• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    柏佳伟, 范建军, 侯鑫雨, 张博川, 孙思霖, 王洋, 吕峻浦, 2025. 藏北白垩纪构造演化与铜金成矿作用. 地球科学. doi: 10.3799/dqkx.2025.282
    引用本文: 柏佳伟, 范建军, 侯鑫雨, 张博川, 孙思霖, 王洋, 吕峻浦, 2025. 藏北白垩纪构造演化与铜金成矿作用. 地球科学. doi: 10.3799/dqkx.2025.282
    BAI Jia-Wei, FAN Jian-Jun, HOU Xin-Yu, ZHANG Bo-Chuan, SUN Si-Lin, WANG Yang, LV Jun-Pu, 2025. Cretaceous Tectonic Evolution and Cu–Au Metallogenesis in Northern Tibet. Earth Science. doi: 10.3799/dqkx.2025.282
    Citation: BAI Jia-Wei, FAN Jian-Jun, HOU Xin-Yu, ZHANG Bo-Chuan, SUN Si-Lin, WANG Yang, LV Jun-Pu, 2025. Cretaceous Tectonic Evolution and Cu–Au Metallogenesis in Northern Tibet. Earth Science. doi: 10.3799/dqkx.2025.282

    藏北白垩纪构造演化与铜金成矿作用

    doi: 10.3799/dqkx.2025.282
    基金项目: 

    国家自然科学基金(No. 42572261)

    中央引导地方科技发展资金项目(No. XZ202401YD0006)和吉林大学研究生创新基金资助项目(No. 2025CX228).

    详细信息
      作者简介:

      柏佳伟(1996–),男,博士研究生,地质学专业,主要从事青藏高原中特提斯洋构造演化研究;ORCID:0009-0004-0299-9265;E-mail:bjwcc259@163.com

      通讯作者:

      范建军,ORCID:0000-0001-5298-7562

    • 中图分类号: P548

    Cretaceous Tectonic Evolution and Cu–Au Metallogenesis in Northern Tibet

    • 摘要: 藏北白垩纪构造演化存在较大争议,严重制约了高原隆升和藏北世界级规模铜金资源成矿背景的准确认识。为重建藏北白垩纪演化,本文对藏北西部吉普三队、松西和日土岩浆岩开展了综合研究。结果显示,吉普三队和松西岩浆岩分别形成于~120和~110 Ma,均为I型高钾钙碱性花岗岩,经历了复杂的熔融、同化、储存、均一化过程,是中特提斯洋俯冲作用的产物。日土岩浆岩形成于~90 Ma,为富Nb型辉长岩和A型花岗岩组成的双峰式岩浆作用,是造山后伸展事件的产物。从120–110 Ma至~90 Ma,藏北西部经历了由俯冲向碰撞转变的洋陆转换过程。利用壳源岩浆岩反演其形成时的地壳厚度和壳源物质贡献度的结果表明,藏北西部在160–100 Ma具有正常的陆壳厚度(~30 km),但~100 Ma之后,地壳明显增厚,~90 Ma时,地壳厚度(~60 km)已超现今伊朗高原。~110 Ma时,地壳物质贡献度达到峰值,预示着初始碰撞。综合上述研究,结合区域晚白垩世磨拉石和混杂岩资料,本文提出中特提斯洋在白垩纪经历了从东向西的穿时洋陆转换,其中藏北西部洋陆转换发生在110–96 Ma。中特提斯洋闭合后,拉萨-羌塘碰撞导致了藏北显著的地壳加厚和地表隆升,其隆升规模至少堪比现今的伊朗高原。穿时洋陆转换及造山过程促使岩浆熔体氧逸度的升高,为藏北巨量铜金资源富集成矿创造了有利条件。本研究从岩浆岩角度重建了藏北白垩纪洋陆转换与造山过程,为造山带形成演化和成矿作用研究提供了经典实例。

       

