• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    李风, 王功文, 卢紫阳, 付超, 刘烊, 东玉龙, 龚天一, 张智强, 2025. 基于混合注意力机制的矿田尺度三维岩性建模:以焦家金矿田为例. 地球科学. doi: 10.3799/dqkx.2025.286
    引用本文: 李风, 王功文, 卢紫阳, 付超, 刘烊, 东玉龙, 龚天一, 张智强, 2025. 基于混合注意力机制的矿田尺度三维岩性建模:以焦家金矿田为例. 地球科学. doi: 10.3799/dqkx.2025.286
    Feng Li, Gongwen Wang, Ziyang Lu, Chao Fu, Yang Liu, Yulong Dong, Tianyi Gong, Zhiqiang Zhang, 2025. Three-dimensional (3D) lithological modeling via hybrid attentional mechanism deep learning model: A case study of Jiaojia gold field. Earth Science. doi: 10.3799/dqkx.2025.286
    Citation: Feng Li, Gongwen Wang, Ziyang Lu, Chao Fu, Yang Liu, Yulong Dong, Tianyi Gong, Zhiqiang Zhang, 2025. Three-dimensional (3D) lithological modeling via hybrid attentional mechanism deep learning model: A case study of Jiaojia gold field. Earth Science. doi: 10.3799/dqkx.2025.286

    基于混合注意力机制的矿田尺度三维岩性建模:以焦家金矿田为例

    doi: 10.3799/dqkx.2025.286
    基金项目: 

    科技部国家科技重大专项重点金矿集区四维建模与数字孪生的靶区优选项目(2024ZD1001900)

    国家自然科学基金项目(42402301)

    详细信息
      作者简介:

      李风(2004—),男,主要从事资源环境大数据工程方向研究。E-mail: feng_li_geo@126.com ORCID:0009-0002-1979-8203

      通讯作者:

      张智强(1993—),男,副教授,主要从事三维地质建模和矿产资源定量预测研究。E-mail: zq_zhang_geo@126.com

    • 中图分类号: P612;P628

    Three-dimensional (3D) lithological modeling via hybrid attentional mechanism deep learning model: A case study of Jiaojia gold field

    • 摘要: 矿田尺度深部地质结构“透明化”是矿产勘查与成矿预测的核心,三维岩性建模是实现这一目标的关键技术。然而,当前矿田尺度三维岩性建模主要依赖效率较低的显式建模方法,难以满足多阶段矿产勘查和矿山实时生产的需求,因此亟需研发高精度、高效率的三维岩性隐式建模方法。针对上述问题,本研究以三维卷积神经网络(3D Convolutional Neural Network, 3D CNN)为基础,融合卷积注意力机制(Convolutional Block Attention Module, CBAM)与自注意力机制(Self-Attention Module, SAM)构建混合注意力机制深度学习算法(Hybrid Attentional Mechanism Deep Learning Model, HAM),并基于该算法挖掘多源地质—地球物理数据中的深层次特征,确定建模所需地质体边界,实现既能捕捉局部上下文、又能表征全局上下文的三维岩性隐式建模方法。为验证HAM算法有效性,本研究选择胶东半岛焦家金矿田作为研究区,开展对比实验与消融实验。结果表明,相较于随机森林(Random forest, RF)和3D CNN 等基线算法,本次研究提出的HAM算法在三维岩性建模的宏平均准确率、精确率、召回率、宏平均F1-score和混淆矩阵上表现出显著优势,对推动深部找矿和矿山生产具有重要意义。

       

