• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    吕帅, 房立华, 彭钰翔, 曹颖, 夏登科, 范莉苹, 朱杰, 郭亚茹, 2025. 云南预警台网异构波形数据集构建与震相拾取模型性能评估. 地球科学. doi: 10.3799/dqkx.2025.287
    引用本文: 吕帅, 房立华, 彭钰翔, 曹颖, 夏登科, 范莉苹, 朱杰, 郭亚茹, 2025. 云南预警台网异构波形数据集构建与震相拾取模型性能评估. 地球科学. doi: 10.3799/dqkx.2025.287
    Lv Shuai, Fang Lihua, Peng Yuxiang, Cao Ying, Xia Dengke, Fan Liping, Zhu Jie, Guo Yaru, 2025. Development of a Heterogeneous Waveform Dataset and Evaluation of Phase Picking Models for the Yunnan Earthquake Early Warning Network. Earth Science. doi: 10.3799/dqkx.2025.287
    Citation: Lv Shuai, Fang Lihua, Peng Yuxiang, Cao Ying, Xia Dengke, Fan Liping, Zhu Jie, Guo Yaru, 2025. Development of a Heterogeneous Waveform Dataset and Evaluation of Phase Picking Models for the Yunnan Earthquake Early Warning Network. Earth Science. doi: 10.3799/dqkx.2025.287

    云南预警台网异构波形数据集构建与震相拾取模型性能评估

    doi: 10.3799/dqkx.2025.287
    基金项目: 

    地震科技星火计划项目(No.XH25033YB)和国家自然科学基金(No.42374081).

    详细信息
      作者简介:

      吕帅(1991-),男,高级工程师,主要从事地震监测和地震信息化工作.E-mail:lv_303494@163.com.

      通讯作者:

      房立华(1981-),男,博士,研究员,主要从事人工智能地震学研究.E-mail:fanglihua@ief.ac.cn.

    • 中图分类号: P315.61

    Development of a Heterogeneous Waveform Dataset and Evaluation of Phase Picking Models for the Yunnan Earthquake Early Warning Network

    • 摘要: 近年来,深度学习方法在地震检测和震相拾取中得到广泛的应用.然而,现有模型主要基于高信噪比的速度型波形数据进行训练,缺乏对加速度计与烈度计数据的泛化性评估.为探究现有模型对加速度数据的处理效果及在云南地区的泛化能力,本文基于云南预警台网的最新观测数据,构建了包括速度计、加速度计和烈度计的多源异构高质量波形数据集,且所有震相到时均由人工标注.结合PhaseNet、USTC-Pickers等五种专业模型,以及SeisMoLLM和SeisT等四种大模型,系统评估了不同模型在云南数据集上的震相拾取性能.结果表明:本地迁移优化的USTC-Pickers综合性能最优,其Pg和Sg震相拾取的平均F1值达0.779(到时拾取差异△t≤0.1 s),显著优于其他模型,且在检测加速度计与烈度计数据时,较好解决了震相拾取滞后问题;大模型在Sg拾取等复杂环境中展现出更强的泛化能力.研究还揭示了主流地震检测模型在不同波形长度、震级、震中距条件下的性能变化,强调了本地化训练与模型选取在实际应用中的重要性.研究结果为地震预警系统中的地震检测和震相识别,以及中国地震科学实验场地震观测数据的实时自动处理提供参考.