    • Allègre, C.J., Courtillot, V., Tapponnier, P., et al., 1984. Structure and Evolution of the Himalaya–Tibet Orogenic Belt. Nature, 307: 17–22. https://doi.org/10.1038/307017a0
      Allen, C.M., 2010. Evolution of a Post-Batholith Dike Swarm in Central Coastal Queensland, Australia: Arc-Front to Backarc? Lithos, 51 (4): 331–349. https://doi.org/10.1016/S0024-4937(99)00068-7
      Bai, J.W., Fan, J.J., Hao, Y.J., et al., 2024a. Late Jurassic–Early Cretaceous Rebangco Ophiolite, Tibet: Constraints on the Meso-Tethys Ocean Tectonic Evolution. Journal of Asian Earth Sciences, 268: 106173. https://doi.org/10.1016/j.jseaes.2024.106173
      Bai, J.W., Fan, J.J., Zhan, Y., et al., 2024b. Hotspot–Subduction Zone Interactions and Their Resource Effects at ~120 Ma on the Central Tibetan Plateau. Lithos, 482–483: 107721. https://doi.org/10.1016/j.lithos.2024.107721
      Boztug, D., Harlavan, Y., Arehart, G., et al., 2007. K-Ar Age, Whole-Rock and Isotope Geochemistry of A-Type Granitoids in the Divrigi-Sivas Region, Eastern-Central Anatolia, Turkey. Lithos, 97: 193–218. https://doi.org/10.1016/j.lithos.2006.12.014
      Brounce, M.N., Kelley, K.A., Cottrell, E., 2014. Variations in Fe³⁺/∑Fe of Mariana Arc Basalts and Mantle Wedge fO₂. Journal of Petrology, 55 (12): 2513–2536. https://doi.org/10.1093/petrology/egu065
      Cao, Y., Sun, Z., Li, H., et al., 2020. Paleomagnetism and U-Pb Geochronology of Early Cretaceous Volcanic Rocks from the Qiangtang Block, Tibetan Plateau: Implications for the Qiangtang–Lhasa Collision. Tectonophysics, 789: 228500. https://doi.org/10.1016/j.tecto.2020.228500
      Castillo, P.R., Rigby, S.J., Solidum, R.U., 2007. Origin of High Field Strength Element Enrichment in Volcanic Arcs: Geochemical Evidence from the Sulu Arc, Southern Philippines. Lithos, 97: 271–288. https://doi.org/10.1016/j.lithos.2006.12.012
      Chappell, B.W., Bryant, C.J., Wyborn, D., 2012. Peraluminous I-Type Granites. Lithos, 153: 142–153. https://doi.org/10.1016/j.lithos.2012.07.008
      Chapman, J.B., Ducea, M.N., Profeta, L., et al., 2015. Tracking Changes in Crustal Thickness During Orogenic Evolution with Sr/Y; An Example from the Western U.S. Cordillera. Geology, 43: 919–923. https://doi.org/10.1130/G36996.1
      Chung, S.L., Liu, D., Ji, J., et al., 2003. Adakites from Continental Collision Zones: Melting of Thickened Lower Crust Beneath Southern Tibet. Geology, 31 (11): 1021–1024. https://doi.org/10.1130/G19796.1
      Condie, K.C., 1989. Geochemical Changes in Basalts and Andesites Across the Archean–Proterozoic Boundary: Identification and Significance. Lithos, 23 (1–2): 1–18. https://doi.org/10.1016/0024-4937(89)90020-0
      Dini, A., Innocenti, F., Rocchi, S., et al., 2002. The Magmatic Evolution of the Late Miocene Laccolith–Pluton–Dyke Granitic Complex of Elba Island, Italy. Geological Magazine, 139(3), 257–279. https://doi.org/10.1017/S0016756802006556
      Fan, J.J., Li, C., Liu, Y.M., et al., 2015. Age and Nature of the Late Early Cretaceous Zhaga Formation, Northern Tibet: Constraints on When the Bangong–Nujiang Neo-Tethys Ocean Closed. International Geology Review, 57(3), 342–353. https://doi.org/10.1080/00206814.2015.1006695
      Fan, J.J., Li, C., Wang, M., et al., 2018. Reconstructing in Space and Time the Closure of the Middle and Western Segments of the Bangong-Nujiang Tethyan Ocean in the Tibetan Plateau. International Journal of Earth Sciences, 107, 231–249. https://doi.org/10.1007/s00531-017-1487-4
