|
Allègre, C.J., Courtillot, V., Tapponnier, P., et al., 1984. Structure and Evolution of the Himalaya–Tibet Orogenic Belt. Nature, 307: 17–22. https://doi.org/10.1038/307017a0 |
|
Allen, C.M., 2010. Evolution of a Post-Batholith Dike Swarm in Central Coastal Queensland, Australia: Arc-Front to Backarc? Lithos, 51 (4): 331–349. https://doi.org/10.1016/S0024-4937(99)00068-7 |
|
Bai, J.W., Fan, J.J., Hao, Y.J., et al., 2024a. Late Jurassic–Early Cretaceous Rebangco Ophiolite, Tibet: Constraints on the Meso-Tethys Ocean Tectonic Evolution. Journal of Asian Earth Sciences, 268: 106173. https://doi.org/10.1016/j.jseaes.2024.106173 |
|
Bai, J.W., Fan, J.J., Zhan, Y., et al., 2024b. Hotspot–Subduction Zone Interactions and Their Resource Effects at ~120 Ma on the Central Tibetan Plateau. Lithos, 482–483: 107721. https://doi.org/10.1016/j.lithos.2024.107721 |
|
Boztug, D., Harlavan, Y., Arehart, G., et al., 2007. K-Ar Age, Whole-Rock and Isotope Geochemistry of A-Type Granitoids in the Divrigi-Sivas Region, Eastern-Central Anatolia, Turkey. Lithos, 97: 193–218. https://doi.org/10.1016/j.lithos.2006.12.014 |
|
Brounce, M.N., Kelley, K.A., Cottrell, E., 2014. Variations in Fe³⁺/∑Fe of Mariana Arc Basalts and Mantle Wedge fO₂. Journal of Petrology, 55 (12): 2513–2536. https://doi.org/10.1093/petrology/egu065 |
|
Cao, Y., Sun, Z., Li, H., et al., 2020. Paleomagnetism and U-Pb Geochronology of Early Cretaceous Volcanic Rocks from the Qiangtang Block, Tibetan Plateau: Implications for the Qiangtang–Lhasa Collision. Tectonophysics, 789: 228500. https://doi.org/10.1016/j.tecto.2020.228500 |
|
Castillo, P.R., Rigby, S.J., Solidum, R.U., 2007. Origin of High Field Strength Element Enrichment in Volcanic Arcs: Geochemical Evidence from the Sulu Arc, Southern Philippines. Lithos, 97: 271–288. https://doi.org/10.1016/j.lithos.2006.12.012 |
|
Chappell, B.W., Bryant, C.J., Wyborn, D., 2012. Peraluminous I-Type Granites. Lithos, 153: 142–153. https://doi.org/10.1016/j.lithos.2012.07.008 |
|
Chapman, J.B., Ducea, M.N., Profeta, L., et al., 2015. Tracking Changes in Crustal Thickness During Orogenic Evolution with Sr/Y; An Example from the Western U.S. Cordillera. Geology, 43: 919–923. https://doi.org/10.1130/G36996.1 |
|
Chung, S.L., Liu, D., Ji, J., et al., 2003. Adakites from Continental Collision Zones: Melting of Thickened Lower Crust Beneath Southern Tibet. Geology, 31 (11): 1021–1024. https://doi.org/10.1130/G19796.1 |
|
Condie, K.C., 1989. Geochemical Changes in Basalts and Andesites Across the Archean–Proterozoic Boundary: Identification and Significance. Lithos, 23 (1–2): 1–18. https://doi.org/10.1016/0024-4937(89)90020-0 |
|
Dini, A., Innocenti, F., Rocchi, S., et al., 2002. The Magmatic Evolution of the Late Miocene Laccolith–Pluton–Dyke Granitic Complex of Elba Island, Italy. Geological Magazine, 139(3), 257–279. https://doi.org/10.1017/S0016756802006556 |
|
