• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    杜镇瀚, 钟启明, 周家文, 侯文昂, 张士辰, 2025. 近坝库岸滑坡涌浪溃坝灾害链模型试验方法. 地球科学. doi: 10.3799/dqkx.2025.283
    引用本文: 杜镇瀚, 钟启明, 周家文, 侯文昂, 张士辰, 2025. 近坝库岸滑坡涌浪溃坝灾害链模型试验方法. 地球科学. doi: 10.3799/dqkx.2025.283
    Du Zhenhan, Zhong Qiming, Zhou Jiawen, Hou Wenang, Zhang Shichen, 2025. Experimental Methodology for Modeling the Disaster Chain of Near-Dam Landslide-Generated Waves and Resultant Dam Breach. Earth Science. doi: 10.3799/dqkx.2025.283
    Citation: Du Zhenhan, Zhong Qiming, Zhou Jiawen, Hou Wenang, Zhang Shichen, 2025. Experimental Methodology for Modeling the Disaster Chain of Near-Dam Landslide-Generated Waves and Resultant Dam Breach. Earth Science. doi: 10.3799/dqkx.2025.283

    近坝库岸滑坡涌浪溃坝灾害链模型试验方法

    doi: 10.3799/dqkx.2025.283
    基金项目: 

    国家重点研发计划青年科学家项目(2022YFC3080100)

    国家自然科学基金-联合基金重点项目(U22A20602)

    南京水利科学研究院研究生学位论文创新基金项目(Yy725009)

    详细信息
      作者简介:

      杜镇瀚(1998—),男,博士研究生,主要从事库区地质灾害链生机理及风险评估研究。E-mail: zhdu@nhri.cn。 ORCID: https://orcid.org/0009-0000-5589-5364。

      通讯作者:

      张士辰(1977—),男,教高,主要从事库区地质灾害风险评估研究。E-mail:sczhang@nhri.cn。

    • 中图分类号: P642

    Experimental Methodology for Modeling the Disaster Chain of Near-Dam Landslide-Generated Waves and Resultant Dam Breach

    • 摘要: 近坝库岸滑坡引发的涌浪灾害链具有突发性、链生性、强破坏性等特点,对水工建筑物及下游安全构成严重威胁。通过开展滑坡涌浪溃坝一体化物理模型试验,系统记录涌浪演进、坝体冲蚀及溃决过程的关键数据,揭示了土石坝在涌浪作用下的溃决机制。基于水槽试验数据,建立基于有限体积法的三维精细化数值模型,耦合滑体运动、水流动力与坝料冲蚀模块,验证了数值方法的可靠性。开展多因素数值分析,揭示了滑坡体积、滑落高度、坝体几何形态及滑坡位置等因素对溃坝过程的影响。研究结果表明,在溃坝场景下,涌浪冲击显著加速坝体侵蚀,导致洪峰流量增大、溃决时间提前,呈现出明显的灾害放大效应。研究为近坝库区地质灾害链的风险识别与评估提供了理论依据与模拟方法支撑。

       