      Fan, J.J., Niu, Y.L., Liu, Y.M., et al., 2021. Timing of Closure of the Meso-Tethys Ocean: Constraints from Remnants of a 141–135 Ma Ocean Island Within the Bangong–Nujiang Suture Zone, Tibetan Plateau. Geological Society of America Bulletin, 133(9–10), 1875–1889. https://doi.org/10.1130/B35896.1
      Fan, J.J., Zhang, B.C., Niu, Y.L., et al., 2023. Tracing the Sedimentary Response to the Rifting and Opening of the Meso-Tethys Ocean. Sedimentology. https://doi.org/10.1111/sed.13126
      Fan, J.J., Zhang, B.C., Niu, Y.L., et al., 2024a. The Meso-Tethys Ocean: The Nature, Extension and Spatial-Temporal Evolution. Earth-Science Reviews, 255, 104839. https://doi.org/10.1016/j.earscirev.2024.104839
      Fan, J.J., Zhang, B.C., Niu, Y.L., et al., 2024b. Resolving the Nature and Evolution of the Bangong–Nujiang Tethyan Ocean: New Perspectives from the Intraplate Oceanic-Island Fragments Preserved in Northern Tibet. Geological Society of America Bulletin. https://doi.org/10.1130/B37044.1
      Farner, M.J., and Lee, C.T.A., 2017. Effects of Crustal Thickness on Magmatic Differentiation in Subduction Zone Volcanism: A Global Study. Earth and Planetary Science Letters, 470, 96–107. https://doi.org/10.1016/j.epsl.2017.04.025
      Frost, C.D., and Frost, B.R., 2011. On Ferroan (A-Type) Granitoids: Their Compositional Variability and Modes of Origin. Journal of Petrology, 52, 39–53. https://doi.org/10.1093/petrology/egq070
      Gale, A., Dalton, C.A., Langmuir, C.H., et al., 2013. The Mean Composition of Ocean Ridge Basalts. Geochemistry, Geophysics, Geosystems, 14(3), 489–518.
      Gerdes, A., and Zeh, A., 2006. Combined U-Pb and Hf Isotope LA-(MC-)ICP-MS Analyses of Detrital Zircons: Comparison with SHRIMP and New Constraints for the Provenance and Age of an Armorican Metasediment in Central Germany. Earth and Planetary Science Letters, 249, 47–61. https://doi.org/10.1016/j.epsl.2006.06.039
      Gong, N., Zhang, S.Q., Qi, H., et al., 2024. Two-Stage Mesozoic Oceanic Subduction and Related Mantle Metasomatism Beneath the South Qiangtang Terrane with Implications for Post-Collisional Magmatism. Gondwana Research, 136, 219–235. https://doi.org/10.1016/j.gr.2024.09.001
      Govindaraju, K., 1994. Compilation of Working Values and Sample Description for 383 Geostandards. Geostandards Newsletter, 18, 1–158. https://doi.org/10.1046/j.1365-2494.1998.53202081.x-i1
      Griffin, W.L., Begg, G.C., O’Reilly, S.Y., 2013. Continental-Root Control on the Genesis of Magmatic Ore Deposits. Nature Geoscience, 6(11), 905–910. https://doi.org/10.1038/ngeo1954
      Hanson, G.N., 1978. The Application of Trace Elements to the Petrogenesis of Igneous Rocks of Granitic Composition. Earth and Planetary Science Letters, 38, 26–43. https://doi.org/10.1016/0012-821X(78)90124-3
      Hao, L.L., Wang, Q., Wyman, D.A., et al., 2016. Andesitic Crustal Growth via Mélange Partial Melting: Evidence from Early Cretaceous Arc Dioritic/Andesitic Rocks in Southern Qiangtang, Central Tibet. Geochemistry, Geophysics, Geosystems, 17, 1641–1659. https://doi.org/10.1002/2016GC006248
      Hao, L.L., Wang, Q., Zhang, C.F., et al., 2019. Oceanic Plateau Subduction During Closure of the Bangong-Nujiang Tethyan Ocean: Insights from Central Tibetan Volcanic Rocks. Geological Society of America Bulletin, 131(5–6), 864–880. https://doi.org/10.1130/B32045.1
      Hao, L.L., Hu, W.L., Wang, Q., et al., 2025. Bangong-Nujiang Neo-Tethyan Ocean (Central Tibet): Geodynamics, Crustal Evolution, Metallogeny, and Linkages to the “Yanshan Movement.” Earth-Science Reviews, 105119. https://doi.org/10.1016/j.earscirev.2025.105119