Fan, J.J., Li, C., Liu, Y.M., et al., 2015. Age and Nature of the Late Early Cretaceous Zhaga Formation, Northern Tibet: Constraints on When the Bangong–Nujiang Neo-Tethys Ocean Closed. International Geology Review, 57(3), 342–353. https://doi.org/10.1080/00206814.2015.1006695 |
|
Fan, J.J., Li, C., Wang, M., et al., 2018. Reconstructing in Space and Time the Closure of the Middle and Western Segments of the Bangong-Nujiang Tethyan Ocean in the Tibetan Plateau. International Journal of Earth Sciences, 107, 231–249. https://doi.org/10.1007/s00531-017-1487-4 |
|
Fan, J.J., Niu, Y.L., Liu, Y.M., et al., 2021. Timing of Closure of the Meso-Tethys Ocean: Constraints from Remnants of a 141–135 Ma Ocean Island Within the Bangong–Nujiang Suture Zone, Tibetan Plateau. Geological Society of America Bulletin, 133(9–10), 1875–1889. https://doi.org/10.1130/B35896.1 |
|
Fan, J.J., Zhang, B.C., Niu, Y.L., et al., 2023. Tracing the Sedimentary Response to the Rifting and Opening of the Meso-Tethys Ocean. Sedimentology. https://doi.org/10.1111/sed.13126 |
|
Fan, J.J., Zhang, B.C., Niu, Y.L., et al., 2024a. The Meso-Tethys Ocean: The Nature, Extension and Spatial-Temporal Evolution. Earth-Science Reviews, 255, 104839. https://doi.org/10.1016/j.earscirev.2024.104839 |
|
Fan, J.J., Zhang, B.C., Niu, Y.L., et al., 2024b. Resolving the Nature and Evolution of the Bangong–Nujiang Tethyan Ocean: New Perspectives from the Intraplate Oceanic-Island Fragments Preserved in Northern Tibet. Geological Society of America Bulletin. https://doi.org/10.1130/B37044.1 |
|
Farner, M.J., and Lee, C.T.A., 2017. Effects of Crustal Thickness on Magmatic Differentiation in Subduction Zone Volcanism: A Global Study. Earth and Planetary Science Letters, 470, 96–107. https://doi.org/10.1016/j.epsl.2017.04.025 |
|
Frost, C.D., and Frost, B.R., 2011. On Ferroan (A-Type) Granitoids: Their Compositional Variability and Modes of Origin. Journal of Petrology, 52, 39–53. https://doi.org/10.1093/petrology/egq070 |
|
Gale, A., Dalton, C.A., Langmuir, C.H., et al., 2013. The Mean Composition of Ocean Ridge Basalts. Geochemistry, Geophysics, Geosystems, 14(3), 489–518. |
|
Gerdes, A., and Zeh, A., 2006. Combined U-Pb and Hf Isotope LA-(MC-)ICP-MS Analyses of Detrital Zircons: Comparison with SHRIMP and New Constraints for the Provenance and Age of an Armorican Metasediment in Central Germany. Earth and Planetary Science Letters, 249, 47–61. https://doi.org/10.1016/j.epsl.2006.06.039 |
|
Gong, N., Zhang, S.Q., Qi, H., et al., 2024. Two-Stage Mesozoic Oceanic Subduction and Related Mantle Metasomatism Beneath the South Qiangtang Terrane with Implications for Post-Collisional Magmatism. Gondwana Research, 136, 219–235. https://doi.org/10.1016/j.gr.2024.09.001 |
|
Govindaraju, K., 1994. Compilation of Working Values and Sample Description for 383 Geostandards. Geostandards Newsletter, 18, 1–158. https://doi.org/10.1046/j.1365-2494.1998.53202081.x-i1 |
|
Griffin, W.L., Begg, G.C., O’Reilly, S.Y., 2013. Continental-Root Control on the Genesis of Magmatic Ore Deposits. Nature Geoscience, 6(11), 905–910. https://doi.org/10.1038/ngeo1954 |
|
