|
Aydin, A., Bühler, Y., Christen, M., et al., 2014. Avalanche Situation in Turkey and Back Calculation of Selected Events. Natural Hazards and Earth System Sciences, 14(5): 1145-1154. doi: 10.5194/nhessd-2-581-2014. |
|
Bartelt, P., Valero, C. V., Feistl, T., et al., 2015. Modelling Cohesion in Snow Avalanche Flow. Journal of Glaciology, 61(229): 837-850. doi: 10.3189/2015JoG14J126. |
|
Bühler, Y., Bebi, P., Christen, M., et al., 2022. Automated Avalanche Hazard Indication Mapping on a Statewide Scale. Natural Hazards and Earth System Sciences, 22(6): 1825-1843. doi: 10.5194/nhess-22-1825-2022. |
|
Bühler, Y., Von Rickenbach, D., Stoffel, A., et al., 2018. Automated Snow Avalanche Release Area Delineation – Validation of Existing Algorithms and Proposition of a New Object-Based Approach for Large-Scale Hazard Indication Mapping. Natural Hazards and Earth System Sciences, 18(12): 3235-3251. doi: 10.5194/nhess-18-3235-2018. |
|
Chen, L. J., 2021. Avalanche Hazard Assessment Based on Multi-Source Data: A Case Study in Northern Xinjiang. China University of Geosciences. (in Chinese with English abstract). |
|
Chen, N., Li, A., Tian, S., et al., 2024. Characteristics and Causes of a Catastrophic Snow Avalanche that Occurred on January 17, 2023, in Tibet. Landslides, 21(3): 661-667. doi: 10.1007/s10346-023-02205-5. |
|
Christen, M., Bartelt, P., Kowalski, J., 2010. Back Calculation of the In den Arelen Avalanche with RAMMS: Interpretation of Model Results. Annals of Glaciology, 51(54): 161-168. doi: 10.3189/172756410791386553. |
|
Duan, S. M., Liu, S. Y., Zhu, Y., et al., 2022. Reconstructing and Analyzing Avalanche Events of 1991 and 2019 in Meili Snow Mountain. Journal of Glaciology and Geocryology, 44(3): 771-783. (in Chinese with English abstract). |
|
Ge, M. L., Li, X. Y., Huang, Y., et al., 2025. Influence Mechanism of Local Terrain Features on Snow Avalanche Dynamics. Scientia Sinica (Technologica), 55(06): 1043-1054. (in Chinese with English abstract). |
|
Guo, F., Lai, P., Huang, F. M., et al., 2024. Literature Review and Research Progress of Landslide Susceptibility Mapping Based on Knowledge Graph. Earth Science, 49(05): 1584-1606. (in Chinese with English abstract). |
|
Huang, F. M., Chen, J. W., Fan, X. M., et al., 2022. Logistic Regression Fitting of Rainfall-Induced Landslide Occurrence Probability and Continuous Landslide Hazard Prediction Modelling. Earth Science, 47(12): 4609-4628. (in Chinese with English abstract). |
|
Huang, F. M., Ye, Z., Yao, C., et al., 2020. Uncertainties of Landslide Susceptibility Prediction: Different Attribute Interval Divisions of Environmental Factors and Different Data-Based Models. Earth Science, 45(12): 4535-4549. (in Chinese with English abstract). |
|
Huang, H., Gong, C., 2024. Spatial-Temporal Evolution of Geohazard Chain Participated by Glacier and Snow in Zhibai Gully, SE Tibetan Plateau. Earth Science, 49(10): 3784-3798. (in Chinese with English abstract). |
|
Laute, K., Beylich, A. A., 2014. Morphometric and Meteorological Controls on Recent Snow Avalanche Distribution and Activity at Hillslopes in Steep Mountain Valleys in Western Norway. Geomorphology, 218: 16-34. doi: 10.1016/j.geomorph.2013.06.006. |
|
Mayer, S., Hendrick, M., Michel, A., et al., 2024. Impact of Climate Change on Snow Avalanche Activity in the Swiss Alps. The Cryosphere, 18(11): 5495-5517. doi: 10.5194/tc-18-5495-2024. |