    • Chen, S., Xu, W., Shi, A., et al., 2023. Review of Hazard Chain of Landslide Surge for High Dams and Large Reservoirs. Advances in Science and Technology of Water Resources, 43(03): 83-93(in Chinese with English abstract).
      Du, Z.H., Chen, X., Pan, H.Y., et al., 2025. Research Advances on Landslide-Induced Surge and Dam-Break Cascading Disasters near Dams. China Water Resources, 2025(3)(in Chinese with English abstract).
      Du, Z.H., Zhou, J.W., Zhang, S.C., et al., 2025. Experimental Analysis on Breaching Mechanism of Earth-Rock Dam Induced by Landslide Generated Waves. Engineering Geology, 346: 107913. https://doi.org/ 10.1016/j.enggeo.2025.107913
      Evers, F.M., Heller, V., Fuchs, H., Hager, W.H., Boes, R., 2019. Landslide-Generated Impulse Waves in Reservoirs: Basics and Computation (2nd edition) [R]. VAW-Mitteilung, 254.
      Ghirotti, M., Stead, D., 2013. Vaiont Landslide, Italy[M]. Netherlands: Springer.
      Guo, S.L., Liu, Z.J., Xiong, L.H., 2016. Advances and Assessment on Design Flood Estimation Methods. Journal of Hydraulic Engineering, 47(3): 302–314(in Chinese with English abstract).
      Guo, W.L., Zhu, J.G., Wen, Y.F., 2016. Unified Description for Four Grading Scale Methods for Coarse Aggregate. Chinese Journal of Geotechnical Engineering, 38(8): 1473–1480(in Chinese with English abstract).
      Heller, V., Ruffini, G., 2023. A Critical Review about Generic Subaerial Landslide-Tsunami Experiments and Options for a Needed Step Change. Earth-Science Reviews, 242: 104459. https://doi.org/10.1016/j.earscirev.2023.104459.
      Hu, Y.X., Li, H.B., Li, C.J., et al., 2022. Quantitative Evaluation in Classification and Amplitude of Near-Field Landslide Generated Waves Induced by Granular Debris. Ocean Engineering, 261: 112142. https://doi.org/ 10.1016/j.oceaneng.2022.112142.
      Huang, B.L., Yin, Y.P., Li, B., et al., 2025. Research Progress and Challenges of Landslide-Induced Impulse Wave Prevention and Control Engineering Measures. Journal of Engineering Geology, 33(1): 159-170(in Chinese with English abstract).
      Mastbergen, D.R., Van Den Berg, J.H., 2003. Breaching in fine sands and the generation of sustained turbidity currents in submarine canyons. Sedimentology, 50(4): 625–637. https://doi.org/10.1046/j.1365-3091.2003.00554.x
      Mei, S.Y., Zhong, Q.M., Chen, S.S., et al., 2023. Numerical simulation of breach hydrograph and morphology evolution during landslide dam breaching. Earth Science, 48(4): 1634–1648(in Chinese with English abstract).
      Peng, M., Jiang, Q.L., Zhang, Q.Z., et al., 2019. Stability analysis of landslide dams under surge action based on large-scale flume experiments. Engineering Geology, 259: 105191. https://doi.org/10.1016/j.enggeo.2019.105191
      Peng, M., Ma, C.M., Chen, H.X., et al., 2021. Experimental study on breaching mechanisms of landslide dams composed of different materials under surge waves. Engineering Geology, 291: 106242. https://doi.org/ 10.1016/j.enggeo.2021.106242
      Peng, M., Wang, Y., Ma, C.Y., et al., 2023. Review of risk assessment and prevention for valley landslide disaster chains. Earth Science, 1-36[2025-08-18](in Chinese with English abstract).
      Peng, M., Zhao, Q.X., Li, S., et al., 2025. Two-phase SPH simulation of granular landslide-tsunamis processes considering dynamic seepage. Earth Science, 1-13[2025-10-28] (in Chinese with English abstract).
      Pourshahbaz, H., Abbasi, S., Pandey, M., et al., 2022. Morphology and Hydrodynamics Numerical Simulation around Groynes. ISH Journal of Hydraulic Engineering, 28: 53–61. https://doi.org/ 10.1080/09715010.2020.1830000
      PRC Ministry of Water Resources, 2012a. Regulations for River Model Test (SL 99–2012). China Water and Power Press, Beijing, China(in Chinese).
      PRC Ministry of Water Resources, 2012b. Test Regulation for Normal Hydraulic Model (SL 155–2012). China Water and Power Press, Beijing, China(in Chinese).
      PRC Ministry of Water Resources, 2019. Regulation for Simulation of Landslide Generated Waves (SL/T 165–2019). China Water and Power Press, Beijing, China(in Chinese).