Hanson, G.N., 1978. The Application of Trace Elements to the Petrogenesis of Igneous Rocks of Granitic Composition. Earth and Planetary Science Letters, 38, 26–43. https://doi.org/10.1016/0012-821X(78)90124-3 |
|
Hao, L.L., Wang, Q., Wyman, D.A., et al., 2016. Andesitic Crustal Growth via Mélange Partial Melting: Evidence from Early Cretaceous Arc Dioritic/Andesitic Rocks in Southern Qiangtang, Central Tibet. Geochemistry, Geophysics, Geosystems, 17, 1641–1659. https://doi.org/10.1002/2016GC006248 |
|
Hao, L.L., Wang, Q., Zhang, C.F., et al., 2019. Oceanic Plateau Subduction During Closure of the Bangong-Nujiang Tethyan Ocean: Insights from Central Tibetan Volcanic Rocks. Geological Society of America Bulletin, 131(5–6), 864–880. https://doi.org/10.1130/B32045.1 |
|
Hao, L.L., Hu, W.L., Wang, Q., et al., 2025. Bangong-Nujiang Neo-Tethyan Ocean (Central Tibet): Geodynamics, Crustal Evolution, Metallogeny, and Linkages to the “Yanshan Movement.” Earth-Science Reviews, 105119. https://doi.org/10.1016/j.earscirev.2025.105119 |
|
Hastie, A.R., Mitchell, S.F., Kerr, A.C., et al., 2011. Geochemistry of Rare High-Nb Basalt Lavas: Are They Derived from a Mantle Wedge Metasomatised by Slab Melts? Geochimica et Cosmochimica Acta, 75, 5049–5072. https://doi.org/10.1016/j.gca.2011.06.018 |
|
Hoskin, P.W.O., and Black, L.P., 2000. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18, 423–439. https://doi.org/10.1046/j.1525-1314.2000.00266.x |
|
Hou, Z.Q., Yang, Z.M., Lu, Y.J., et al., 2015. A Genetic Linkage Between Subduction- and Collision-Related Porphyry Cu Deposits in Continental Collision Zones. Geology, 43(3), 247–250. https://doi.org/10.1130/G36362.1 |
|
Hu, F.Y., Ducea, M.N., Liu, S.W., et al., 2017a. Quantifying Crustal Thickness in Continental Collisional Belts: Global Perspective and a Geologic Application. Scientific Reports, 7(1), 7058. https://doi.org/10.1038/s41598-017-07849-7 |
|
Hu, F.Y., Wu, F.Y., Chapman, J.B., et al., 2020. Quantitatively Tracking the Elevation of the Tibetan Plateau Since the Cretaceous: Insights from Whole‐Rock Sr/Y and La/Yb Ratios. Geophysical Research Letters, 47(15), e2020GL089202. https://doi.org/10.1029/2020GL089202 |
|
Hu, P.Y., Zhai, Q.G., Jahn, B.M., et al., 2017b. Late Early Cretaceous Magmatic Rocks (118–113 Ma) in the Middle Segment of the Bangong–Nujiang Suture Zone, Tibetan Plateau: Evidence of Lithospheric Delamination. Gondwana Research, 44, 116–138. https://doi.org/10.1016/j.gr.2016.12.005 |
|
Hu, X.M., Ma, A.L., Xue, W.W., et al., 2022. Exploring a Lost Ocean in the Tibetan Plateau: Birth, Growth, and Demise of the Bangong–Nujiang Ocean. Earth-Science Reviews, 229, 104031. https://doi.org/10.1016/j.earscirev.2022.104031 |
|
Jung, S., Pfänder, J.A., Nebel, O., et al., 2023. High-K Andesites as Witnesses of a Continental Arc System in the Western Alps, Italy: Constraints from HFSE and Hf-Nd-Sr-Pb-O Isotope Systematics. Contributions to Mineralogy and Petrology, 178, 12. https://doi.org/10.1007/s00410-022-01983-w |
|