    • Buda,M.,Maki,A.,Mazurowski,M.A.,2018.A Systematic Study of the Class Imbalance Problem in Convolutional Neural Networks. Neural Networks, 106: 249-259. https://doi.org/10.1016/j.neunet.2018.07.011
      Cai,Z.H.,He,B.Z.,Liu,R.H.,2020.Emplacement of Granitic Pluton and Cenozoic Deformation in the Wenquan Region,Tashkorgan,Xinjiang: The Implications for the Miocene Tectonic Evolution of the Northeast Pamir. Acta Petrologica Sinica,36(10):3137-3151(in Chinese with English abstract).
      Chen,J.,Mao,X.C.,Deng,H.,2020. 3D Quantitative Mineral Prediction in the Depth of the Dayingezhuang Gold Deposit, Shandong Province. Acta Geoscientica Sinica, 41(02):179-191(in Chinese with English abstract).
      Chen,J.N.,Sun,S.,He,J.,et al.,2022. Transmix: Attend to mix for vision transformers.Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 12135-12144. https://doi.org/10.48550/arXiv.2111.09833
      Chen,J.P.,Zhou,G.Y.,Chu,Z.Y.,et al.,2024. Geological big Data Three-dimensional Modelling and Mineralization Predictionof Diamond Deposit in Mengyin, Shandong, China. Mineral Depostits, 43(04):802-820(in Chinese with English abstract).
      Chen,Q.Y.,Xun,L.,Cui,Z.S.,et al.,2025. Recent Progress and Development trends of Three-dimensional Geological Modeling. Bulletin of Geological Scienceand Technology,44(3):373-387(in Chinese with English abstract).
      Chen,Q.Y.,Zhang,R.T.,Cui,H.S.,et al.,2025. Multiple-scalethree-dimensional Geological Modeling Approach Based on Lap-SAGAN. Earth Science Frontiers, 1-30[2025-11-07](in Chinese with English abstract).
      Cheng,Q.M.,2025. A New Paradigm for Mineral Resource Prediction Based on Human Intelligence-artificial Intelligence Integration. Earth Science Frontiers, 32(4):001-019(in Chinese with English abstract).
      Deng,J.,Yang,L.Q.,Groves,D.I.,et al.,2020. An Integrated Mineral System Model for the Gold Deposits of the Giant Jiaodong Province, eastern China. Earth-Science Reviews, 208: 103274. https://doi.org/10.1016/j.earscirev.2020.103274
      Deng,H.,Wei,Y.F.,Chen,J.,et al.,2021. Three-dimensional Prospectivity Mapping and Quantitative Analysis of Structuralore-controlling factors in Jiaojia Au Ore-belt with Attention Convolutional Neural Networks. Journal of Central South University(Science and Technology), 52(9): 3003−3014(in Chinese with English abstract).
      Deng,H.,Zheng,Y.,Chen,J.,et al.,2020. Deep Learning-based 3D Prediction Model for the Dayingezhuang Gold Deposit,Shandong Province. Acta Geoscientica Sinica, 41(02):157-165(in Chinese with English abstract).
      Guo,J.T.,Wang,X.L.,Wang,J.M.,et al.,2021. Three-dimensional Geological Modeling and Spatial Analysis from Geotechnical Borehole Busing an Implicit Surface and Marching Tetrahedra Algorithm. Engineering Geology, 284: 106047. https://doi.org/10.1016/j.enggeo.2021.106047
