|
Chen, S., Xu, W., Shi, A., et al., 2023. Review of Hazard Chain of Landslide Surge for High Dams and Large Reservoirs. Advances in Science and Technology of Water Resources, 43(03): 83-93(in Chinese with English abstract). |
|
Du, Z.H., Chen, X., Pan, H.Y., et al., 2025. Research Advances on Landslide-Induced Surge and Dam-Break Cascading Disasters near Dams. China Water Resources, 2025(3)(in Chinese with English abstract). |
|
Du, Z.H., Zhou, J.W., Zhang, S.C., et al., 2025. Experimental Analysis on Breaching Mechanism of Earth-Rock Dam Induced by Landslide Generated Waves. Engineering Geology, 346: 107913. https://doi.org/ 10.1016/j.enggeo.2025.107913 |
|
Evers, F.M., Heller, V., Fuchs, H., Hager, W.H., Boes, R., 2019. Landslide-Generated Impulse Waves in Reservoirs: Basics and Computation (2nd edition) [R]. VAW-Mitteilung, 254. |
|
Ghirotti, M., Stead, D., 2013. Vaiont Landslide, Italy[M]. Netherlands: Springer. |
|
Guo, S.L., Liu, Z.J., Xiong, L.H., 2016. Advances and Assessment on Design Flood Estimation Methods. Journal of Hydraulic Engineering, 47(3): 302–314(in Chinese with English abstract). |
|
Guo, W.L., Zhu, J.G., Wen, Y.F., 2016. Unified Description for Four Grading Scale Methods for Coarse Aggregate. Chinese Journal of Geotechnical Engineering, 38(8): 1473–1480(in Chinese with English abstract). |
|
Heller, V., Ruffini, G., 2023. A Critical Review about Generic Subaerial Landslide-Tsunami Experiments and Options for a Needed Step Change. Earth-Science Reviews, 242: 104459. https://doi.org/10.1016/j.earscirev.2023.104459. |
|
Hu, Y.X., Li, H.B., Li, C.J., et al., 2022. Quantitative Evaluation in Classification and Amplitude of Near-Field Landslide Generated Waves Induced by Granular Debris. Ocean Engineering, 261: 112142. https://doi.org/ 10.1016/j.oceaneng.2022.112142. |
|
Huang, B.L., Yin, Y.P., Li, B., et al., 2025. Research Progress and Challenges of Landslide-Induced Impulse Wave Prevention and Control Engineering Measures. Journal of Engineering Geology, 33(1): 159-170(in Chinese with English abstract). |
|
Mastbergen, D.R., Van Den Berg, J.H., 2003. Breaching in fine sands and the generation of sustained turbidity currents in submarine canyons. Sedimentology, 50(4): 625–637. https://doi.org/10.1046/j.1365-3091.2003.00554.x |
|
Mei, S.Y., Zhong, Q.M., Chen, S.S., et al., 2023. Numerical simulation of breach hydrograph and morphology evolution during landslide dam breaching. Earth Science, 48(4): 1634–1648(in Chinese with English abstract). |
|
Peng, M., Jiang, Q.L., Zhang, Q.Z., et al., 2019. Stability analysis of landslide dams under surge action based on large-scale flume experiments. Engineering Geology, 259: 105191. https://doi.org/10.1016/j.enggeo.2019.105191 |
|
Peng, M., Ma, C.M., Chen, H.X., et al., 2021. Experimental study on breaching mechanisms of landslide dams composed of different materials under surge waves. Engineering Geology, 291: 106242. https://doi.org/ 10.1016/j.enggeo.2021.106242 |
|
Peng, M., Wang, Y., Ma, C.Y., et al., 2023. Review of risk assessment and prevention for valley landslide disaster chains. Earth Science, 1-36[2025-08-18](in Chinese with English abstract). |
|
Peng, M., Zhao, Q.X., Li, S., et al., 2025. Two-phase SPH simulation of granular landslide-tsunamis processes considering dynamic seepage. Earth Science, 1-13[2025-10-28] (in Chinese with English abstract). |
|
Pourshahbaz, H., Abbasi, S., Pandey, M., et al., 2022. Morphology and Hydrodynamics Numerical Simulation around Groynes. ISH Journal of Hydraulic Engineering, 28: 53–61. https://doi.org/ 10.1080/09715010.2020.1830000 |
|
PRC Ministry of Water Resources, 2012a. Regulations for River Model Test (SL 99–2012). China Water and Power Press, Beijing, China(in Chinese). |
|
PRC Ministry of Water Resources, 2012b. Test Regulation for Normal Hydraulic Model (SL 155–2012). China Water and Power Press, Beijing, China(in Chinese). |