Kaislaniemi, L., Van Hunen, J., Allen, M.B., et al., 2014. Sublithospheric Small-Scale Convection—a Mechanism for Collision Zone Magmatism. Geology, 42(4), 291–294. https://doi.org/10.1130/G35288.1 |
|
Kapp, P., DeCelles, P.G., Gehrels, G.E., et al., 2007. Geological Records of the Lhasa-Qiangtang and Indo-Asian Collisions in the Nima Area of Central Tibet. Geological Society of America Bulletin, 119(7–8), 917–933. https://doi.org/10.1130/B26033.1 |
|
Kelley, K.A., and Cottrell, E., 2009. Water and the Oxidation State of Subduction Zone Magmas. Science, 325(5940), 605–607. https://doi.org/10.1126/science.1174156 |
|
Landenberger, B., and Collins, W.J., 1996. Derivation of A-Type Granites from a Dehydrated Charnockitic Lower Crust: Evidence from the Chaelundi Complex, Eastern Australia. Journal of Petrology, 37, 145–170. https://doi.org/10.1093/petrology/37.1.145 |
|
Lei, M., Chen, J.L., Xu, J.F., et al., 2020. Late Cretaceous Magmatism in the NW Lhasa Terrane, Southern Tibet: Implications for Crustal Thickening and Initial Surface Uplift. Geological Society of America Bulletin, 132(1–2), 334–352. https://doi.org/10.1130/B31915.1 |
|
Li, X.K., Chen, J., Wang, R.C., et al., 2018. Temporal and Spatial Variations of Late Mesozoic Granitoids in the SW Qiangtang, Tibet: Implications for Crustal Architecture, Meso-Tethyan Evolution and Regional Mineralization. Earth-Science Reviews, 185, 374–396. https://doi.org/10.1016/j.earscirev.2018.04.005 |
|
Li, X.K., Chen, J., Wang, R.C., et al., 2019. Early Cretaceous Tectono-Magmatic Evolution and Basin Development of Western Bangong–Nujiang Suture: A Complete History of Soft Collision. Lithos, 344, 360–373. https://doi.org/10.1016/j.lithos.2019.06.030 |
|
Lin, B., Tang, J.X., Chen, Y., et al., 2019. Geology and Geochronology of Naruo Large Porphyry-Breccia Cu Deposit in the Duolong District, Tibet. Gondwana Research, 66, 168–182. https://doi.org/10.1016/j.gr.2018.07.009 |
|
Liu, D.L., Shi, R.D., Ding, L., et al., 2018. Late Cretaceous Transition from Subduction to Collision Along the Bangong–Nujiang Tethys: New Volcanic Constraints from Central Tibet. Lithos, 296, 452–470. https://doi.org/10.1016/j.lithos.2017.11.012 |
|
Liu, J., Li, W.C., Zhou, Q., et al., 2024. Major Types, Spatio-Temporal Distribution, and Metallogenesis of Magmatism-Related Polymetallic Deposits in the Bangonghu–Nujiang Metallogenic Belt, Tibet. Ore Geology Reviews, 105983. https://doi.org/10.1016/j.oregeorev.2024.105983 |
|
Liu, W.G., Wei, S., Zhang, J., et al., 2020. An Improved Separation Scheme for Sr through Fluoride Coprecipitation Combined with a Cation-Exchange Resin from Geological Samples with High Rb/Sr Ratios for High-Precision Determination of Sr Isotope Ratios. Journal of Analytical Atomic Spectrometry, 35, 953–960. https://doi.org/10.1039/D0JA00035C |
|
Liu, W.L., Xia, B., Zhong, Y., et al., 2014. Age and Composition of the Rebang Co and Julu Ophiolites, Central Tibet: Implications for the Evolution of the Bangong Meso-Tethys. International Geology Review, 56(4), 430–447. https://doi.org/10.1080/00206814.2013.873356 |