      Hastie, A.R., Mitchell, S.F., Kerr, A.C., et al., 2011. Geochemistry of Rare High-Nb Basalt Lavas: Are They Derived from a Mantle Wedge Metasomatised by Slab Melts? Geochimica et Cosmochimica Acta, 75, 5049–5072. https://doi.org/10.1016/j.gca.2011.06.018
      Hoskin, P.W.O., and Black, L.P., 2000. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18, 423–439. https://doi.org/10.1046/j.1525-1314.2000.00266.x
      Hou, Z.Q., Yang, Z.M., Lu, Y.J., et al., 2015. A Genetic Linkage Between Subduction- and Collision-Related Porphyry Cu Deposits in Continental Collision Zones. Geology, 43(3), 247–250. https://doi.org/10.1130/G36362.1
      Hu, F.Y., Ducea, M.N., Liu, S.W., et al., 2017a. Quantifying Crustal Thickness in Continental Collisional Belts: Global Perspective and a Geologic Application. Scientific Reports, 7(1), 7058. https://doi.org/10.1038/s41598-017-07849-7
      Hu, F.Y., Wu, F.Y., Chapman, J.B., et al., 2020. Quantitatively Tracking the Elevation of the Tibetan Plateau Since the Cretaceous: Insights from Whole‐Rock Sr/Y and La/Yb Ratios. Geophysical Research Letters, 47(15), e2020GL089202. https://doi.org/10.1029/2020GL089202
      Hu, P.Y., Zhai, Q.G., Jahn, B.M., et al., 2017b. Late Early Cretaceous Magmatic Rocks (118–113 Ma) in the Middle Segment of the Bangong–Nujiang Suture Zone, Tibetan Plateau: Evidence of Lithospheric Delamination. Gondwana Research, 44, 116–138. https://doi.org/10.1016/j.gr.2016.12.005
      Hu, X.M., Ma, A.L., Xue, W.W., et al., 2022. Exploring a Lost Ocean in the Tibetan Plateau: Birth, Growth, and Demise of the Bangong–Nujiang Ocean. Earth-Science Reviews, 229, 104031. https://doi.org/10.1016/j.earscirev.2022.104031
      Jung, S., Pfänder, J.A., Nebel, O., et al., 2023. High-K Andesites as Witnesses of a Continental Arc System in the Western Alps, Italy: Constraints from HFSE and Hf-Nd-Sr-Pb-O Isotope Systematics. Contributions to Mineralogy and Petrology, 178, 12. https://doi.org/10.1007/s00410-022-01983-w
      Kaislaniemi, L., Van Hunen, J., Allen, M.B., et al., 2014. Sublithospheric Small-Scale Convection—a Mechanism for Collision Zone Magmatism. Geology, 42(4), 291–294. https://doi.org/10.1130/G35288.1
      Kapp, P., DeCelles, P.G., Gehrels, G.E., et al., 2007. Geological Records of the Lhasa-Qiangtang and Indo-Asian Collisions in the Nima Area of Central Tibet. Geological Society of America Bulletin, 119(7–8), 917–933. https://doi.org/10.1130/B26033.1
      Kelley, K.A., and Cottrell, E., 2009. Water and the Oxidation State of Subduction Zone Magmas. Science, 325(5940), 605–607. https://doi.org/10.1126/science.1174156
      Landenberger, B., and Collins, W.J., 1996. Derivation of A-Type Granites from a Dehydrated Charnockitic Lower Crust: Evidence from the Chaelundi Complex, Eastern Australia. Journal of Petrology, 37, 145–170. https://doi.org/10.1093/petrology/37.1.145
      Lei, M., Chen, J.L., Xu, J.F., et al., 2020. Late Cretaceous Magmatism in the NW Lhasa Terrane, Southern Tibet: Implications for Crustal Thickening and Initial Surface Uplift. Geological Society of America Bulletin, 132(1–2), 334–352. https://doi.org/10.1130/B31915.1
      Li, X.K., Chen, J., Wang, R.C., et al., 2018. Temporal and Spatial Variations of Late Mesozoic Granitoids in the SW Qiangtang, Tibet: Implications for Crustal Architecture, Meso-Tethyan Evolution and Regional Mineralization. Earth-Science Reviews, 185, 374–396. https://doi.org/10.1016/j.earscirev.2018.04.005
