• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    章可颖, 王天龙, 苏晶堃, 孙红月, 2026. 基于SWAT-ML-SHAP模型的土地利用变化对流域水文过程的影响——以分水江流域为例. 地球科学. doi: 10.3799/dqkx.2025.290
    引用本文: 章可颖, 王天龙, 苏晶堃, 孙红月, 2026. 基于SWAT-ML-SHAP模型的土地利用变化对流域水文过程的影响——以分水江流域为例. 地球科学. doi: 10.3799/dqkx.2025.290
    Keying Zhang, Tianlong Wang, Jingkun Su, Hongyue Sun, 2026. Impacts of Land Use Change on Watershed Hydrological Processes Based on the SWAT-ML-SHAP Model: A Case Study of Fenshuijiang River Basin. Earth Science. doi: 10.3799/dqkx.2025.290
    Citation: Keying Zhang, Tianlong Wang, Jingkun Su, Hongyue Sun, 2026. Impacts of Land Use Change on Watershed Hydrological Processes Based on the SWAT-ML-SHAP Model: A Case Study of Fenshuijiang River Basin. Earth Science. doi: 10.3799/dqkx.2025.290

    基于SWAT-ML-SHAP模型的土地利用变化对流域水文过程的影响——以分水江流域为例

    doi: 10.3799/dqkx.2025.290
    基金项目: 

    国家自然科学基金重点项目(No.42230702),中国科协青年科技人才培育工程博士生专项计划(156-O-170-0000603-2),国家建设高水平大学公派研究生项目(202406320358),浙江大学海洋学院种子基金培育项目(2025BS004)资助

    详细信息
      作者简介:

      章可颖(2000—),女,硕士研究生。主要从事地质灾害防治方面的研究,ORCID: 0009-0005-3221-5289,E-mail:keying-zhang@zju.edu.cn,Tel:18157593756

      通讯作者:

      孙红月(1970-),女,教授,博士生导师,主要从事地质灾害防治方面的研究,ORCID:000-0002-2267-305X,E-mail:shy@zju.edu.cn

    • 中图分类号: P333

    Impacts of Land Use Change on Watershed Hydrological Processes Based on the SWAT-ML-SHAP Model: A Case Study of Fenshuijiang River Basin

    • 摘要: 土地利用变化深刻影响流域水文过程,尤其是径流、蒸散发和入渗,厘清其作用机制对水资源管理与灾害防控具有重要意义。以分水江流域为研究区,基于率定与验证的SWAT(Soil and Water Assessment Tool)模型模拟水文过程,并结合随机森林(RF)、极端梯度提升(XGBoost)、轻量梯度提升机(LightGBM)等15种机器学习模型提升预测能力。进一步利用SHAP(SHapley Additive exPlanations)方法解析气象、水文与土地利用因子的对贡献。降水对径流具有显著正向驱动作用,气温主导蒸散发变化。建设用地比例对径流和蒸散发均产生负面效应,林地通过截留、蒸腾和土壤蓄水削弱径流,农田比例则表现出对入渗和径流系数的复杂非线性影响。SWAT与机器学习的结合不仅提高了预测精度,也增强了水文响应的可解释性。该方法为流域水资源管理与土地利用规划提供了有力工具,并在泥石流等山地灾害的预警和风险评估中展现出重要应用价值,对实现资源可持续利用与灾害防控具有广泛意义。

       