|
Ortner, G., Bründl, M., Kropf, C. M., et al., 2023. Large-Scale Risk Assessment on Snow Avalanche Hazard in Alpine Regions. Natural Hazards and Earth System Sciences, 23(6): 2089-2110. doi: 10.5194/nhess-23-2089-2023. |
|
Reuter, B., Hagenmuller, P., Eckert, N., 2025. Trends in Avalanche Problems in the French Alps between 1958 and 2020. Cold Regions Science and Technology, 238: 104555. doi: 10.1016/j.coldregions.2025.104555. |
|
Salm, B., 1993. Flow, Flow Transition and Runout Distances of Flowing Avalanches. Annals of Glaciology, 18: 221-226. doi: 10.1017/S0260305500011551. |
|
Sampl, P., Zwinger, T., 2004. Avalanche Simulation with SAMOS. Annals of Glaciology, 38: 393-398. doi: https://doi.org/10.3189/172756404781814780. |
|
Shen, Y. P., Su, H. C., Wang, G. Y., et al., 2013. The Responses of Glaciers and Snow Cover to Climate Change in Xinjiang (ll): Hazards Effects. Journal of Glaciology and Geocryology, 35(6): 1355-1370. (in Chinese with English abstract). |
|
Shu, X. Y., Wu, X. Y., Wen, H., et al., 2023. Comparison of Snow Avalanche Susceptibility Assessment and Potential Snow Avalanche Release Areas Identification along Yining-Aksu Railway, Xinjiang Tianshan Mountains. Journal of Engineering Geology, 31(13): 1200-1212. (in Chinese with English abstract). |
|
Sykes, J., Haegeli, P., Bühler, Y., 2022. Automated Snow Avalanche Release Area Delineation in Data-Sparse, Remote, and Forested Regions. Natural Hazards and Earth System Sciences, 22(10): 3247-3270. doi: 10.5194/nhess-2021-330. |
|
Thakur, K., Kumar, H., Snehmani, 2025. Avalanche Susceptibility Factors, Trends, Techniques, and Practices in Indian Himalaya: A Review. Earth-Science Reviews, 269: 105207. doi: 10.1016/j.earscirev.2025.105207. |
|
Tian, X. W., Wang, Y. B., Zhu, S., et al., 2025. Geological Environment and Main Geological Safety Challenges in the Northern Segment of the Southeast Xizang (Tibet) Power Transmission Corridor. Journal of Geomechanics, 31(1): 91–108. (in Chinese with English abstract). |
|
Védrine, L., Li, X., Gaume, J., 2022. Detrainment and Braking of Snow Avalanches Interacting with Forests. Natural Hazards and Earth System Sciences, 22(3): 1015-1028. doi: 10.5194/nhess-22-1015-2022. |
|
Wang, K., Li, X., Huang, Y., et al., 2025. Analysis on Density Profile Characteristics of Naturally Deposited Snow and Avalanche Deposition. Earth Science, 50(10): 3955-3966. (in Chinese with English abstract). |
|
Wang, Y. L., 1986. A Wet Snow Avalanche with Heavy Harmfulness in China. Journal of Glaciology and Geocryology, 01: 52–60+97–98. (in Chinese with English abstract). |
|
Wen, H., 2024. Spatio-Temporal Evolution Mechanism of Channeled Snow Avalanches in the Parlung Tsangpo Catchment. Southwest Jiaotong University. (in Chinese with English abstract). |
|
Woodard, J. B., Mirus, B. B., 2025. Overcoming the Data Limitations in Landslide Susceptibility Modeling. Science Advances, 11(8): eadt1541. doi: 10.1126/sciadv.adt1541. |
|
Xu, Q., Dong, X. J., Li, W. L., 2019. Integrated Space-Air-Ground Early Detection, Monitoring and Warning System for Potential Catastrophic Geohazards. Geomatics and Information Science of Wuhan University, 44(7): 957-966. (in Chinese with English abstract). |