      Guo,J.T.,Wang,Z.X.,Li,C.L.,et al.,2022. Multiple-point Geostatistics-based Three-dimensional Automatic Geological Modeling and Uncertainty Analysis for Borehole Data. Natural Resources Research, 31(5): 2347-2367. https://doi.org/10.1007/s11053-022-10071-6
      Guo,J.T.,Wu,L.X.,Zhou,W.H.,et al.,2016. Towards Automatic and Topologically Consistent 3D Regional Geological Modeling from Boundaries and Attitudes. Isprs International Journal of Geo-Information, 5(2), 17. https://doi.org/10.3390/ijgi5020017
      Guo,J.T.,Liu,Y.H.,Han,Y.F.,et al.,2019. Implicit 3D Geological Modeling Method for Borehole Data Based on Machine Learning. Journal of Northeastern University(Natural Science), 40(09):1337-1342(in Chinese with English abstract).
      Hu,J.,Shen,L.,Sun,G.,2018.Squeeze-and-excitation Networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 7132-7141. https://doi.org/10.48550/arXiv.1709.01507
      Huang,J.,Deng,H.,Chen,J.,et al., 2023. Assessing geometrical uncertainties in geological interface models using Markov chain Monte Carlo sampling via abstract graph. Tectonophysics. 864: 230032. https://doi.org/10.1016/j.tecto.2023.230032
      Huang,X.J.2022. MCMC simulation and variational reconstruction for 3D geological interface of metallogenic structure(Dissertation). Central South University. (in Chinese with English abstract).
      Huang,Z.L.,Wang,X.G.,Huang,L.C.,et al.,2019. Ccnet: Criss-cross Attention for Semantic Segmentation.Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 603-612. https://doi.org/10.1109/TPAMI.2020.3007032
      Ioffe,S. & Szegedy,C.,2015. Batch Normalization: Accelerating Deep Network Training by reducing Internal Covariate Shift.International Conference on Machine Learning. pmlr, 2015: 448-456.https://doi.org/10.48550/arXiv.1807.06521
      Jia,R.,Lv,Y.,Wang,G.W.,et al.,2021. A Stacking Methodology of Machine Learning for 3D Geological Modeling with Geological-geophysical Datasets, Laochang Sn Camp, Gejiu (China). Computers & Geosciences, 151:104754.https://doi.org/10.1016/j.cageo.2021.104754
      Jian,J.L.,Cai,Z.D.,Chao,F.,et al.,2023. Genesis of the Yangjiakuang Gold Deposit, Jiaodong Peninsula, China: Constraints from S-He-Ar-Pb Isotopes, and Sm-Nd and U-Pb Geochronology. Frontiers in Earth Science.https://doi.org/10.3389/feart.2023.1048509
      Li,S.Y.,Li,J.,Song,C.M.,et al.,2022. Metallogenic Characteristics and Mineralization of the Linglong Gold Field, Jiaodong Peninsula. Acta Geologica Sinica, 96(9): 3234-3260.(in Chinese with English abstract).
      Lin,T.Y.,Goyal,P.,Girshick,R.,et al., 2017. Focal Loss for dense Object Detection.Proceedings of the IEEE International Conference on Computer Vision. 2017: 2980-2988. https://doi.org/10.48550/arXiv.1708.02002
      Liu,Y.,Zhang,Y.,Wang,Y.,et al.,2023. A Survey of Visual Transformers. IEEE Transactions on Neural Networks and Learning Systems, 35(6): 7478-7498. https://doi.org/10.1109/TNNLS.2022.3227717
