|
Wang, S. B., Zhuang, J. Q., Zheng, J., et al., 2022. Landslides Susceptibility Evaluation Based on Deeplearning Along Kangding-Litang Section of CE Railway. Journal of Engineering Geology, 30(3): 908–919(in Chinese with English abstract). |
|
Wang, W., Yuan, W. Y., Zou, L. F., et al., 2022. Comprehensive regional-scale early warning of water-induced landslides in reservoir areas based on landslide susceptibility assessment. Chinese Journal of Rock Mechanics and Engineering, 41(3): 479–491(in Chinese with English abstract). |
|
Wang, X., Chen, X. Q., Chen, H. Y., et al., 2024. Influence Mechanism of Herbaceous Plants on Debris Flow Bank Erosion. Catena, 245: 108308. https://doi.org/10.1016/j.catena.2024.108308 |
|
Wang, Y., Fang, Z. C., Niu, R. Q., et al., 2021. Landslide susceptibility analysis based on deep learning. Journal of Geo - information Science, 23(12): 2244–2260(in Chinese with English abstract). |
|
Wang, Y., Xu, D., Yang, Y., et al., 2024. A typhoon-induced debris flow warning model integrating rainfall thresholds with geological factors. Frontiers in Earth Science, 12: 1443738. https://doi.org/10.3389/feart.2024.1443738 |
|
Wang, Z. B., Zou, Y. S., Li, B., et al., 2020. Micro-structure and Evolution of Relict Joints and Weathered Granite Soils in the Southeastern Guangxi,China. Journal of Earth Sciences and Environment, 42(3): 405–415(in Chinese with English abstract). |
|
Watakabe T., Matsushi Y., 2019. Lithological controls on hydrological processes that trigger shallow landslides: Observations from granite and hornfels hillslopes in Hiroshima, Japan. Catena, 180: 55-68. https://doi.org/10.1016/j.catena.2019.04.010 |
|
Wei, X. P., Zheng, Z. W., Zhou, Z. H., et al., 2024. Research on risk early warning for rainfall-induced shallow landslides in Guangdong Province based on a dynamic slope instability model. The Chinese Journal of Geological Hazard and Control, 35(2): 30–39(in Chinese with English abstract). |
|
Wu Q., Wang D., Tang H. M., et al., 2023b. Strength Deterioration Characteristics of Soft and Hard Interbedded Rock Masses in Three Gorges Reservoir Area Induced by Wetting-Drying Cycles. Journal of Earth Science. http://kns.cnki.net/kcms/detail/42.1788.P.20230827.1657.002.html. |
|
Wu, C. H., Lin, C. Y., 2021. Spatiotemporal Hotspots and Decadal Evolution of Extreme Rainfall-Induced Landslides: Case Studies in Southern Taiwan. Water, 13(15): 2090. https://doi.org/10.3390/w13152090 |
|
Wu, Q., Liu, Y. X., Tang, H. M., et al., 2023a. Experimental Study of the Influence of Wetting and Drying Cycles on the Strength of Intact Rock Samples from A Red Stratum in the Three Gorges Reservoir Area. Engineering Geology, 314: 107013. https://doi.org/10.1016/j.enggeo.2023.107013 |
|
Wu, Q., Liu, Z. Q., Tang, H. M., et al., 2024a. Experimental investigation on shear strength deterioration at the interface between different rock types under cyclic loading. Journal of Rock Mechanics and Geotechnical Engineering, 16(8): 3063–3079. https://doi.org/10.1016/j.jrmge.2023.11.019 |
