|
An, Y. R., 2024. Introduction to a Recently Released Dataset Entitled CSNCD: A Comprehensive Dataset of Chinese Seismic Network. Earthquake Research Advances, 4(1): 100255. https://doi.org/10.1016/j.eqrea.2023.100255 |
|
Bormann, P., Wendt, S., Klinge, K., 2013. Data Analysis and Seismogram Interpretation. New Manual of Seismological Observatory Practice 2 (NMSOP-2), 11: 1-34. https://doi.org/10.2312/GFZ.NMSOP-2_CH11 |
|
Bornstein, T., Lange, D., Münchmeyer, J., et al., 2023. PickBlue: Seismic Phase Picking for Ocean Bottom Seismometers with Deep Learning. Earth and Space Science, 11(1): e2023EA003332. https://doi.org/10.1029/2023EA003332 |
|
Chai, C. P., Maceira, M., Santos-Villalobos, H. J., et al., 2020. Using a Deep Neural Network and Transfer Learning to Bridge Scales for Seismic Phase Picking. Geophysical Research Letters, 47(16): e2020GL088651. https://doi.org/10.1029/2020GL088651 |
|
Du, M. N., He, F. X., Zou, N., et al., 2024. Shortcut Learning of Large Language Models in Natural Language Understanding. Communications of the ACM, 67(1): 110-120. https://doi.org/10.1145/3596490 |
|
Fang, L. H., Wu, Z. L., Song, K., 2017. SeismOlympics. Seismological Research Letters, 88(6): 1429-1430. https://doi.org/10.1785/0220170134 |
|
Feng, C. Y., Yang, Y., Hu, X., et al., 2023. MSNet: A Seismic Phase Picking Network Applicable to Microseismic Monitoring. IEEE Geoscience and Remote Sensing Letters, 20:1-5. https://doi.org/10.1109/LGRS.2023.3314029 |
|
Huangfu, G., 2009. Research on the Seismicity in Yunnan, China (Dissertation). University of Science and Technology of China, Hefei: 2-3(in Chinese with English abstract). |
|
Li, J., Chen, J. Y., Tang, Y. C., et al., 2023. Transforming Medical Imaging with Transformers? A Comparative Review of Key Properties, Current Progresses, and Future Perspectives. Medical Image Analysis, 85: 102762. https://doi.org/10.1016/j.media.2023.102762 |
|
Li, S., Yang, X., Cao, A. Y., et al., 2024. SeisT: A Foundational Deep-Learning Model for Earthquake Monitoring Tasks. IEEE Transactions on Geoscience and Remote Sensing, 62: 1-15. https://doi.org/10.1109/TGRS.2024.3371503 |
|
Liu, T. L., Münchmeyer, J., Laurenti, L., et al., 2024. SeisLM: a Foundation Model for Seismic Waveforms. arXiv. https://doi.org/10.48550/arXiv.2410.15765 |
|
Mousavi, S. M., Beroza, G. C., 2022. Deep-learning Seismology. Science, 377(6607): 4470. https://doi.org/10.1126/science.abm4470 |
|
Mousavi, S. M., Ellsworth, W. L., Zhu, W. Q., et al., 2020. Earthquake Transformer—an Attentive Deep-learning Model for Simultaneous Earthquake Detection and Phase Picking. Nature Communications, 11(1): 3952. https://doi.org/10.1038/s41467-020-17591-w |
|
Mousavi, S. M., Sheng, Y. X., Zhu, W. Q., et al., 2019. STanford EArthquake Dataset (STEAD): A Global Data Set of Seismic Signals for AI. IEEE Access, 7: 179464-179476. https://doi.org/10.1109/ACCESS.2019.2947848 |
|
Münchmeyer, J., Woollam, J., Rietbrock, A., et al., 2022. Which Picker Fits My Data? A Quantitative Evaluation of Deep Learning Based Seismic Pickers. Journal of Geophysical Research: Solid Earth, 127(1): e2021JB023499. https://doi.org/10.1029/2021JB023499 |
|
Niksejel, A., Zhang, M., 2024. OBSTransformer: a Deep-learning Seismic Phase Picker for OBS Data Using Automated Labelling and Transfer Learning. Geophysical Journal International, 237(1): 485-505. https://doi.org/10.1093/gji/ggae049 |