      Liu,Z.B.,Zhang,J.Q.,Du,X.F.,et al.,2024. Implicit 3D Integrated Modeling of Complex GeologicalStructures in Mining Areas. Journal of Northeastern University(Natural Science), 45(09):1317-1325(in Chinese with English abstract).
      Lou,Y.M.,Kang,X.,Lai,Y.P.,et al., 2025. Application of Implicit Modeling and Machine Learning Algorithm to 3D Metallogenic Prediction of the Julong Porphyry Copper-molybdenum Deposit, Xizang. Earth Science Frontiers, 32(5):440-455(in Chinese with English abstract).
      Lv,P.F.,Chen,W.Y.,Zou,X.Y.,2025. Precision Recognition of Rock Thin Section Images With Multi‐Head Self‐Attention Convolutional Neural Networks.Journal of Geophysical Research: Machine Learning and Computation,2(2):e2025JH000617-e2025JH000617. https://doi.org/10.1029/2025JH000617
      Ridnik,T.,Lawen,H.,Noy.,A,et al.,2021. Tresnet: High performance gpu-dedicated architecture. proceedings of the IEEE/CVF winter conference on applications of computer vision. 2021: 1400-1409. https://doi.org/10.48550/arXiv.2003.13630
      Mao,X.C.,Duan,M.,Deng,H.,et al.,2025. Intelligent 3D Prediction of Deep Mineral Resources: Theory, Methods, and Challenges. Earth Science, 1-34[2025-11-06]. (in Chinese with English abstract).
      Min,Q.F.,Lu,Y.G.,Liu,Z.Y.,et al., Machine Learning Based Digital Twin Framework for Production Optimization in Petrochemical Industry. International Journal of Information Management, 2019, 49: 502-519.https://doi.org/10.1016/j.ijinfomgt.2019.05.020
      Mumuni.,A. & Mumuni,F.,2022. Data Augmentation: A Comprehensive Survey of Modern Approaches. Array, 16: 100258.https://doi.org/10.1016/j.array.2022.100258
      Shi,L.Y.,Zuo,R.G.,2025. Foundation model for mineral prospectivity mapping. Earth Science. (in Chinese with English abstract).https://link.cnki.net/urlid/42.1874.P.20250916.1824.002
      Song,Z.Y.,Xiang,Y.H.,Liu,Z.K.,et al.,2024. Lithogeochemistry of Altered Rocks and Mineralization in Xindongzhuang Gold Deposit, Northwest Jiaodong Peninsula. Gold, 45(08):89-93+98(in Chinese with English abstract).
      Wang,X.,Girshick,R.,Gupta,A.,et al.,2018. Non-local Neural Networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 7794-7803. https://doi.org/10.48550/arXiv.1711.07971
      Wang,H.,Yan,J.Y.,Qi,G.,et al.,2023. Metallogenic Prediction Method Based on Gravity and Magnetic Three-dimensional Modeling and Machinelearning: A Case Study of Zhuxi. Progress in Geophysics, 38( 2) : 0734-0747(in Chinese with English abstract).
      Wang,T.G.,Ji,X.B.,Wang,J.B.,et al.,2025. Implicit 3D Geological Modeling Based on Machine Learning: A Case Study of Lazigou Gold Deposit in Muping‐Rushan Metallogenic Belt. Earth Science.50(8):3167-3181.(in Chinese with English abstract).
      Woo,S.,Park,J.,Lee,J.Y.,et al., 2018. Cbam: Convolutional Block Attention Module.Proceedings of the European Conference on Computer Vision (ECCV). 2018: 3-19. https://doi.org/10.48550/arXiv.1807.06521