      Qi, B., Du, Z.H., Zhang, S.C., 2023. Study on the Construction of Early Warning System for Reservoir Flood Discharge in China. Advances in Transdisciplinary Engineering, 43: 783–790. https://doi.org/10.3233/atde230797
      Rauter, M., Hoße, L., Mulligan, R.P., et al., 2021. Numerical Simulation of Impulse Wave Generation by Idealized Landslide with OpenFOAM. Coastal Engineering, 165: 103815. https://doi.org/10.1016/j.coastaleng.2020.103815
      Sabeti, R., Heidarzadeh, M., 2022. Numerical Simulations of Water Waves Generated by Subaerial Granular and Solid-Block Landslides: Validation, Comparison, and Predictive Equations. Ocean Engineering, 266(3): 112853. https://doi.org/ 10.1016/j.oceaneng.2022.112853
      Samma, H., Khosrojerdi, A., Rostam-Abadi, M., et al., 2020. Numerical Simulation of Scour and Flow Field over Movable Bed Induced by a Submerged Wall Jet. Journal of Hydroinformatics, 22(2): 385–401. https://doi.org/ 10.2166/hydro.2020.091
      Sattar, A., Cook, K.L., Rai, S.K., et al., 2025. The Sikkim Flood of October 2023: Drivers, Causes, and Impacts of a Multihazard Cascade. Science, 387: eads2659. https://doi.org/ 10.1126/science.ads2659
      Semenza, E., Ghirotti, M., 2000. History of the 1963 Vaiont Slide: the Importance of Geological Factors. Bulletin of Engineering Geology and the Environment, 59(2): 87–97. https://doi.org/ 10.1007/s100640000067
      Singh, A., Anand, V., Durga Rao, et al., 2024. Unveiling the Catastrophic Landslide-Induced Flash Flood in Teesta River, Sikkim: Insight from South Lhonak Glacial Lake. Landslides, 22: 837–855. https://doi.org/ 10.1007/s10346-024-02378-7
      Su, Z.Y., Kang, X., Ding, X.C., et al., 2026. SPH–DEM modeling of rainfall-induced slope failure in partially saturated soil–rock mixture. Computers and Geotechnics, 189: 107635. https://doi.org/ 10.1016/j.compgeo.2025.107635
      Su, Z.Y., Wang, S., Li, D.Q., et al., 2024. SPH–DEM modeling overtopping failure of earthfill dams. Acta Geotechnica, 19(2): 953-970. https://doi.org/ 10.1007/s11440-024-02258-3
      Tang, L., Hu, C., Lin, L., et al., 2009. The Tsaoling landslide triggered by the chi-chi earthquake, taiwan: Insights from a discrete element simulation. Engineering Geology, 106 (1–2), 1–19. https://doi.org/ 10.1016/j.enggeo.2009.02.011
      Vacondio, R., Mignosa, P., Pagani, S., 2013. 3D SPH numerical simulation of the wave generated by the Vajont rockslide. Advances in Water Resources, 59, 146–156. https://doi.org/10.1016/j.advwatres.2013.06.009
      Wang, W., Chen, G.Q., Zhang, Y.B., et al., 2017. Dynamic simulation of landslide dam behavior considering kinematic characteristics using a coupled DDA-SPH method. Engineering Analysis with Boundary Elements, 80, 172–183. https://doi.org/ 10.1016/j.enganabound.2017.02.016
      Zhong, Q. M., Wang, L., Chen, S. S., et al., 2021. Breaches of Embankment and Landslide Dams-State of the Art Review. Earth-Science Reviews, 216: 103597. https://doi.org/ 10.1016/j.earscirev.2021.103597
      陈世壮, 徐卫亚, 石安池, 等, 2023. 高坝大库滑坡涌浪灾害链研究综述 . 水利水电科技进展, 43(03): 83-93.
      杜镇瀚, 陈祥, 潘洪月, 等, 2025. 近坝库岸滑坡涌浪-溃坝链生灾害研究进展 . 中国水利, (03): 50-57.
      郭生练, 刘章君, 熊立华, 2016. 设计洪水计算方法研究进展与评价 . 水利学报, 47(03): 302-314.
      郭万里, 朱俊高, 温彦锋, 2016. 对粗粒料4种级配缩尺方法的统一解释 . 岩土工程学报, 38(08): 1473-1480.
      黄波林, 殷跃平, 李仁江, 等, 2025. 滑坡涌浪综合防控工程措施研究进展与挑战 . 工程地质学报, 33(01): 159-170.
      梅胜尧, 钟启明, 陈生水, 单熠博, 2023. 堰塞体溃决流量与溃口形态演化数值模拟 . 地球科学, 48(4): 1634-1648.
      彭铭, 王悦, 马晨议, 等, 2025. 河谷滑坡灾害链风险评估及防控研究进展 . 地球科学, 1-36[2025-08-18].
      彭铭, 赵庆新, 李爽, 等, 2025. 考虑动态渗流的散粒体滑坡-涌浪过程两相SPH模拟 . 地球科学, 1-13[2025-10-28].
      中华人民共和国水利部, 2012. 河工模型试验规程(SL 99-2012) . 中国水利水电出版社.
      中华人民共和国水利部, 2012. 水工(常规)模型试验规程(SL 155-2012) . 中国水利水电出版社.
      中华人民共和国水利部, 2019. 滑坡涌浪模拟技术规程(SL/T 165–2019) . 中国水利水电出版社.
    • 加载中
    计量
    • 文章访问数:  81
    • HTML全文浏览量:  0
    • PDF下载量:  3
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-09-05
    • 网络出版日期:  2025-12-29

    目录

      /

      返回文章
      返回