|
Wu, Q., Meng, Z., Tang, H. M., et al., 2022. Experimental investigation on weakening of discontinuities at the interface between different rock types induced by wetting and drying cycles. Rock Mechanics Rock Engineering, 55(3): 1179-1195.https://doi.org/10.1007/s00603-021-02731-5 |
|
Wu, Q., Qin, Y., Tang, H. M., et al., 2024b. Influence of Wetting and Drying Cycles on the Shear Behavior of Discontinuities Between Two Different Rock Types with Various Surface Topographies. Acta Geotechnica, 19: 7125-7147. https://doi.org/10.1007/s11440-024-02332-w |
|
Wu, Q., Zhang, B., Tang, H. M., et al., 2023c. Theoretical Study on Stability Evolution of Soft and Hard Interbedded Bedding Reservoir Slopes. Journal of Mountain Science, 20(9): 2744–2755. https://doi.org/10.1007/s11629-023-8073-y |
|
Wu, R. Z., Hu, X. D., Mei, H. B., et al., 2021. Spatial Susceptibility Assessment of Landslides Based on Random Forest:A Case Study from Hubei Section in the Three Gorges Reservoir Area. Earth Science, 46(1): 321–330(in Chinese with English abstract). |
|
Wu, S. B., Liao, L. P., Wei, Y., et al., 2020. Effect of Initial Dry Density on Initiation Mode of Rainfall-Induced Granite Residual Soil Landslide,Southeastern Guangxi Province, China. Mountain Research, 38(6): 881–893(in Chinese). |
|
Xia, M., Wang, J. D., Gu, T. F., et al., 2013. Evaluation of shallow loess landslide destruction probability based on TRIGRS model. Journal of Lanzhou University (Natural Sciences), 49(4): 453–458(in Chinese with English abstract). |
|
Xiao, T., Zhang, L. M., 2023. Data-driven Landslide Forecasting: Methods, Data Completeness, and Real-time Warning. Engineering Geology, 317: 107068. https://doi.org/10.1016/j.enggeo.2023.107068 |
|
Xie, M. L., Zhao, J. J., Ju, N. P., et al., 2020. Research on Temporal and Spatial Evolution of Landslide Based on Multisource Data: A Case Study of Huangnibazi Landslide. Geomatics and Information Science of Wuhan University, 45(6): 923–932(in Chinese). |
|
Xie, W. L., Guo, Q. Y., Wu, J. Y., et al., 2021. Analysis of Loess Landslide Mechanism and Numerical Simulation Stabilization on the Loess Plateau in Central China. Natural Hazards, 106(1): 805–827. https://doi.org/10.1007/s11069-020-04492-w |
|
Xu, Q., Xu, F. S., Pu, C. H., et al., 2024. Preliminary Analysis of Extreme Rainfall-Induced Cluster Landslides in Jiangwan Township, Shaoguan, Guangdong, April 2024. Geomatics and Information Science of Wuhan University, 49(8): 1264–1274(in Chinese with English abstract). |
|
Yalcin, A., 2008. GIS-based Landslide Susceptibility Mapping Using Analytical Hierarchy Process and Bivariate Statistics in Ardesen (Turkey): Comparisons of Results and Confirmations. Catena, 72(1): 1–12. https://doi.org/10.1016/j.catena.2007.01.003 |
|
Yang, G. L., Zhao, L. H., Qin, Y. G., et al., 2025. Clustered Landslides Induced by Rainfall in Jiangwan Town, Shaoguan City, Guangdong Province, China. Landslides, 22: 1325-1338. https://doi.org/10.1007/s10346-025-02463-5 |