       

    • An, Y. R., 2024. Introduction to a Recently Released Dataset Entitled CSNCD: A Comprehensive Dataset of Chinese Seismic Network. Earthquake Research Advances, 4(1): 100255. https://doi.org/10.1016/j.eqrea.2023.100255
      Bormann, P., Wendt, S., Klinge, K., 2013. Data Analysis and Seismogram Interpretation. New Manual of Seismological Observatory Practice 2 (NMSOP-2), 11: 1-34. https://doi.org/10.2312/GFZ.NMSOP-2_CH11
      Bornstein, T., Lange, D., Münchmeyer, J., et al., 2023. PickBlue: Seismic Phase Picking for Ocean Bottom Seismometers with Deep Learning. Earth and Space Science, 11(1): e2023EA003332. https://doi.org/10.1029/2023EA003332
      Chai, C. P., Maceira, M., Santos-Villalobos, H. J., et al., 2020. Using a Deep Neural Network and Transfer Learning to Bridge Scales for Seismic Phase Picking. Geophysical Research Letters, 47(16): e2020GL088651. https://doi.org/10.1029/2020GL088651
      Du, M. N., He, F. X., Zou, N., et al., 2024. Shortcut Learning of Large Language Models in Natural Language Understanding. Communications of the ACM, 67(1): 110-120. https://doi.org/10.1145/3596490
      Fang, L. H., Wu, Z. L., Song, K., 2017. SeismOlympics. Seismological Research Letters, 88(6): 1429-1430. https://doi.org/10.1785/0220170134
      Feng, C. Y., Yang, Y., Hu, X., et al., 2023. MSNet: A Seismic Phase Picking Network Applicable to Microseismic Monitoring. IEEE Geoscience and Remote Sensing Letters, 20:1-5. https://doi.org/10.1109/LGRS.2023.3314029
      Huangfu, G., 2009. Research on the Seismicity in Yunnan, China (Dissertation). University of Science and Technology of China, Hefei: 2-3(in Chinese with English abstract).
      Li, J., Chen, J. Y., Tang, Y. C., et al., 2023. Transforming Medical Imaging with Transformers? A Comparative Review of Key Properties, Current Progresses, and Future Perspectives. Medical Image Analysis, 85: 102762. https://doi.org/10.1016/j.media.2023.102762
      Li, S., Yang, X., Cao, A. Y., et al., 2024. SeisT: A Foundational Deep-Learning Model for Earthquake Monitoring Tasks. IEEE Transactions on Geoscience and Remote Sensing, 62: 1-15. https://doi.org/10.1109/TGRS.2024.3371503
      Liu, T. L., Münchmeyer, J., Laurenti, L., et al., 2024. SeisLM: a Foundation Model for Seismic Waveforms. arXiv. https://doi.org/10.48550/arXiv.2410.15765
      Mousavi, S. M., Beroza, G. C., 2022. Deep-learning Seismology. Science, 377(6607): 4470. https://doi.org/10.1126/science.abm4470
      Mousavi, S. M., Ellsworth, W. L., Zhu, W. Q., et al., 2020. Earthquake Transformer—an Attentive Deep-learning Model for Simultaneous Earthquake Detection and Phase Picking. Nature Communications, 11(1): 3952. https://doi.org/10.1038/s41467-020-17591-w
      Mousavi, S. M., Sheng, Y. X., Zhu, W. Q., et al., 2019. STanford EArthquake Dataset (STEAD): A Global Data Set of Seismic Signals for AI. IEEE Access, 7: 179464-179476. https://doi.org/10.1109/ACCESS.2019.2947848
      Münchmeyer, J., Woollam, J., Rietbrock, A., et al., 2022. Which Picker Fits My Data? A Quantitative Evaluation of Deep Learning Based Seismic Pickers. Journal of Geophysical Research: Solid Earth, 127(1): e2021JB023499. https://doi.org/10.1029/2021JB023499
      Niksejel, A., Zhang, M., 2024. OBSTransformer: a Deep-learning Seismic Phase Picker for OBS Data Using Automated Labelling and Transfer Learning. Geophysical Journal International, 237(1): 485-505. https://doi.org/10.1093/gji/ggae049