    • Das A., Rad P., 2020. Opportunities and Challenges in Explainable Artificial Intelligence (XAI): A Survey. arXiv Preprint arXiv: 2006.11371.
      Ding B., Yu X., Jia G., 2025. Exploring the Controlling Factors of Watershed Streamflow Variability Using Hydrological and Machine Learning Models. Water Resources Research, 61(5): 039734.
      Guo Z., Feng C., Yang L., et al., 2024. Bridging the Gap: An Interpretable Coupled Model (SWAT-ELM-SHAP) for Blue-Green Water Simulation in Data-Scarce Basins. Agricultural Water Management, 306: 109157.
      Jimeno-Sáez P., Martínez-España R., Casalí J., et al., 2022. A Comparison of Performance of SWAT and Machine Learning Models for Predicting Sediment Load in a Forested Basin, Northern Spain. Catena, 212: 105953.
      Kundu S., Khare D., Mondal A., 2017. Past, Present and Future Land Use Changes and Their Impact on Water Balance. Journal of Environmental Management, 197: 582–596.
      Lundberg S., Lee S-I., 2017. A Unified Approach to Interpreting Model Predictions: arXiv:1705.07874.
      Wang T. L., Zhang K. Y., Liu Z., et al., 2024. Prediction and Explanation of Debris Flow Velocity Based on Multi-Strategy Fusion Stacking Ensemble Learning Model. Journal of Hydrology, 638: 131347.
      Wang, T.L., Ge, Q., Ma, T. et al.,2025. A novel method for predicting debris flow hazard: a multi-strategy fusion approach based on the light gradient boosting machine framework. Stoch Environ Res Risk Assess 39, 4867–4890.
      Williams, J. R., Jones, C. A., Kiniry, J. R., et al., 1989. The EPIC Crop Growth Model.Transactions of the ASAE,32(2), 497-0511.
      Zhang X, Qi Y, Li H, et al., 2024. Assessing the Response of Non-Point Source Nitrogen Pollution to Land Use Change Based on SWAT Model. Ecological Indicators, 158: 111391.
      杜尚海, 古成科, 张文静, 2022. 随机森林理论及其在水文地质领域的研究进展. 中国环境科学, 42(9): 4285–4295.
      Du, S. H., Gu, C. K., Zhang, W. J., 2022. A Review on the Progresses in Random Forests Theory and its Applications in Hydrogeology. China Environmental Science,42(9): 4285–4295. (in Chinese with English abstract)
      关铁生, 鲍振鑫, 贺瑞敏, 等, 2023. 无资料地区水文模型参数移植不确定性分析. 水科学进展, 34(5): 660–672.
      Guan, T. S., Bao, Z. X., He, R. M., et al., 2023. Uncertainties of Model Parameters Regionalization in Ungauged Basins. Advances in Water Science, 34(5): 660–672. (in Chinese with English abstract)
      郭敏丽, 刘天航, 毕二平, 等, 2025. 地下水位机器学习模型中的特征筛选及应用效果分析. 水资源保护, 41(3): 179–186, 221.
      Guo, M. L., Liu, T. H., Bi, E. P., et al., 2025. Feature Selection in Machine Learning Models of Groundwater Level and its Application Effect Analysis. Water Resources Protection, 41(3): 179–186, 221. (in Chinese with English abstract)
      雷灵, 唐弘久, 2025. 基于LUCC的洞庭湖区生态系统服务空间异质性及其驱动因素.环境科学,1-17.
      Lei, L., Tang, H. J., 2025. Spatial Heterogeneity of Ecosystem Services in Dongting Lake District Based on LUCC andIts Driving factors. Journal of Environmental Sciences, 1-17. (in Chinese with English abstract)
      李文超, 翟丽梅, 刘宏斌, 等.2017. 流域磷素面源污染产生与输移空间分异特征. 中国环境科学, 37(2): 711–719.
      Li, W. C., Zhai, L. M., Liu, H. B., et al., 2017. contrasting Spatial Distribution of the Emission and Export of Phosphorus Loss from a Typical Watershed in Yunnan Plateau Lakes Area . China Environmental Science, 37(2): 711–719. (in Chinese with English abstract)
      刘春蓁, 占车生, 夏军, 等.2014.关于气候变化与人类活动对径流影响研究的评述[J]. 水利学报, 45(4): 379–385, 393.
      Liu, C. Z., Zhan, C. S., Xia, J., et al., 2014. Review on the Influences of Climate Change and Human Activities on Runoff.Journal of Hydraulic Engineering, 2014, 45(4): 379–385, 393 . (in Chinese with English abstract)
      刘杰,陈前,许妍,等. 2024.长江流域洞庭湖区出入湖磷通量模拟及水质预测:机器学习与传统水文模型耦合方法[J].地球科学, 49(11):3995-4007.
      Liu,J., Chen,Q.,Xu,Y.,et al.,2024. Simulation of Phosphorus Inflow and Outflow Fluxes and Water Quality Prediction in Dongting Lake Area of the Yangtze River Basin: A Coupled Approach of Machine Learning and Traditional Hydrological Modeling. Earth Science , 2024,49(11):3995-4007. (in Chinese with English abstract)
      罗德荣, 邹进, 郭耀辉, 等, 2025. 云龙水库流域不同土地利用类型对径流的影响. 水土保持研究, 32(5): 87–94.
      Luo, D. R., Zou, J., Guo, Y. H., et al., 2025. Effect of Different Land Use Types on Runoff in Yunlong Reservoir Basin. Research of Soil and Water Conservation, 32(5): 87–94. (in Chinese with English abstract)
      渠勇建, 成向荣, 虞木奎, 等, 2019. 基于SWAT模型的衢江流域土地利用变化径流模拟研究. 水土保持研究, 26(1): 130–134.
      Qu, Y. J., Chen, X. R., Yu, M. K., et al., 2019. Study on Runoff Responses to Land Use Changes in Qujiang Basin Using SWAT Model. Research of Soildland Water conservation, 26(1): 130–134. (in Chinese with English abstract)
      王慧琳, 邹民忠, 方伟文, 等, 2024. 基于SWAT模型的武强溪流域非点源污染关键源区界定与控制策略. 农业工程学报, 40(2): 228–238.
      Wang, H. L., Zou, M. Z., Fang, W. W., et al., 2024. Definition and Control Strategy of the Key Source Areas Ofnon-point Source Pollution Based on SWAT Model in Wuqiang RiverBasin, Zhejiang of China. Transactions of the Chinese Society of Agricultural Engineering, 40(2): 228–238. (in Chinese with English abstract)
      吴紫阳. 浙江钱塘江典型支流分水江河流沉积物之源汇关系探讨[D]. 华东师范大学, 2016.
      Wu,Z. Y., 2016. Provenance Tracking of River Sediments in the Fenshui Watershed--a Typical Branch of Qiantang River Basin, Zhejiang Province, China. East China Normal University. (in Chinese with English abstract)
      赵良杰,王莹,周妍,等.基于SWAT模型的珠江流域地下水资源评价[J].地球科学,2024,49(05):1876-1890.
      Zhao L.J., Wang Y., Zhou Y., et al,2024. Groundwater Resources Evaluation in the Pearl River Basin Based on SWAT Model. Earth Science , 2024,49(05):1876-1890. (in Chinese with English abstract)
      中华人民共和国自然资源部, 2017. 土地利用现状分类: GB/T 21010—2017. 北京: 中国国家标准化管理委员会: 6-10.

      Ministry of Natural Resources, 2017. Current Land Use Classification: GB/T 21010—2017. Beijing: Standardization Administration of China: 6-10.
    • 加载中
    计量
    • 文章访问数:  58
    • HTML全文浏览量:  0
    • PDF下载量:  1
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-09-22
    • 网络出版日期:  2026-01-05

    目录

      /

      返回文章
      返回