      Li, X.K., Chen, J., Wang, R.C., et al., 2019. Early Cretaceous Tectono-Magmatic Evolution and Basin Development of Western Bangong–Nujiang Suture: A Complete History of Soft Collision. Lithos, 344, 360–373. https://doi.org/10.1016/j.lithos.2019.06.030
      Lin, B., Tang, J.X., Chen, Y., et al., 2019. Geology and Geochronology of Naruo Large Porphyry-Breccia Cu Deposit in the Duolong District, Tibet. Gondwana Research, 66, 168–182. https://doi.org/10.1016/j.gr.2018.07.009
      Liu, D.L., Shi, R.D., Ding, L., et al., 2018. Late Cretaceous Transition from Subduction to Collision Along the Bangong–Nujiang Tethys: New Volcanic Constraints from Central Tibet. Lithos, 296, 452–470. https://doi.org/10.1016/j.lithos.2017.11.012
      Liu, J., Li, W.C., Zhou, Q., et al., 2024. Major Types, Spatio-Temporal Distribution, and Metallogenesis of Magmatism-Related Polymetallic Deposits in the Bangonghu–Nujiang Metallogenic Belt, Tibet. Ore Geology Reviews, 105983. https://doi.org/10.1016/j.oregeorev.2024.105983
      Liu, W.G., Wei, S., Zhang, J., et al., 2020. An Improved Separation Scheme for Sr through Fluoride Coprecipitation Combined with a Cation-Exchange Resin from Geological Samples with High Rb/Sr Ratios for High-Precision Determination of Sr Isotope Ratios. Journal of Analytical Atomic Spectrometry, 35, 953–960. https://doi.org/10.1039/D0JA00035C
      Liu, W.L., Xia, B., Zhong, Y., et al., 2014. Age and Composition of the Rebang Co and Julu Ophiolites, Central Tibet: Implications for the Evolution of the Bangong Meso-Tethys. International Geology Review, 56(4), 430–447. https://doi.org/10.1080/00206814.2013.873356
      Ludwig, K.R., 2003. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel. Special Publication No. 4, Berkeley Geochronology Center.
      Luo, A.B., Fan, J.J., Hao, Y.J., et al., 2020. Aptian Flysch in Central Tibet: Constraints on the Timing of Closure of the Bangong-Nujiang Tethyan Ocean. Tectonics, 39, e2020TC006198. https://doi.org/10.1029/2020TC006198
      Luo, A.B., Fan, J.J., Zhang, B.C., et al., 2021. From Arc-Continent Collision to Ocean Closure: Lower Cretaceous Shamuluo Formation in the Western Segment of the Bangong–Nujiang Suture Zone, Central Tibet. Geoscience Frontiers, 12(5), 101207. https://doi.org/10.1016/j.gsf.2021.101207
      Luo, A.B., Fan, J.J., Zhang, B.C., et al., 2022. Cretaceous Uplift History of the Tibetan Plateau: Insights from the Transition of Marine to Terrestrial Facies in Central Tibet. Palaeogeography, Palaeoclimatology, Palaeoecology, 601, 111103. https://doi.org/10.1016/j.palaeo.2022.111103
      Ma, A.L., Hu, X.M., Garzanti, E., et al., 2017. Sedimentary and Tectonic Evolution of the Southern Qiangtang Basin: Implications for the Lhasa–Qiangtang Collision Timing. Journal of Geophysical Research: Solid Earth, 122, 4790–4813. https://doi.org/10.1002/2017JB014211
      Ma, A.L., Hu, X.M., Garzanti, E., et al., 2024. Diachronous Cretaceous Closure of the Bangong‐Nujiang‐Shyok Ocean (Westernmost Central Tibet). Tectonics, 43(12), e2024TC008280. https://doi.org/10.1029/2024TC008280
      Mo, X.X., Hou, Z.Q., Niu, Y.L., et al., 2007. Mantle Contributions to Crustal Thickening During Continental Collision: Evidence from Cenozoic Igneous Rocks in Southern Tibet. Lithos, 96(1–2), 225–242. https://doi.org/10.1016/j.lithos.2006.10.005
      Murodov, D., Mi, W., Murodov, A., et al., 2022. Deep Crustal Structure Beneath the Pamir–Tibetan Plateau: Insights from the Moho Depth and Vp/Vs Ratio Variation. Frontiers in Earth Science, 10, 821497. https://doi.org/10.3389/feart.2022.821497