      Xiao,F.,Chen,X.Y.,2025. Numerical Modeling and Exploration Data Coupled-driven MineralProspectivity Mapping: A Case Study of Fankou Pb-Zn Deposit.Geotectonica et Metallogenia,49(02):298-316(in Chinese with English abstract).
      Xu,L.P.,Zhu,W.P.,Zhu,H.W.,et al.,2022. Physical Property Characteristics of Rocks in Hanzhong and Ankang Areas at the Southern Foot of Qinling Mountains and their Application. Geophysical and Geochemical Exploration, 46(5): 167-1179(in Chinese with English abstract).
      Yang,J.H.,Xu,L.,Sun,J.F.,et al.,2021. Geodynamics of Decratonization and Related Magmatism and Mineralization in the North China Craton. Science China Earth Sciences, 64(9): 1409-1427(in Chinese with English abstract).
      Yao,X.F.,Cheng,Z.Z.,Du,Z.Z.,et al.,2020. U-Pb Age of Post-ore dykes in the Xiejiagou Gold Deposit and its Constraints on Ore-forming Age,Northwest Jiaodong,China. Geological Bulletin of China,39( 8) : 1153-1162(in Chinese with English abstract).
      Ye,S.W.,Hou,W.s.,Yang,J.,et al.,2025. Advance of 3D Smart Geological Modeling. Earth Science Frontiers, 32(4):182-198(in Chinese with English abstract).
      Yu,S.W., & Ma,J.W.,2021. Deep Learning for Geophysics: Current and Future Trends. Reviews of Geophysics, 59(3): e2021RG000742. https://doi.org/10.1029/2021RG000742
      Yu,X.W.,Wang,L.M.,Ren,T.L.,et al., 2023. Geochemistry, Zircon U-Pb Age and Lu-Hf Isotope of the Concealed Guojialing Granite Revealed by Boreholes in the Northwestern Jiaodong Region. Acta Geologica Sinica, 97(2):417-432(in Chinese with English abstract).
      Yuan,F.,Li,X.H.,Tian,W.D.,et al.,2024. Key Issues in Three-dimensional Predictive Modeling of Mineral Prospectivity. Earth Science Frontiers, 31(4):119-128(in Chinese with English abstract).
      Zhang,B.Y.,Xu,Z.H.,Wei,X.Z.,et al.,2024. Deep Subsurface Pseudo-lithostratigraphic Modeling Based on Three-dimensional Convolutional Neural Network (3D CNN) using Inversed Geophysical Properties and Shallow Subsurface Geological Model. Lithosphere, 2024(1): lithosphere_2023_273. https://doi.org/10.2113/2024/lithosphere_2023_273
      Zhang,Z.Q.,Wang,G.W.,Carranza,E.J.,et al.,2023.An Integrated Machine Learning Framework with Uncertainty Quantification for Three-dimensional Lithological Modeling from Multi-source Geophysical Data and Drilling Data. Engineering Geology, 324: 107255. https://doi.org/10.1016/j.enggeo.2023.107255
      177.https://doi.org/10.1007/s11430-021-9887-1
      Zhang,H.,Zhang,Q.,Yu,J.y.,2021. Overview of the Development of Activation Function and its Nature Analysis. Journal of Xihua University (Natural Science Edition), 40(4): 1-10. http://dx.doi.org/10.12198/j.issn.1673-159X.3761