|
Yang, P. Z., Cui, S. H., Pei, X. J., et al., 2023. Deformation and evolution of large dumping bodies based on SBAS-InSAR and optical remote sensing images. Bulletin of Geological Science and Technology, 42(6): 63–75(in Chinese with English abstract). |
|
Yang, Z. X., Wang, L. Y., Shi, L. L., et al., 2020. Research of monitoring and early warning methods for rainfall-induced landslides based on multivariate thresholds. Chinese Journal of Rock Mechanics and Engineering, 39(2): 272–285(in Chinese with English abstract). |
|
Yao, Z. Y., 2018. Susceptibility Assessment of Shallow Landslides in Chenxi County Based on SINMAP and TRIGRS Models (Dissertation). China University of Geosciences (Beijing)(in Chinese with English abstract). |
|
Yilmaz, I., 2009. Landslide Susceptibility Mapping Using Frequency Ratio, Logistic Regression, Artificial Neural Networks and Their Comparison: A Case Study from Kat Landslides (Tokat—Turkey). Computers & Geosciences, 35(6): 1125–1138. https://doi.org/10.1016/j.cageo.2008.08.007 |
|
Yu, P., Shi, W. Q., Cao, Z. H., et al., 2024. Numerical Analysis of Seepage Field Response Characteristics of Weathered Granite Landslides under Fluctuating Rainfall Conditions. Water, 16(14): 1996. https://doi.org/10.3390/w16141996 |
|
Yuliana, Y., Apriyono, A., Kamchoom, V., et al., 2025. Seasonal Dynamics of Root Growth and Desiccation Cracks and Their Effects on Soil Hydraulic Conductivity. Engineering Geology, 349: 107973. https://doi.org/10.1016/j.enggeo.2025.107973 |
|
Yuliza, E., Habil, H., Munir, M. M., et al., 2016. Study of Soil Moisture Sensor for Landslide Early Warning System: Experiment in Laboratory Scale. Journal of Physics: Conference Series, 739: 012034. https://doi.org/10.1088/1742-6596/739/1/012034 |
|
Zeng, X. X., Liu, J., Lai, B., et al., 2024. Study on warning rainfall threshold for rainfall-induced collapses and landslide geological hazards in Zhuhai City, Guangdong Province. The Chinese Journal of Geological Hazard and Control, 35(5): 141–150(in Chinese with English abstract). |
|
Zhang, H. Y., Jian, W. X., Yang, T., et al., 2022. Monitoring and Early Warning of Tanjiawan Landslide in Zigui, Three Gorges Reservoir Region under Rainfall Effect. Safety and Environmental Engineering, 29(4): 129–138(in Chinese with English abstract). |
|
Zhang, J. J, Qiu, H. J., Tang, B. Z., et al., 2022. Accelerating Effect of Vegetation on the Instability of Rainfall-Induced Shallow Landslides. Remote Sensing, 14: 5743. https://doi.org/10.3390/rs14225743 |
|
Zhang, M., Yang, L., Ren, X. W., et al., 2019. Field Model Experiments to Determine Mechanisms of Rainstorm-induced Shallow Landslides in the Feiyunjiang River Basin, China. Engineering Geology, 262: 105348. https://doi.org/10.1016/j.enggeo.2019.105348 |
|
Zhang, Q., Bai, Z. W., Huang, G. W., et al., 2022. Review of GNSS landslide monitoring and early warning. Acta Geodaetica et Cartographica Sinica, 51(10): 1985–2000(in Chinese with English abstract). |