      Patino Douce, A.E.P., 1997. Generation of Metaluminous A-Type Granites by Low-Pressure Melting of Calc-Alkaline Granitoids. Geology, 25, 743–746. https://doi.org/10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2
      Pietruszka, A.J., Hauri, E.H., Blichert-Toft, J., et al., 2009. Crustal Contamination of Mantle-Derived Magmas Within Piton de la Fournaise Volcano, Réunion Island. Journal of Petrology, 50(4), 661–684. https://doi.org/10.1093/petrology/egp016
      Polat, A., and Hofmann, A.W., 2003. Alteration and Geochemical Patterns in the 3.7–3.8 Ga Isua Greenstone Belt, West Greenland. Precambrian Research, 126, 197–218. https://doi.org/10.1016/S0301-9268(03)00095-0
      Polat, A., Hofmann, A.W., Rosing, M.T., 2002. Boninite-Like Volcanic Rocks in the 3.7–3.8 Ga Isua Greenstone Belt, West Greenland: Geochemical Evidence for Intra-Oceanic Subduction Zone Processes in the Early Earth. Chemical Geology, 184, 231–254. https://doi.org/10.1016/S0009-2541(01)00363-1
      Rapp, R.P., Shimizu, N., Norman, M.D., et al., 1999. Reaction Between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4), 335–356. https://doi.org/10.1016/S0009-2541(99)00106-0
      Richards, J.P., 2011. Magmatic to Hydrothermal Metal Fluxes in Convergent and Collided Margins. Ore Geology Reviews, 40(1), 1–26. https://doi.org/10.1016/j.oregeorev.2011.05.006
      Richards, J.P., 2015. The Oxidation State, and Sulfur and Cu Contents of Arc Magmas: Implications for Metallogeny. Lithos, 233, 27–45. https://doi.org/10.1016/j.lithos.2014.12.011
      Ruban, D.A., 2015. Mesozoic Long-Term Eustatic Cycles and Their Uncertain Hierarchy. Geoscience Frontiers, 6(4), 503–511. http://dx.doi.org/10.1016/j.gsf.2014.06.001
      Rudnick, R.L., and Gao, S., 2014. Composition of the Continental Crust. In: Holland HD, Turekian KK, editors. Treatise on Geochemistry (2nd ed). Oxford: Elsevier, 1–51. https://doi.org/10.1016/B978-0-08-095975-7.00301-6
      Shen, X.M., Zhang, H.X., Wang, Q., et al., 2011. Late Devonian–Early Permian A-Type Granites in the Southern Altay Range, Northwest China: Petrogenesis and Implications for Tectonic Setting of “A2-Type” Granites. Journal of Asian Earth Sciences, 42(5), 986–1007. https://doi.org/10.1016/j.jseaes.2010.10.004
      Skjerlie, K.P., and Johnston, A.D., 1993. Vapor-Absent Melting at 10 kbar of a Biotite- and Amphibole-Bearing Tonalitic Gneiss: Implications for the Generation of A-Type Granites. Geology, 20, 263–266. https://doi.org/10.1130/0091-7613(1992)020<0263:VAMAKO>2.3.CO;2
      Spencer, C.J., Kirkland, C.L., Taylor, R.J.M., 2016. Strategies Towards Statistically Robust Interpretations of In Situ U-Pb Zircon Geochronology. Geoscience Frontiers, 7(4), 581–589. https://doi.org/10.1016/j.gsf.2015.11.006
      Sun, G.Y., Hu, X.M., Xu, Y.W., et al., 2019. Discovery of Middle Jurassic Trench Deposits in the Bangong-Nujiang Suture Zone: Implications for the Timing of Lhasa-Qiangtang Initial Collision. Tectonophysics, 750, 344–358. https://doi.org/10.1016/j.tecto.2018.12.001
      Sun, H., Song, Y., Wilkinson, J.J., et al., 2025. Petrogenesis of Early Cretaceous Duorenlieqian Igneous Rocks (113∼117 Ma) in the Western Bangong-Nujiang Metallogenic Belt, Tibet, China: Implications for Tectono-Magmatic Evolution and Porphyry Cu-Au Mineralization. Ore Geology Reviews, 182, 106650. https://doi.org/10.1016/j.oregeorev.2025.106650