|
Ludwig, K.R., 2003. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel. Special Publication No. 4, Berkeley Geochronology Center. |
|
Luo, A.B., Fan, J.J., Hao, Y.J., et al., 2020. Aptian Flysch in Central Tibet: Constraints on the Timing of Closure of the Bangong-Nujiang Tethyan Ocean. Tectonics, 39, e2020TC006198. https://doi.org/10.1029/2020TC006198 |
|
Luo, A.B., Fan, J.J., Zhang, B.C., et al., 2021. From Arc-Continent Collision to Ocean Closure: Lower Cretaceous Shamuluo Formation in the Western Segment of the Bangong–Nujiang Suture Zone, Central Tibet. Geoscience Frontiers, 12(5), 101207. https://doi.org/10.1016/j.gsf.2021.101207 |
|
Luo, A.B., Fan, J.J., Zhang, B.C., et al., 2022. Cretaceous Uplift History of the Tibetan Plateau: Insights from the Transition of Marine to Terrestrial Facies in Central Tibet. Palaeogeography, Palaeoclimatology, Palaeoecology, 601, 111103. https://doi.org/10.1016/j.palaeo.2022.111103 |
|
Ma, A.L., Hu, X.M., Garzanti, E., et al., 2017. Sedimentary and Tectonic Evolution of the Southern Qiangtang Basin: Implications for the Lhasa–Qiangtang Collision Timing. Journal of Geophysical Research: Solid Earth, 122, 4790–4813. https://doi.org/10.1002/2017JB014211 |
|
Ma, A.L., Hu, X.M., Garzanti, E., et al., 2024. Diachronous Cretaceous Closure of the Bangong‐Nujiang‐Shyok Ocean (Westernmost Central Tibet). Tectonics, 43(12), e2024TC008280. https://doi.org/10.1029/2024TC008280 |
|
Mo, X.X., Hou, Z.Q., Niu, Y.L., et al., 2007. Mantle Contributions to Crustal Thickening During Continental Collision: Evidence from Cenozoic Igneous Rocks in Southern Tibet. Lithos, 96(1–2), 225–242. https://doi.org/10.1016/j.lithos.2006.10.005 |
|
Murodov, D., Mi, W., Murodov, A., et al., 2022. Deep Crustal Structure Beneath the Pamir–Tibetan Plateau: Insights from the Moho Depth and Vp/Vs Ratio Variation. Frontiers in Earth Science, 10, 821497. https://doi.org/10.3389/feart.2022.821497 |
|
Patino Douce, A.E.P., 1997. Generation of Metaluminous A-Type Granites by Low-Pressure Melting of Calc-Alkaline Granitoids. Geology, 25, 743–746. https://doi.org/10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2 |
|
Pietruszka, A.J., Hauri, E.H., Blichert-Toft, J., et al., 2009. Crustal Contamination of Mantle-Derived Magmas Within Piton de la Fournaise Volcano, Réunion Island. Journal of Petrology, 50(4), 661–684. https://doi.org/10.1093/petrology/egp016 |
|
Polat, A., and Hofmann, A.W., 2003. Alteration and Geochemical Patterns in the 3.7–3.8 Ga Isua Greenstone Belt, West Greenland. Precambrian Research, 126, 197–218. https://doi.org/10.1016/S0301-9268(03)00095-0 |
|
Polat, A., Hofmann, A.W., Rosing, M.T., 2002. Boninite-Like Volcanic Rocks in the 3.7–3.8 Ga Isua Greenstone Belt, West Greenland: Geochemical Evidence for Intra-Oceanic Subduction Zone Processes in the Early Earth. Chemical Geology, 184, 231–254. https://doi.org/10.1016/S0009-2541(01)00363-1 |
|