|
Yang, J., Huang, X., 2021. The 30m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth System Science Data, 13: 3907–3925. doi: 10.5194/essd-13-3907-2021. |
|
Yariyan, P., Omidvar, E., Karami, M., et al., 2022. Evaluating Novel Hybrid Models Based on GIS for Snow Avalanche Susceptibility Mapping: A Comparative Study. Cold Regions Science and Technology, 194: 103453. doi: 10.1016/j.coldregions.2021.103453. |
|
Yuan, X. X., Guo, C. B., Yan, Y. Q., et al., 2025. Landslide Hazard Assessment in Alpine Gorge Region Based on Slope Units and SBAS-InSAR Surface Deformation Velocity: A Case Study of the Diwu Township Section in the Upper Reaches of Jinsha River. Earth Science: 1–20. (in Chinese with English abstract). |
|
Zhang, J. J., Liu, J. K., Gao, B., et al., 2018. Characteristics of Material Sources of Galongqu Glacial Debris Flow and the Influence to Zhamo Road. Journal of Geomechanics, 24(01): 106–115. (in Chinese with English abstract). |
|
Zhang, P. P., Li, B., Gao, H. Y., et al., 2024. Research on High-Altitude Avalanche Susceptibility Area Zoning Based on Informativeness Modeling in the Duoxiong River Basin, Nyingchi Area of Xizang Autonomous Region. The Chinese Journal of Geological Hazard and Control, 35(6): 44-57. (in Chinese with English abstract). |
|
Zhang, P.P., Li, B., Gao, H.Y., et al., 2025. Evolutionary Characteristics and Movement Process of the January 2023 Duoxiongla Snow Avalanche, Tibet. Natural Hazards, 121(4): 4901-4927. doi: 10.1007/s11069-024-06996-1. |
|
Zhang, T. Y., Liu, J., Wang, B., et al., 2024. Sensitivity Analysis of Avalanche Simulation Parameters Based on RAMMS-AVALANCHE Model. Science Technology and Engineering, 24(8): 3466-3478. (in Chinese with English abstract). |
|
Zhuang, Y., Xing, A.G., Bilal, M., et al., 2024. The Effect of Ambient Air Temperature on Meltwater Production and Flow Dynamics in Snow Avalanches. Landslides, 21(10): 2389-2398. doi: 10.1007/s10346-024-02303-y. |
|
陈联君. 2021. 基于多源数据的雪崩危险性评价——以北疆地区为例. 中国地质大学. |
|
段仕美, 刘时银, 朱钰, 等. 2022. 梅里雪山1991年和2019年雪崩事件重建及影响因素分析. 冰川冻土, 44(3): 771-783. |
|
葛梦林, 李星月, 黄雨, 等. 2025. 局部地形特征对雪崩动力行为影响机制研究. 中国科学:技术科学, 55(06): 1043-1054. |
|
郭飞, 赖鹏, 黄发明, 等. 2024. 基于知识图谱的滑坡易发性评价文献综述及研究进展. 地球科学, 49(05): 1584-1606. |
|
黄发明, 陈佳武, 范宣梅, 等. 2022. 降雨型滑坡时间概率的逻辑回归拟合及连续概率滑坡危险性建模. 地球科学, 47(12): 4609-4628. |
|
黄发明, 叶舟, 姚池, 等. 2020. 滑坡易发性预测不确定性:环境因子不同属性区间划分和不同数据驱动模型的影响. 地球科学, 45(12): 4535-4549. |
|
黄海, 龚诚. 2024. 藏东南地区直白沟冰雪型地质灾害链时空演化特征. 地球科学, 49(10): 3784-3798. |
|
沈永平, 苏宏超, 王国亚, 等. 2013. 新疆冰川、积雪对气候变化的响应(II):灾害效应. 冰川冻土, 35(6): 1355-1370. |
|
舒晓燕, 巫锡勇, 文洪, 等. 2023. 新疆天山伊阿铁路区域雪崩易发性与潜在释放区识别对比研究. 工程地质学报: 31(13): 1200-1212. |
|
田旭文, 王彦兵, 朱姝, 等. 2025. 藏东南输电走廊北线区域地质环境与主要地质安全问题. 地质力学学报, 31(1): 91-108. |
|
王楷迪, 李星月, 黄雨, 等. 2025. 自然积雪与雪崩堆积体的剖面密度特征分析. 地球科学, 50(10):3955-3966. |
|
王彦龙. 1986. 我国危害性较大的湿雪雪崩. 冰川冻土, 01: 52-60+97-98. |
|
文洪. 2024. 帕隆藏布流域沟槽型雪崩时空演化机制研究. 西南交通大学. |
|
许强,董秀军,李为乐. 2019. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警. 武汉大学学报(信息科学版), 44(07):957-966. |
|
袁新霞, 郭长宝, 闫怡秋, 等. 2025. 基于斜坡单元与SBAS-InSAR地表形变速率的高山峡谷区滑坡危险性评价:以金沙江上游地巫乡段为例. 地球科学, 1-20. |
|
张佳佳, 刘建康, 高波, 等. 2018. 藏东南嘎龙曲冰川泥石流的物源特征及其对扎墨公路的影响. 地质力学学报, 24(01): 106-115. |
|
张平平, 李滨, 高浩源, 等. 2024. 西藏林芝多雄河流域高位雪崩易发性评价. 中国地质灾害与防治学报, 35(6): 44-57. |
|
张天意, 刘杰, 王斌, 等. 2024. 基于RAMMS-AVALANCHE模型的雪崩模拟参数敏感性分析. 科学技术与工程, 24(8): 3466-3478. |