      Sun, S.S., and McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42, 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
      Tang, Y., Zhai, Q.G., Chung, S.L., et al., 2020. First Mid-Ocean Ridge-Type Ophiolite from the Meso-Tethys Suture Zone in the North-Central Tibetan Plateau. Geological Society of America Bulletin, 132(9–10). https://doi.org/10.1130/B35500.1
      Trail, D., Watson, E.B., Tailby, N.D., 2011. The Oxidation State of Hadean Magmas and Implications for Early Earth’s Atmosphere. Nature, 480(7375), 79–82. https://doi.org/10.1038/nature10655
      Tunini, L., Jiménez-Munt, I., Fernandez, M., et al., 2014. Lithospheric Mantle Heterogeneities Beneath the Zagros Mountains and the Iranian Plateau: A Petrological-Geophysical Study. Geophysical Journal International, 200(1), 596–614. https://doi.org/10.1093/gji/ggu418
      Wang, B.D., Wang, L.Q., Chung, S.L., et al., 2016. Evolution of the Bangong-Nujiang Tethyan Ocean: Insights from the Geochronology and Geochemistry of Mafic Rocks Within Ophiolites. Lithos, 245, 18–33. https://doi.org/10.1016/j.lithos.2015.07.016
      Wang, W., Wang, M., Zhai, Q.G., et al., 2020. Transition from Oceanic Subduction to Continental Collision Recorded in the Bangong-Nujiang Suture Zone: Insights from Early Cretaceous Magmatic Rocks in North-Central Tibet. Gondwana Research, 78, 77–91. https://doi.org/10.1016/j.gr.2019.09.008
      Wang, Y., Tang, J.X., Wang, L.Q., et al., 2019. Magmatism and Metallogenic Mechanism of the Ga’erqiong and Galale Cu-Au Deposits in the West Central Lhasa Subterrane, Tibet: Constraints from Geochronology, Geochemistry, and Sr-Nd-Pb-Hf Isotopes. Ore Geology Reviews, 105, 616–635. https://doi.org/10.1016/j.oregeorev.2019.01.015
      Weis, D., Kieffer, B., Maerschalk, C., et al., 2005. High-Precision Pb-Sr-Nd-Hf Isotopic Characterization of USGS BHVO-1 and BHVO-2 Reference Materials. Geochemistry, Geophysics, Geosystems, 6(02). https://doi.org/10.1029/2004GC000852
      Whalen, J.B., Currie, K., Chappell, B.W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95, 407–419. https://doi.org/10.1007/BF00402202
      Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U–Th–Pb, Lu–Hf, Trace Element and REE Analyses. Geostandards and Geoanalytical Research, 19(01), 1–23. https://doi.org/10.1111/j.1751-908X.1995.tb00147.x
      Wu, F.Y., Sun, D.Y., Li, H., et al., 2002. A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 187(1–2), 143–173. https://doi.org/10.1016/S0009-2541(02)00018-9
      Wu, H., Chen, J.W., Wang, Q., et al., 2019. Spatial and Temporal Variations in the Geochemistry of Cretaceous High-Sr/Y Rocks in Central Tibet. American Journal of Science, 319(2), 105–121. https://doi.org/10.2475/02.2019.02
      Xiao, Y., Liu, X.J., Wu, H., et al., 2025. Late Cretaceous Extensional Collapse Driven by Delamination in Central Tibet Prior to India‐Asia Collision. Geochemistry, Geophysics, Geosystems, 26(7), e2025GC012305. https://doi.org/10.1029/2025GC012305
      Yang, J.H., Wu, F.Y., Chung, S.L., et al., 2006. A Hybrid Origin for the Qianshan A-Type Granite, Northeast China: Geochemical and Sr-Nd-Hf Isotopic Evidence. Lithos, 89, 89–106. https://doi.org/10.1016/j.lithos.2005.10.002
      Yin, A., and Harrison, T., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28, 211–280. https://doi.org/10.1146/annurev.earth.28.1.211
      Zhang, B.C., Fan, J.J., Luo, A.B., 2023. Genetic Pattern of the Albian Volcanic Rocks in the Ziruco Area, Northern Tibet: Implications for A-Type Granites. Lithos, 436, 106970. https://doi.org/10.1016/j.lithos.2022.106970