      Zhang,M.M.,Chen,C.,Huang,Y.Q.,et al.,2025. Three-Dimensional Mineral Prospectivity Modelingof Skarn-Type Copper Deposits in the Anqing AreaBased on Causal Inference and Graph AttentionNetworks. Earth Science.(in Chinese with English abstract) https://doi.org/10.3799/dqkx.2025.198
      Zhang,Z.Q.,2022. Research of Machine Learning for District-scaleThree-dimensional Implicit Geological Modeling and MineralPotential Mapping(Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      Zhang,Z.Q.,Li,Y.J.,Wang,G.W.,et al.,2023. Supervised mineral prospectivity mapping via class-balanced focal loss function on imbalanced geoscience datasets. Mathematical Geosciences, 55(7): 989-1010. https://doi.org/10.1007/s11004-023-10065-x
      Zhang,Z.Q.,Wang,G.W.,Carranza,E.J.M.,et al.,2025. Three-dimensional mineral prospectivity mapping using a residual convolutional neural network with lightweight attention mechanisms. Ore Geology Reviews, 106797. https://doi.org/10.1016/j.oregeorev.2025.106797
      Zhao,L.,Zhang,H.L.,Sun,X.D.,et al.,2024. Application of ResUNet-CBAM in Thin-Section Image Segmentation of Rocks. Information, 15(12):788-788. https://doi.org/10.3390/info15120788
      Zhong,Z.,Zheng,L.,Kang,G.L.,et al.,2020. Random Erasing Data Augmentation. Proceedings of the AAAI conference on artificial intelligence. 34(07): 13001-13008. https://doi.org/10.1609/aaai.v34i07.7000
      Zhou,M.L.,Sun,L.L.,Yu,J.Y.,et al.,2024. Exploration and Scientific Research of the Jiaojia-type Gold Deposit. Journal of Geomechanics, 30(5):747-767(in Chinese with English abstract).
      Zhu,P.G.,Zhang,W.J.,Chi,N.J.,et al.,2022. Geochemical Characteristics and Zircon U-Pb Age of Concealed Granitoids in the Footwall of Jiao-jia Fault Zone in Jincheng area,Shandong Province. Science Technology and Engineering,22( 15) : 5976-5987(in Chinese with English abstract).
      Zhu,R.X.,Fan,H.R.,Li,J.W.,et al.,2015. Decratonic Gold Deposits. Science China: Earth Sciences, 58: 1523-1537(in Chinese with English abstract).
      Zhu,Y.J.,Wang,D.D.,Liu,J.,et al.,2025. 3D Gravity and Magnetic Inversion with a Modified Generalized Depth Weighting. IEEE Transactions on Geoscience and Remote Sensing, 63(000):1-13. https://doi.org/10.1109/TGRS.2025.3586257
      Zhao,J.T.,Yu,C.X.,Peng,S.P.,et al.,2016. Seismic Sparse Inversion Method Implemented on Image Data for Detecting Discontinuous and Inhomogeneous Geological Features.Chinese Journal of Geophysics,59(09):3408-3416(in Chinese with English abstract).
      Zitouni,M.S.,Alkhatib,M.Q.,Aburaed,N.,et al.,2024. A Comparative Analysis of Attention Mechanisms in 3D CNN-Based Hyperspectral Image Super-Resolution.2024 14th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS). IEEE, 2024: 1-5.https://doi.org/10.1109/WHISPERS65427.2024.10876507
      Zou,Y.H.,Zhang,W.Q.,Mao,X.C.,2023. Numerical Simulation of Hydrothermal Alteration ChemicalReactions During Ore-forming Process of the Jiaojia GoldDeposit, Jiaodong Peninsula,China. Geotectonica et Metallogenia,47(05):1158-1172(in Chinese with English abstract).