|
PRC Ministry of Water Resources, 2019. Regulation for Simulation of Landslide Generated Waves (SL/T 165–2019). China Water and Power Press, Beijing, China(in Chinese). |
|
Qi, B., Du, Z.H., Zhang, S.C., 2023. Study on the Construction of Early Warning System for Reservoir Flood Discharge in China. Advances in Transdisciplinary Engineering, 43: 783–790. https://doi.org/10.3233/atde230797 |
|
Rauter, M., Hoße, L., Mulligan, R.P., et al., 2021. Numerical Simulation of Impulse Wave Generation by Idealized Landslide with OpenFOAM. Coastal Engineering, 165: 103815. https://doi.org/10.1016/j.coastaleng.2020.103815 |
|
Sabeti, R., Heidarzadeh, M., 2022. Numerical Simulations of Water Waves Generated by Subaerial Granular and Solid-Block Landslides: Validation, Comparison, and Predictive Equations. Ocean Engineering, 266(3): 112853. https://doi.org/ 10.1016/j.oceaneng.2022.112853 |
|
Samma, H., Khosrojerdi, A., Rostam-Abadi, M., et al., 2020. Numerical Simulation of Scour and Flow Field over Movable Bed Induced by a Submerged Wall Jet. Journal of Hydroinformatics, 22(2): 385–401. https://doi.org/ 10.2166/hydro.2020.091 |
|
Sattar, A., Cook, K.L., Rai, S.K., et al., 2025. The Sikkim Flood of October 2023: Drivers, Causes, and Impacts of a Multihazard Cascade. Science, 387: eads2659. https://doi.org/ 10.1126/science.ads2659 |
|
Semenza, E., Ghirotti, M., 2000. History of the 1963 Vaiont Slide: the Importance of Geological Factors. Bulletin of Engineering Geology and the Environment, 59(2): 87–97. https://doi.org/ 10.1007/s100640000067 |
|
Singh, A., Anand, V., Durga Rao, et al., 2024. Unveiling the Catastrophic Landslide-Induced Flash Flood in Teesta River, Sikkim: Insight from South Lhonak Glacial Lake. Landslides, 22: 837–855. https://doi.org/ 10.1007/s10346-024-02378-7 |
|
Su, Z.Y., Kang, X., Ding, X.C., et al., 2026. SPH–DEM modeling of rainfall-induced slope failure in partially saturated soil–rock mixture. Computers and Geotechnics, 189: 107635. https://doi.org/ 10.1016/j.compgeo.2025.107635 |
|
Su, Z.Y., Wang, S., Li, D.Q., et al., 2024. SPH–DEM modeling overtopping failure of earthfill dams. Acta Geotechnica, 19(2): 953-970. https://doi.org/ 10.1007/s11440-024-02258-3 |
|
Tang, L., Hu, C., Lin, L., et al., 2009. The Tsaoling landslide triggered by the chi-chi earthquake, taiwan: Insights from a discrete element simulation. Engineering Geology, 106 (1–2), 1–19. https://doi.org/ 10.1016/j.enggeo.2009.02.011 |
|
Vacondio, R., Mignosa, P., Pagani, S., 2013. 3D SPH numerical simulation of the wave generated by the Vajont rockslide. Advances in Water Resources, 59, 146–156. https://doi.org/10.1016/j.advwatres.2013.06.009 |
|
Wang, W., Chen, G.Q., Zhang, Y.B., et al., 2017. Dynamic simulation of landslide dam behavior considering kinematic characteristics using a coupled DDA-SPH method. Engineering Analysis with Boundary Elements, 80, 172–183. https://doi.org/ 10.1016/j.enganabound.2017.02.016 |
|
Zhong, Q. M., Wang, L., Chen, S. S., et al., 2021. Breaches of Embankment and Landslide Dams-State of the Art Review. Earth-Science Reviews, 216: 103597. https://doi.org/ 10.1016/j.earscirev.2021.103597 |
|
陈世壮, 徐卫亚, 石安池, 等, 2023. 高坝大库滑坡涌浪灾害链研究综述 . 水利水电科技进展, 43(03): 83-93. |
|
杜镇瀚, 陈祥, 潘洪月, 等, 2025. 近坝库岸滑坡涌浪-溃坝链生灾害研究进展 . 中国水利, (03): 50-57. |
|
郭生练, 刘章君, 熊立华, 2016. 设计洪水计算方法研究进展与评价 . 水利学报, 47(03): 302-314. |
|
郭万里, 朱俊高, 温彦锋, 2016. 对粗粒料4种级配缩尺方法的统一解释 . 岩土工程学报, 38(08): 1473-1480. |
|
黄波林, 殷跃平, 李仁江, 等, 2025. 滑坡涌浪综合防控工程措施研究进展与挑战 . 工程地质学报, 33(01): 159-170. |
|
梅胜尧, 钟启明, 陈生水, 单熠博, 2023. 堰塞体溃决流量与溃口形态演化数值模拟 . 地球科学, 48(4): 1634-1648. |
|
彭铭, 王悦, 马晨议, 等, 2025. 河谷滑坡灾害链风险评估及防控研究进展 . 地球科学, 1-36[2025-08-18]. |
|
彭铭, 赵庆新, 李爽, 等, 2025. 考虑动态渗流的散粒体滑坡-涌浪过程两相SPH模拟 . 地球科学, 1-13[2025-10-28]. |
|
中华人民共和国水利部, 2012. 河工模型试验规程(SL 99-2012) . 中国水利水电出版社. |
|
中华人民共和国水利部, 2012. 水工(常规)模型试验规程(SL 155-2012) . 中国水利水电出版社. |
|
中华人民共和国水利部, 2019. 滑坡涌浪模拟技术规程(SL/T 165–2019) . 中国水利水电出版社. |