Rapp, R.P., Shimizu, N., Norman, M.D., et al., 1999. Reaction Between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4), 335–356. https://doi.org/10.1016/S0009-2541(99)00106-0 |
|
Richards, J.P., 2011. Magmatic to Hydrothermal Metal Fluxes in Convergent and Collided Margins. Ore Geology Reviews, 40(1), 1–26. https://doi.org/10.1016/j.oregeorev.2011.05.006 |
|
Richards, J.P., 2015. The Oxidation State, and Sulfur and Cu Contents of Arc Magmas: Implications for Metallogeny. Lithos, 233, 27–45. https://doi.org/10.1016/j.lithos.2014.12.011 |
|
Ruban, D.A., 2015. Mesozoic Long-Term Eustatic Cycles and Their Uncertain Hierarchy. Geoscience Frontiers, 6(4), 503–511. http://dx.doi.org/10.1016/j.gsf.2014.06.001 |
|
Rudnick, R.L., and Gao, S., 2014. Composition of the Continental Crust. In: Holland HD, Turekian KK, editors. Treatise on Geochemistry (2nd ed). Oxford: Elsevier, 1–51. https://doi.org/10.1016/B978-0-08-095975-7.00301-6 |
|
Shen, X.M., Zhang, H.X., Wang, Q., et al., 2011. Late Devonian–Early Permian A-Type Granites in the Southern Altay Range, Northwest China: Petrogenesis and Implications for Tectonic Setting of “A2-Type” Granites. Journal of Asian Earth Sciences, 42(5), 986–1007. https://doi.org/10.1016/j.jseaes.2010.10.004 |
|
Skjerlie, K.P., and Johnston, A.D., 1993. Vapor-Absent Melting at 10 kbar of a Biotite- and Amphibole-Bearing Tonalitic Gneiss: Implications for the Generation of A-Type Granites. Geology, 20, 263–266. https://doi.org/10.1130/0091-7613(1992)020<0263:VAMAKO>2.3.CO;2 |
|
Spencer, C.J., Kirkland, C.L., Taylor, R.J.M., 2016. Strategies Towards Statistically Robust Interpretations of In Situ U-Pb Zircon Geochronology. Geoscience Frontiers, 7(4), 581–589. https://doi.org/10.1016/j.gsf.2015.11.006 |
|
Sun, G.Y., Hu, X.M., Xu, Y.W., et al., 2019. Discovery of Middle Jurassic Trench Deposits in the Bangong-Nujiang Suture Zone: Implications for the Timing of Lhasa-Qiangtang Initial Collision. Tectonophysics, 750, 344–358. https://doi.org/10.1016/j.tecto.2018.12.001 |
|
Sun, H., Song, Y., Wilkinson, J.J., et al., 2025. Petrogenesis of Early Cretaceous Duorenlieqian Igneous Rocks (113∼117 Ma) in the Western Bangong-Nujiang Metallogenic Belt, Tibet, China: Implications for Tectono-Magmatic Evolution and Porphyry Cu-Au Mineralization. Ore Geology Reviews, 182, 106650. https://doi.org/10.1016/j.oregeorev.2025.106650 |
|
Sun, S.S., and McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42, 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19 |
|
Tang, Y., Zhai, Q.G., Chung, S.L., et al., 2020. First Mid-Ocean Ridge-Type Ophiolite from the Meso-Tethys Suture Zone in the North-Central Tibetan Plateau. Geological Society of America Bulletin, 132(9–10). https://doi.org/10.1130/B35500.1 |
|
Trail, D., Watson, E.B., Tailby, N.D., 2011. The Oxidation State of Hadean Magmas and Implications for Early Earth’s Atmosphere. Nature, 480(7375), 79–82. https://doi.org/10.1038/nature10655 |
|