      Zuo,R.G.,2021. Data Science-Based Theory and Method of Quantitative Prediction of Mineral Resources.Earth Science Frontiers,28(03):49-55(in Chinese with English abstract).
      陈建平,周冠云,褚志远,等.2024.山东蒙阴金刚石矿床地质大数据三维建模与成矿预测.矿床地质,43(04):802-820.
      蔡志慧,何碧竹,刘若涵.2020.新疆塔什库尔干温泉地区花岗岩体侵入与新生代构造变形:对东北帕米尔中新世构造演化的启示.岩石学报,36(10):3137-3151.
      陈进,毛先成,邓浩.2020.山东大尹格庄金矿床深部三维定量成矿预测.地球学报,41(02):179-191.
      陈麒玉,荀磊,崔哲思,等.2025.三维地质建模技术的最新进展和发展趋势.地质科技通报,44(03):373-387.
      陈麒玉,张如甜,崔哲思,等.2025.基于Lap-SAGAN的多尺度三维地质模型重构方法.地学前缘,https://doi.org/10.13745/j.esf.sf.2025.4.1
      成秋明.2025.面向人类智能与人工智能融合的矿产资源预测新范式.地学前缘,32(04):1-19.
      邓浩,魏运凤,陈进,等.2021.基于注意力卷积神经网络的焦家金矿带三维成矿预测及构造控矿因素定量分析.中南大学学报(自然科学版),52(09):3003-3014.
      邓浩,郑扬,陈进,等.2020.基于深度学习的山东大尹格庄金矿床深部三维预测模型.地球学报,41(02):157-165.
      郭甲腾,刘寅贺,韩英夫,等.2019.基于机器学习的钻孔数据隐式三维地质建模方法.东北大学学报(自然科学版),40(09):1337-1342.
      黄珏璇,2022.深部成矿构造三维结构面的MCMC模拟与变分重建(硕士学位论文).长沙:中南大学.
      李世勇,李杰,宋明春,等.2022.胶东玲珑金矿田成矿特征和成矿作用.地质学报,96(09):3234-3260.
      刘志斌,张健桥,杜晓峰,等.2024.矿区复杂地质构造隐式三维集成建模.东北大学学报(自然科学版),45(09):1317-1325.
      娄渝明,康旭,赖渊平,等.2025.隐式建模和机器学习算法在西藏巨龙斑岩型铜钼矿床三维成矿预测中的应用研究.地学前缘,32(05):440-455.
      毛先成,段新明,邓浩,等.2025.深部矿产三维智能预测理论、方法与挑战.地球科学, https://link.cnki.net/urlid/42.1874.p.20251106.1507.005.
      师路易,左仁广.2025.矿产预测大模型.地球科学https://link.cnki.net/urlid/42.1874.P.20250916.1824.002
      宋志勇,向胤合,刘占坤,等.2024.胶西北新东庄金矿床蚀变岩岩石地球化学特征与成矿作用.黄金,45(08):89-93+98.
      王昊,严加永,祁光,等.2023.基于重磁三维建模与机器学习的成矿预测方法——以朱溪外围为例.地球物理学进展,38(02):734-747.
      王统荣,纪旭波,王江波,等.2025.基于机器学习的隐式三维地质建模:以牟乳成矿带腊子沟金矿为例.地球科学,50(08):3167-3181.
      肖凡,陈信宇.2025.基于数值模拟与勘查数据协同驱动的矿产定量预测——以凡口铅锌矿为例.大地构造与成矿学,49(02):298-316.
      徐璐平,朱卫平,朱宏伟,等.2022.南秦岭安康汉中地区岩石物性特征及应用.物探与化探,46(05):1167-1179.
      杨进辉,许蕾,孙金凤,等.2021.华北克拉通破坏与岩浆-成矿的深部动力学过程.中国科学:地球科学,51(09):1401-1419.
      姚晓峰,程志中,杜泽忠,等.2020.胶西北地区谢家沟金矿岩脉U-Pb年龄及其对成矿时限的制约.地质通报,39(08):1153-1162.
      叶舒婉,侯卫生,杨玠,等,2025.三维地质智能建模研究进展.地学前缘,32(04):182-198.
      于晓卫,王来明,任天龙,等.2023.胶西北地区钻孔揭露隐伏郭家岭期花岗岩的地球化学、锆石U-Pb年龄及Lu-Hf同位素特征.地质学报,97(02):417-432.
      袁峰,李晓晖,田卫东,等.2024.三维成矿预测关键问题.地学前缘,31(04):119-128.
      张明明,陈聪,黄宇勤,等.2025.基于因果推理模型和图注意力网络的安庆地区矽卡岩型铜矿床三维成矿预测方法.地球科学.https://doi.org/10.3799/dqkx.2025.198
      张智强.2022.基于机器学习的矿集区尺度三维隐式建模和矿产资源定量预测方法研究(博士学位论文).北京:中国地质大学.
      周明岭,孙亮亮,吕军阳,等.2024.焦家式金矿勘查与研究.地质力学学报,30(05):747-767.
      朱日祥,范宏瑞,李建威,等.2015.克拉通破坏型金矿床.中国科学:地球科学,45(08):1153-1168.
      祝培刚,张文佳,迟乃杰,等.2022.山东金城地区焦家断裂带下盘隐伏花岗岩类岩石地球化学特征及锆石U-Pb年龄.科学技术与工程,22(15):5976-5987.
      赵惊涛,于彩霞,彭苏萍,等.2016.基于地震成像数据稀疏反演的不连续及非均质地质体检测方法.地球物理学报,59(09):3408-3416.
      邹艳红,张武桥,毛先成,等.2023. 胶东焦家金矿床成矿过程热液蚀变化学反应数值模拟.大地构造与成矿学,47(05):1158-1172.
      左仁广.2021.基于数据科学的矿产资源定量预测的理论与方法探索.地学前缘,28(03):49-55.
    • 加载中
    计量
    • 文章访问数:  114
    • HTML全文浏览量:  2
    • PDF下载量:  9
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-11-11
    • 网络出版日期:  2025-12-29

    目录

      /

      返回文章
      返回