|
Zhang, S., Tang, H. M., 2013. Experimental study of disintegration mechanism for unsaturated granite residual soil. Rock and Soil Mechanics, 34(6): 1668–1674(in Chinese with English abstract). |
|
Zhang, T. L., Zhou, A. G., Sun, Q., et al., 2017. Characteristics of the Groundwater Seepage and Failure Mechanisms of Landslide Induced by Typhoon Rainstorm. Earth Science, 42(12): 2354–2362(in Chinese with English abstract). |
|
Zhou, S. K., Liu, Z. H., Yu, F. H., et al., 2024. Exploration and practice of integrated construction of meteorological risk warning for geological hazards in Zhejiang Province. The Chinese Journal of Geological Hazard and Control, 35(2): 21–29(in Chinese with English abstract). |
|
Zhou, Y., Wang, D. L., Wang, X., 2015. Parametric Analysis of Influence on Global Stability of Grillage Flexible Supporting Structure with Prestressed Anchors under Heavy Rainfall. Journal of Engineering Geology, 23(2): 233–244(in Chinese with English abstract). |
|
Zhou, Z., Zhang, J. M., Ning, F. L., et al., 2020. Temporal and spatial characteristics of moisture migration and instability mechanism of cracked soil slope under rainfall infiltration. Journal of Traffic and Transportation Engineering, 20(4): 107–119(in Chinese with English abstract). |
|
Zhuang, J. Q., Peng, J. B., Zhang, L. Y., 2013. Risk Assessment and Prediction of the Shallow Landslide at Different Precipitation in Loess Plateau. Journal of Jilin University (Earth Science Edition), 43(3): 867–876(in Chinese with English abstract). |
|
Zhuang, Y., Xing, A. G., 2025. Impacts of trees on slope stability during typhoons. The Chinese Journal of Geological Hazard and Control, 36(2): 87-95(in Chinese with English abstract). |
|
Zhuang, Y., Xing, A., Sun, Q., et al., 2023. Insights into Initiation of Typhoon-induced Deep-seated Landslides in Southeast Coastal China. Natural Hazards, 119(1): 721–749. https://doi.org/10.1007/s11069-023-06138-z |
|
白慧林, 2022. 花岗岩残积土滑坡降雨启动机理与预警模型研究 (博士学位论文). 成都: 成都理工大学. |
|
白洁, 巨能攀, 张成强, 何朝阳, 刘秀伟, 2020. 贵州兴义滑坡特征及过程预警研究. 工程地质学报 28(6), 1246–1258. |
|
曾新雄, 刘佳, 赖波, 等, 2024. 广东珠海市降雨型崩塌滑坡预警阈值研究. 中国地质灾害与防治学报, 35(5): 141–150. |
|
陈博, 张灿灿, 李振洪, 等, 2024. 福建龙岩市2024年“6·16”特大暴雨诱发滑坡发育特征及其调控因子分析. 武汉大学学报(信息科学版), 49(11): 2145–2155. |
|
丛威青, 李铁锋, 潘懋, 等, 2008. 基于非饱和渗流理论的区域降雨型地质灾害动力学预警方法研究. 北京大学学报(自然科学版), 44(2): 212–216. |
|
代洪川, 2022. 龙川县米贝村1号沟滑坡-泥石流形成机理与泥石流运动过程研究 (硕士学位论文). 成都: 成都理工大学. |
|
豆红强, 简文彬, 王浩, 等, 2023. 高植被覆盖区台风暴雨型滑坡成灾机制及预警模型研究综述. 自然灾害学报, 32(2): 1–15. |
|
窦杰, 向子林, 许强, 等, 2023. 机器学习在滑坡智能防灾减灾中的应用与发展趋势. 地球科学, 48(5): 1657–1674. |
|
冯杭建, 周爱国, 唐小明, 等, 2017. 基于确定性系数的降雨型滑坡影响因子敏感性分析. 工程地质学报, 25(2): 436–446. |
|
冯文凯, 胡芮, 白慧林, 等, 2022. 花岗岩残积层滑坡形成机理降雨模拟研究. 科学技术与工程, 22(18): 7799–7809. |
|
冯文凯, 赵家琛, 易小宇, 等, 2025. 闽粤赣边区“6·16”强降雨诱发群发滑坡特征与驱动因素. 地球科学. |
|
韩帅, 刘明军, 伍剑波, 等, 2022. 东南沿海台风暴雨型单体斜坡灾害风险评价—以泰顺仕阳北坡为例. 地质力学学报, 28(4): 583–595. |
|
何满潮, 任树林, 陶志刚, 2021. 滑坡地质灾害牛顿力远程监测预警系统及工程应用. 岩石力学与工程学报, 40(11): 2161–2172. |
|