Tunini, L., Jiménez-Munt, I., Fernandez, M., et al., 2014. Lithospheric Mantle Heterogeneities Beneath the Zagros Mountains and the Iranian Plateau: A Petrological-Geophysical Study. Geophysical Journal International, 200(1), 596–614. https://doi.org/10.1093/gji/ggu418 |
|
Wang, B.D., Wang, L.Q., Chung, S.L., et al., 2016. Evolution of the Bangong-Nujiang Tethyan Ocean: Insights from the Geochronology and Geochemistry of Mafic Rocks Within Ophiolites. Lithos, 245, 18–33. https://doi.org/10.1016/j.lithos.2015.07.016 |
|
Wang, W., Wang, M., Zhai, Q.G., et al., 2020. Transition from Oceanic Subduction to Continental Collision Recorded in the Bangong-Nujiang Suture Zone: Insights from Early Cretaceous Magmatic Rocks in North-Central Tibet. Gondwana Research, 78, 77–91. https://doi.org/10.1016/j.gr.2019.09.008 |
|
Wang, Y., Tang, J.X., Wang, L.Q., et al., 2019. Magmatism and Metallogenic Mechanism of the Ga’erqiong and Galale Cu-Au Deposits in the West Central Lhasa Subterrane, Tibet: Constraints from Geochronology, Geochemistry, and Sr-Nd-Pb-Hf Isotopes. Ore Geology Reviews, 105, 616–635. https://doi.org/10.1016/j.oregeorev.2019.01.015 |
|
Weis, D., Kieffer, B., Maerschalk, C., et al., 2005. High-Precision Pb-Sr-Nd-Hf Isotopic Characterization of USGS BHVO-1 and BHVO-2 Reference Materials. Geochemistry, Geophysics, Geosystems, 6(02). https://doi.org/10.1029/2004GC000852 |
|
Whalen, J.B., Currie, K., Chappell, B.W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95, 407–419. https://doi.org/10.1007/BF00402202 |
|
Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U–Th–Pb, Lu–Hf, Trace Element and REE Analyses. Geostandards and Geoanalytical Research, 19(01), 1–23. https://doi.org/10.1111/j.1751-908X.1995.tb00147.x |
|
Wu, F.Y., Sun, D.Y., Li, H., et al., 2002. A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 187(1–2), 143–173. https://doi.org/10.1016/S0009-2541(02)00018-9 |
|
Wu, H., Chen, J.W., Wang, Q., et al., 2019. Spatial and Temporal Variations in the Geochemistry of Cretaceous High-Sr/Y Rocks in Central Tibet. American Journal of Science, 319(2), 105–121. https://doi.org/10.2475/02.2019.02 |
|
Xiao, Y., Liu, X.J., Wu, H., et al., 2025. Late Cretaceous Extensional Collapse Driven by Delamination in Central Tibet Prior to India‐Asia Collision. Geochemistry, Geophysics, Geosystems, 26(7), e2025GC012305. https://doi.org/10.1029/2025GC012305 |
|
Yang, J.H., Wu, F.Y., Chung, S.L., et al., 2006. A Hybrid Origin for the Qianshan A-Type Granite, Northeast China: Geochemical and Sr-Nd-Hf Isotopic Evidence. Lithos, 89, 89–106. https://doi.org/10.1016/j.lithos.2005.10.002 |
|
Yin, A., and Harrison, T., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28, 211–280. https://doi.org/10.1146/annurev.earth.28.1.211 |
|
Zhang, B.C., Fan, J.J., Luo, A.B., 2023. Genetic Pattern of the Albian Volcanic Rocks in the Ziruco Area, Northern Tibet: Implications for A-Type Granites. Lithos, 436, 106970. https://doi.org/10.1016/j.lithos.2022.106970 |
|