|
Pecher, B., Srba, I., Bielikova, M., 2025. Comparing Specialised Small and General Large Language Models on Text Classification: 100 Labelled Samples to Achieve Break-Even Performance. In: Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Suzhou, 165-184. https://10.18653/v1/2025.emnlp-main.9 |
|
Peng, C. Y., Jiang, P., Ma, Q., et al., 2022. Chinese Nationwide Earthquake Early Warning System and Its Performance in the 2022 Lushan M6.1 Earthquake. Remote Sensing, 14(17): 4269. https://doi.org/10.3390/rs14174269 |
|
Ross, Z. E., Meier, M. A., Hauksson, E., et al., 2018. Generalized Seismic Phase Detection with Deep Learning. Bulletin of the Seismological Society of America, 108(5A): 2894-2901. https://doi.org/10.1785/0120180080 |
|
Saad, O. M., Savvaidis, A., Chen, Y. K., 2024. Transfer Learning for Seismic Phase Picking With Significantly Higher Precision in Faraway Seismic Stations. IEEE Transactions on Geoscience and Remote Sensing, 62: 1-12. https://doi.org/10.1109/TGRS.2024.3422612 |
|
Si, X., Wu, X. M., Li, Z. F., et al., 2024. An All-in-one Seismic Phase Picking, Location, and Association Network for Multi-task Multi-station Earthquake Monitoring. Communications Earth & Environment, 5(1): 22. https://doi.org/10.1038/s43247-023-01188-4 |
|
Wang, X. H., Liu, F., Su, R., et al., 2025. SeisMoLLM: Advancing Seismic Monitoring via Cross-modal Transfer with Pre-trained Large Language Model. arXiv. https://doi.org/10.48550/arXiv.2502.19960 |
|
Woollam, J., Münchmeyer, J., Tilmann, F., et al., 2022. SeisBench - A Toolbox for Machine Learning in Seismology. Seismological Research Letters, 93(3):1695-1709. https://doi.org/10.1785/0220210324 |
|
Yu, Z. Y., Cai, Y. Q., Wang, W. T., et al., 2024. PRIME-DP: Pre-trained Integrated Model for Earthquake Data Processing. arXiv. https://doi.org/10.48550/arXiv.2408.01919 |
|
Yu, Z. Y., Wang, W. T., 2022. LPPN: A Lightweight Network for Fast Phase Picking. Seismological Research Letters, 93(5): 2834-2846. https://doi.org/10.1785/0220210309 |
|
Yu, Z. Y., Wang, W. T., Chen, Y. N., 2023. Benchmark on the Accuracy and Efficiency of Several Neural Network Based Phase Pickers Using Datasets from China Seismic Network. Earthquake Science, 36(2): 113-131. https://doi.org/10.1016/j.eqs.2022.10.001 |
|
Zhao, M., Xiao, Z. W., Chen, S., et al., 2023. DiTing: A large-scale Chinese Seismic Benchmark Dataset for Artificial Intelligence in Seismology. Earthquake Science, 36(2): 84-94. https://doi.org/10.1016/j.eqs.2022.01.022 |
|
Zhu, J., Li, Z. F., Fang, L. H., 2023. USTC-Pickers: a Unified Set of Seismic Phase Pickers Transfer Learned for China. Earthquake Science, 36(2): 95-112. https://doi.org/10.1016/j.eqs.2023.03.001 |
|
Zhu, J., Zhong, Y. S., 2025. Evaluation of the Monitoring Capability of the Yunnan Earthquake Early Warning Network. Journal of Seismological Research, 48(3):422-431(in Chinese with English abstract). |
|
Zhu, W. Q., Beroza, G. C., 2019. PhaseNet: A Deep-Neural-Network-Based Seismic Arrival Time Picking Method. Geophysical Journal International, 216(1): 261-273. https://doi.org/10.1093/gji/ggy423 |
|
皇甫岗, 2009. 云南地震活动性研究(博士学位论文). 合肥: 中国科学技术大学, 2-3. |
|
朱杰, 钟玉盛, 2025. 云南地震预警站网监测效能评估. 地震研究, 48(3): 422-431. |