黄雨, 何正迎, 2025. 气候变化背景下降雨型滑坡风险评估研究进展. 中国地质灾害与防治学报, 36(2): 13-27. |
|
简文彬, 胡海瑞, 罗阳华, 等, 2017. 干湿循环下花岗岩残积土强度衰减试验研究. 工程地质学报, 25(3): 592–597. |
|
姜彤, 李龙飞, 薛雷, 等, 2022. 乔木护坡效果物理模型试验研究. 科学技术与工程, 22(35): 15546–15553. |
|
蒋涛, 崔圣华, 冉耀, 2023. 开挖和降雨耦合诱发滑坡机理分析——以四川万源前进广场滑坡为例. 中国地质灾害与防治学报, 34(3): 20-30. |
|
解明礼, 赵建军, 巨能攀, 等, 2020. 多源数据滑坡时空演化规律研究——以黄泥坝子滑坡为例. 武汉大学学报(信息科学版), 45(6): 923–932. |
|
康超, 谌文武, 张帆宇, 等, 2011. 确定性模型在黄土沟壑区斜坡稳定性预测中的应用. 岩土力学, 32(1): 207–210, 260. |
|
亢金涛, 吴琼, 唐辉明, 等, 2019. 岩石/结构面劣化导致巴东组软硬互层岩体强度劣化的作用机制. 地球科学, 44(11): 3950-3960. |
|
兰恒星, 王苓涓, 周成虎, 2003. 云南小江流域滑坡关键影响因子研究. 中国地质灾害与防治学报, 14(1): 103-109. |
|
雷文凯, 董宏源, 陈攀, 等, 2020. 考虑倾角的土质边坡Green-Ampt改进入渗模型. 水利水运工程学报, 6: 101–107. |
|
李腾飞, 李晓, 苑伟娜, 等, 2011. 地下采矿诱发山体崩滑地质灾害研究现状与展望. 工程地质学报, 19(06): 831-838. |
|
栗倩倩, 王伟, 黄亮, 等, 2022. 台风暴雨型滑坡滞后效应分析—以浙江青田县“利奇马”台风为例. 中国地质灾害与防治学报, 33(6): 10–19. |
|
刘艳辉, 方然可, 苏永超, 等, 2021. 基于机器学习的区域滑坡灾害预警模型研究. 工程地质学报, 29(1): 116–124. |
|
刘艳辉, 温铭生, 苏永超, 等, 2016. 台风暴雨型地质灾害时空特征及预警效果分析. 水文地质工程地质, 43(5): 119–126. |
|
罗渝, 何思明, 何尽川, 2014. 降雨类型对浅层滑坡稳定性的影响. 地球科学(中国地质大学学报), 39(9): 1357–1363. |
|
马煜, 余斌, 何元勋, 等, 2023. 降雨激发浅层滑坡发育特征与阈值研究—以江西省全南县大吉山“2019.6.10”灾害为例. 地质与勘探, 59(5): 1065–1073. |
|
孟朕, 吴琼, 鲁莎, 等, 2022. 基于CT扫描的巴东组易滑岩组微观结构劣化研究. 安全与环境工程, 29(4): 11–23, 45. |
|
沈佳, 董岩松, 简文彬, 等, 2020. 台风暴雨型土质滑坡演化过程研究. 工程地质学报, 28(6): 1290–1299. |
|
孙强, 张泰丽, 伍剑波, 等, 2022. 植被对台风暴雨型滑坡发育的促进作用. 中国地质调查, 9(4): 66–73. |
|
王世宝, 庄建琦, 郑佳, 等, 2022. 基于深度学习的CZ铁路康定—理塘段滑坡易发性评价. 工程地质学报, 30(3): 908–919. |
|
王伟, 袁雯宇, 邹丽芳, 等, 2022. 基于滑坡敏感性评价的库区水动力型滑坡区域综合预警研究. 岩石力学与工程学报, 41(3): 479–491. |
|
王毅, 方志策, 牛瑞卿, 等, 2021. 基于深度学习的滑坡灾害易发性分析. 地球信息科学学报, 23(12): 2244–2260. |
|
王志兵, 邹永胜, 李斌, 等, 2020. 桂东南花岗岩风化土与残余节理的微观结构及演化. 地球科学与环境学报, 42(3): 405–415. |
|
魏平新, 郑志文, 周志华, 等, 2024. 广东省暴雨型浅层滑坡灾害动力预警模型与气象风险预警研究. 中国地质灾害与防治学报, 35(2): 30–39. |
|
吴润泽, 胡旭东, 梅红波, 等, 2021. 基于随机森林的滑坡空间易发性评价:以三峡库区湖北段为例. 地球科学, 46(1): 321–330. |
|
吴善百, 廖丽萍, 韦遥, 等, 2020. 初始干密度对桂东南降雨型花岗岩残积土滑坡起动模式的影响. 山地学报, 38(6): 881–893. |
|
夏蒙, 王家鼎, 谷天峰, 等, 2013. 基于TRIGRS模型的浅层黄土滑坡破坏概率评价. 兰州大学学报(自然科学版), 49(4): 453–458. |
|
许强, 徐繁树, 蒲川豪, 等, 2024. 2024年4月广东韶关江湾镇极端降雨诱发群发性滑坡初步分析. 武汉大学学报(信息科学版), 49(8): 1264–1274. |
|
杨沛璋, 崔圣华, 裴向军, 等, 2023. 基于SBAS-InSAR和光学遥感影像的大型倾倒变形体变形演化. 地质科技通报, 42(6): 63–75. |
|
杨宗佶, 王礼勇, 石莉莉, 等, 2020. 降雨滑坡多指标监测预警方法研究. 岩石力学与工程学报, 39(2): 272–285. |
|
姚志永, 2018. 基于SINMAP和TRIGRS模型的辰溪县暴雨型浅层滑坡易发性评价研究 (硕士学位论文). 北京: 中国地质大学(北京). |
|
张海艳, 简文星, 杨涛, 等, 2022. 降雨作用下三峡库区秭归谭家湾滑坡监测预警研究. 安全与环境工程, 29(4): 129–138. |
|
张勤, 白正伟, 黄观文, 等, 2022. GNSS滑坡监测预警技术进展. 测绘学报 51(10): 1985–2000. |
|
张抒, 唐辉明, 2013. 非饱和花岗岩残积土崩解机制试验研究. 岩土力学, 34(6): 1668–1674. |
|
张泰丽, 周爱国, 孙强, 等, 2017. 台风暴雨条件下滑坡地下水渗流特征及成因机制. 地球科学, 42(12): 2354–2362. |
|
周诗凯, 刘正华, 余丰华, 等, 2024. 浙江省地质灾害气象风险预警一体化建设的探索与实践. 中国地质灾害与防治学报, 35(2): 21–29. |
|
周勇, 王栋良, 王鑫, 2015. 强降雨条件下框架预应力锚杆柔性支护结构整体稳定性影响参数分析. 工程地质学报, 23(2): 233–244. |
|
周峙, 张家铭, 宁伏龙, 等, 2020. 降雨入渗下裂土边坡水分运移时空特征与失稳机理. 交通运输工程学报, 20(4): 107–119. |
|
庄建琦, 彭建兵, 张利勇, 2013. 不同降雨条件下黄土高原浅层滑坡危险性预测评价. 吉林大学学报(地球科学版), 43(3): 867–876. |
|
庄宇, 邢爱国, 2025. 台风作用下植被对边坡稳定性的影响机制研究. 中国地质灾害与防治学报, 36(2): 87-95. |