Zhang, Z., Yao, X.F., Tang, J.X., et al., 2015. Lithogeochemical, Re-Os and U-Pb Geochronological, Hf–Lu and S–Pb Isotope Data of the Ga’erqiong–Galale Cu-Au Ore-Concentrated Area: Evidence for the Late Cretaceous Magmatism and Metallogenic Event in the Bangong-Nujiang Suture Zone, Northwestern Tibet, China. Resource Geology, 65, 76–102. https://doi.org/10.1111/rge.12090 |
|
Zhong, Y., Liu, W.L., Xia, B., et al., 2017. Geochemistry and Geochronology of the Mesozoic Lanong Ophiolitic Mélange, Northern Tibet: Implications for Petrogenesis and Tectonic Evolution. Lithos, 292–293, 111–131. https://doi.org/10.1016/j.lithos.2017.09.003 |
|
Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011. The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1–2), 241–255. https://doi.org/10.1016/j.epsl.2010.11.005 |
|
Zhu, D.C., Li, S.M., Cawood, P.A., et al., 2016. Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction. Lithos, 245, 7–17. https://doi.org/10.1016/j.lithos.2015.06.023 |
|
Zhu, Z.C., Zhai, Q.G., Hu, P.Y., et al., 2019. Closure of the Bangong–Nujiang Tethyan Ocean in the Central Tibet: Results from the Provenance of the Duoni Formation. Journal of Sedimentary Research, 89(10), 1039–1054. https://doi.org/10.2110/jsr.2019.55 |
|
陈国荣,刘鸿飞,蒋光武,等,2004. 西藏班公湖-怒江结合带中段沙木罗组的发现. 地质通报, 23(02): 193–194. |
|
崔玉良,王根厚,郎欣欣,等,2016. 西藏南羌塘侏罗系色哇组构造变形特征及其构造意义. 地质科学, 51(03): 748–762. |
|
范建军,张丽强,张博川,2025. 从造山带洋岛(海山)揭示古洋盆演化:以藏北中特提斯为例[J]. 吉林大学学报(地球科学版), 1–19. |
|
耿全如,彭智敏,张璋,等,2012. 班公湖-怒江成矿带及邻区特提斯演化与成矿地质背景. 北京: 地质出版社. |
|
侯增谦,杨志明,张洪瑞,等,2025. 大陆碰撞成矿作用: 新认识与新进展. 地学前缘, 1–3. |
|
李华亮,高成,李正汉,等,2016. 西藏班公湖地区竟柱山组时代及其构造意义. 大地构造与成矿学, 40(04): 663–673. |
|
李世民,2018. 西藏班公湖—怒江特提斯洋的俯冲极性和过程:岩浆岩和碎屑锆石记录. 中国地质大学(北京). |
|
刘文,吴建亮,雷传扬,等,2019. 西藏革吉地区沙木罗组碎屑锆石年代学研究:物源及其对班公湖-怒江特提斯洋西段闭合时限的制约. 岩石学报, 35(06): 1738–1756. |
|
刘庆宏,肖志坚,曹圣华,等,2004. 班公湖-怒江结合带西段多岛弧盆系时空结构初步分析. 沉积与特提斯地质, (03): 15–21. |
|
罗安波,2022. 班公湖-怒江洋消亡时限和过程 (博士学位论文). 长春: 吉林大学. |
|
欧阳克贵,谢国刚,肖志坚,等,2005. 西藏西部日松地区多仁组、日松组的建立及其地质意义. 地质通报, (07): 642–647. |
|
曲晓明,辛洪波,杜德道,等,2012. 西藏班公湖-怒江缝合带中段碰撞后A型花岗岩的时代及其对洋盆闭合时间的约束. 地球化学, 41(01): 1–14. |
|
宋博文,柯学,何卫红,等,2025. 青藏特提斯造山系晚古生代-中生代洋板块构造-地层分区及地层格架. 地球科学, 50(09): 3651–3678. |
|
唐菊兴,王勤,杨欢欢,等,2017. 西藏斑岩-矽卡岩-浅成低温热液铜多金属矿成矿作用、勘查方向与资源潜力. 地球学报, 38(05): 571–613. |
|
唐菊兴,林彬,杨欢欢,等,2024. 西藏斑岩-矽卡岩-浅成低温热液型矿床地质特征及找矿方向. 矿床地质, 43(06): 1223–1265+1–16. |
|
王建平,2003. 西藏东部特提斯地质. 北京: 科学出版社. |
|
吴浩, 李才, 胡培远, 等, 2014. 藏北班公湖—怒江缝合带早白垩世双峰式火山岩的确定及其地质意义. 地质通报, 33(11): 1804–1814. |
|
吴浩, 杨晨, 吴彦旺, 等, 2024. 藏北中仓地区晚白垩世岩浆岩成因及其对高原早期隆升的指示. 地学前缘, 31(06): 261–281. |
|
吴建亮,刘文,尹显科,等,2021. 藏北班公湖-怒江缝合带西段沙木罗组火山岩年代学、Hf同位素及地球化学特征. 地球科学, 46(02): 444–459. |
|
谢国刚,肖志坚,欧阳克贵,等,2010. 西藏 1:25 万喀纳幅、日土县幅区域地质调查报告. 北京: 地质出版社. |
|
曾禹人,黄建国,马德胜,等,2016. 西藏班公湖-怒江结合带木嘎岗日岩群时代上限的新证据——来自恐弄拉地区早白垩世早期孢粉化石的报道. 地质通报, 35(12): 2027–2032. |
|
张克信, 宋博文, 何卫红, 等, 2025. 青藏中-南部特提斯洋板块地层分布与演化. 地球科学, 50(03): 1162–1200. |
|
张硕,史洪峰,郝海健,等,2014. 青藏高原班公湖地区晚白垩世埃达克岩年代学、地球化学及构造意义. 地球科学, 39(05): 509–524. |
|
张志,宋俊龙,唐菊兴,等,2017. 西藏嘎拉勒铜金矿床的成岩成矿时代与岩石成因: 锆石U-Pb年龄、Hf同位素组成及辉钼矿Re-Os定年. 地球科学, 42(06): 862–880. |
|
周高宇, 祁诚雪, 万牧钦, 等, 2024. 藏北盐湖地区晚白垩世辉长岩:对班公湖-怒江缝合带碰撞后拆沉作用的指示. 大地构造与成矿学, 48(04): 866–878. |
|
朱弟成,潘桂棠,莫宣学,等,2006. 青藏高原中部中生代OIB型玄武岩的识别: 年代学、地球化学及其构造环境. 地质学报, (09): 1312–1328. |