      Pecher, B., Srba, I., Bielikova, M., 2025. Comparing Specialised Small and General Large Language Models on Text Classification: 100 Labelled Samples to Achieve Break-Even Performance. In: Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Suzhou, 165-184. https://10.18653/v1/2025.emnlp-main.9
      Peng, C. Y., Jiang, P., Ma, Q., et al., 2022. Chinese Nationwide Earthquake Early Warning System and Its Performance in the 2022 Lushan M6.1 Earthquake. Remote Sensing, 14(17): 4269. https://doi.org/10.3390/rs14174269
      Ross, Z. E., Meier, M. A., Hauksson, E., et al., 2018. Generalized Seismic Phase Detection with Deep Learning. Bulletin of the Seismological Society of America, 108(5A): 2894-2901. https://doi.org/10.1785/0120180080
      Saad, O. M., Savvaidis, A., Chen, Y. K., 2024. Transfer Learning for Seismic Phase Picking With Significantly Higher Precision in Faraway Seismic Stations. IEEE Transactions on Geoscience and Remote Sensing, 62: 1-12. https://doi.org/10.1109/TGRS.2024.3422612
      Si, X., Wu, X. M., Li, Z. F., et al., 2024. An All-in-one Seismic Phase Picking, Location, and Association Network for Multi-task Multi-station Earthquake Monitoring. Communications Earth & Environment, 5(1): 22. https://doi.org/10.1038/s43247-023-01188-4
      Wang, X. H., Liu, F., Su, R., et al., 2025. SeisMoLLM: Advancing Seismic Monitoring via Cross-modal Transfer with Pre-trained Large Language Model. arXiv. https://doi.org/10.48550/arXiv.2502.19960
      Woollam, J., Münchmeyer, J., Tilmann, F., et al., 2022. SeisBench - A Toolbox for Machine Learning in Seismology. Seismological Research Letters, 93(3):1695-1709. https://doi.org/10.1785/0220210324
      Yu, Z. Y., Cai, Y. Q., Wang, W. T., et al., 2024. PRIME-DP: Pre-trained Integrated Model for Earthquake Data Processing. arXiv. https://doi.org/10.48550/arXiv.2408.01919
      Yu, Z. Y., Wang, W. T., 2022. LPPN: A Lightweight Network for Fast Phase Picking. Seismological Research Letters, 93(5): 2834-2846. https://doi.org/10.1785/0220210309
      Yu, Z. Y., Wang, W. T., Chen, Y. N., 2023. Benchmark on the Accuracy and Efficiency of Several Neural Network Based Phase Pickers Using Datasets from China Seismic Network. Earthquake Science, 36(2): 113-131. https://doi.org/10.1016/j.eqs.2022.10.001
      Zhao, M., Xiao, Z. W., Chen, S., et al., 2023. DiTing: A large-scale Chinese Seismic Benchmark Dataset for Artificial Intelligence in Seismology. Earthquake Science, 36(2): 84-94. https://doi.org/10.1016/j.eqs.2022.01.022
      Zhu, J., Li, Z. F., Fang, L. H., 2023. USTC-Pickers: a Unified Set of Seismic Phase Pickers Transfer Learned for China. Earthquake Science, 36(2): 95-112. https://doi.org/10.1016/j.eqs.2023.03.001
      Zhu, J., Zhong, Y. S., 2025. Evaluation of the Monitoring Capability of the Yunnan Earthquake Early Warning Network. Journal of Seismological Research, 48(3):422-431(in Chinese with English abstract).
      Zhu, W. Q., Beroza, G. C., 2019. PhaseNet: A Deep-Neural-Network-Based Seismic Arrival Time Picking Method. Geophysical Journal International, 216(1): 261-273. https://doi.org/10.1093/gji/ggy423
      皇甫岗, 2009. 云南地震活动性研究(博士学位论文). 合肥: 中国科学技术大学, 2-3.
      朱杰, 钟玉盛, 2025. 云南地震预警站网监测效能评估. 地震研究, 48(3): 422-431.
    • 加载中
    计量
    • 文章访问数:  128
    • HTML全文浏览量:  0
    • PDF下载量:  11
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-08-17
    • 网络出版日期:  2025-12-29

    目录

      /

      返回文章
      返回