      Zhang, Z., Yao, X.F., Tang, J.X., et al., 2015. Lithogeochemical, Re-Os and U-Pb Geochronological, Hf–Lu and S–Pb Isotope Data of the Ga’erqiong–Galale Cu-Au Ore-Concentrated Area: Evidence for the Late Cretaceous Magmatism and Metallogenic Event in the Bangong-Nujiang Suture Zone, Northwestern Tibet, China. Resource Geology, 65, 76–102. https://doi.org/10.1111/rge.12090
      Zhong, Y., Liu, W.L., Xia, B., et al., 2017. Geochemistry and Geochronology of the Mesozoic Lanong Ophiolitic Mélange, Northern Tibet: Implications for Petrogenesis and Tectonic Evolution. Lithos, 292–293, 111–131. https://doi.org/10.1016/j.lithos.2017.09.003
      Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011. The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1–2), 241–255. https://doi.org/10.1016/j.epsl.2010.11.005
      Zhu, D.C., Li, S.M., Cawood, P.A., et al., 2016. Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction. Lithos, 245, 7–17. https://doi.org/10.1016/j.lithos.2015.06.023
      Zhu, Z.C., Zhai, Q.G., Hu, P.Y., et al., 2019. Closure of the Bangong–Nujiang Tethyan Ocean in the Central Tibet: Results from the Provenance of the Duoni Formation. Journal of Sedimentary Research, 89(10), 1039–1054. https://doi.org/10.2110/jsr.2019.55
      陈国荣,刘鸿飞,蒋光武,等,2004. 西藏班公湖-怒江结合带中段沙木罗组的发现. 地质通报, 23(02): 193–194.
      崔玉良,王根厚,郎欣欣,等,2016. 西藏南羌塘侏罗系色哇组构造变形特征及其构造意义. 地质科学, 51(03): 748–762.
      范建军,张丽强,张博川,2025. 从造山带洋岛(海山)揭示古洋盆演化:以藏北中特提斯为例[J]. 吉林大学学报(地球科学版), 1–19.
      耿全如,彭智敏,张璋,等,2012. 班公湖-怒江成矿带及邻区特提斯演化与成矿地质背景. 北京: 地质出版社.
      侯增谦,杨志明,张洪瑞,等,2025. 大陆碰撞成矿作用: 新认识与新进展. 地学前缘, 1–3.
      李华亮,高成,李正汉,等,2016. 西藏班公湖地区竟柱山组时代及其构造意义. 大地构造与成矿学, 40(04): 663–673.
      李世民,2018. 西藏班公湖—怒江特提斯洋的俯冲极性和过程:岩浆岩和碎屑锆石记录. 中国地质大学(北京).
      刘文,吴建亮,雷传扬,等,2019. 西藏革吉地区沙木罗组碎屑锆石年代学研究:物源及其对班公湖-怒江特提斯洋西段闭合时限的制约. 岩石学报, 35(06): 1738–1756.
      刘庆宏,肖志坚,曹圣华,等,2004. 班公湖-怒江结合带西段多岛弧盆系时空结构初步分析. 沉积与特提斯地质, (03): 15–21.
      罗安波,2022. 班公湖-怒江洋消亡时限和过程 (博士学位论文). 长春: 吉林大学.
      欧阳克贵,谢国刚,肖志坚,等,2005. 西藏西部日松地区多仁组、日松组的建立及其地质意义. 地质通报, (07): 642–647.
      曲晓明,辛洪波,杜德道,等,2012. 西藏班公湖-怒江缝合带中段碰撞后A型花岗岩的时代及其对洋盆闭合时间的约束. 地球化学, 41(01): 1–14.
      宋博文,柯学,何卫红,等,2025. 青藏特提斯造山系晚古生代-中生代洋板块构造-地层分区及地层格架. 地球科学, 50(09): 3651–3678.
      唐菊兴,王勤,杨欢欢,等,2017. 西藏斑岩-矽卡岩-浅成低温热液铜多金属矿成矿作用、勘查方向与资源潜力. 地球学报, 38(05): 571–613.
      唐菊兴,林彬,杨欢欢,等,2024. 西藏斑岩-矽卡岩-浅成低温热液型矿床地质特征及找矿方向. 矿床地质, 43(06): 1223–1265+1–16.
      王建平,2003. 西藏东部特提斯地质. 北京: 科学出版社.
      吴浩, 李才, 胡培远, 等, 2014. 藏北班公湖—怒江缝合带早白垩世双峰式火山岩的确定及其地质意义. 地质通报, 33(11): 1804–1814.
      吴浩, 杨晨, 吴彦旺, 等, 2024. 藏北中仓地区晚白垩世岩浆岩成因及其对高原早期隆升的指示. 地学前缘, 31(06): 261–281.
      吴建亮,刘文,尹显科,等,2021. 藏北班公湖-怒江缝合带西段沙木罗组火山岩年代学、Hf同位素及地球化学特征. 地球科学, 46(02): 444–459.
      谢国刚,肖志坚,欧阳克贵,等,2010. 西藏 1:25 万喀纳幅、日土县幅区域地质调查报告. 北京: 地质出版社.
      曾禹人,黄建国,马德胜,等,2016. 西藏班公湖-怒江结合带木嘎岗日岩群时代上限的新证据——来自恐弄拉地区早白垩世早期孢粉化石的报道. 地质通报, 35(12): 2027–2032.
      张克信, 宋博文, 何卫红, 等, 2025. 青藏中-南部特提斯洋板块地层分布与演化. 地球科学, 50(03): 1162–1200.
      张硕,史洪峰,郝海健,等,2014. 青藏高原班公湖地区晚白垩世埃达克岩年代学、地球化学及构造意义. 地球科学, 39(05): 509–524.
      张志,宋俊龙,唐菊兴,等,2017. 西藏嘎拉勒铜金矿床的成岩成矿时代与岩石成因: 锆石U-Pb年龄、Hf同位素组成及辉钼矿Re-Os定年. 地球科学, 42(06): 862–880.
      周高宇, 祁诚雪, 万牧钦, 等, 2024. 藏北盐湖地区晚白垩世辉长岩:对班公湖-怒江缝合带碰撞后拆沉作用的指示. 大地构造与成矿学, 48(04): 866–878.
      朱弟成,潘桂棠,莫宣学,等,2006. 青藏高原中部中生代OIB型玄武岩的识别: 年代学、地球化学及其构造环境. 地质学报, (09): 1312–1328.
    • 加载中
    计量
    • 文章访问数:  95
    • HTML全文浏览量:  0
    • PDF下载量:  7
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-09-22
    • 网络出版日期:  2025-12-29

    目录

      /

      返回文章
      返回