|
Das A., Rad P., 2020. Opportunities and Challenges in Explainable Artificial Intelligence (XAI): A Survey. arXiv Preprint arXiv: 2006.11371. |
|
Ding B., Yu X., Jia G., 2025. Exploring the Controlling Factors of Watershed Streamflow Variability Using Hydrological and Machine Learning Models. Water Resources Research, 61(5): 039734. |
|
Guo Z., Feng C., Yang L., et al., 2024. Bridging the Gap: An Interpretable Coupled Model (SWAT-ELM-SHAP) for Blue-Green Water Simulation in Data-Scarce Basins. Agricultural Water Management, 306: 109157. |
|
Jimeno-Sáez P., Martínez-España R., Casalí J., et al., 2022. A Comparison of Performance of SWAT and Machine Learning Models for Predicting Sediment Load in a Forested Basin, Northern Spain. Catena, 212: 105953. |
|
Kundu S., Khare D., Mondal A., 2017. Past, Present and Future Land Use Changes and Their Impact on Water Balance. Journal of Environmental Management, 197: 582–596. |
|
Lundberg S., Lee S-I., 2017. A Unified Approach to Interpreting Model Predictions: arXiv:1705.07874. |
|
Wang T. L., Zhang K. Y., Liu Z., et al., 2024. Prediction and Explanation of Debris Flow Velocity Based on Multi-Strategy Fusion Stacking Ensemble Learning Model. Journal of Hydrology, 638: 131347. |
|
Wang, T.L., Ge, Q., Ma, T. et al.,2025. A novel method for predicting debris flow hazard: a multi-strategy fusion approach based on the light gradient boosting machine framework. Stoch Environ Res Risk Assess 39, 4867–4890. |
|
Williams, J. R., Jones, C. A., Kiniry, J. R., et al., 1989. The EPIC Crop Growth Model.Transactions of the ASAE,32(2), 497-0511. |
|
Zhang X, Qi Y, Li H, et al., 2024. Assessing the Response of Non-Point Source Nitrogen Pollution to Land Use Change Based on SWAT Model. Ecological Indicators, 158: 111391. |
|
杜尚海, 古成科, 张文静, 2022. 随机森林理论及其在水文地质领域的研究进展. 中国环境科学, 42(9): 4285–4295. |
|
Du, S. H., Gu, C. K., Zhang, W. J., 2022. A Review on the Progresses in Random Forests Theory and its Applications in Hydrogeology. China Environmental Science,42(9): 4285–4295. (in Chinese with English abstract) |
|
关铁生, 鲍振鑫, 贺瑞敏, 等, 2023. 无资料地区水文模型参数移植不确定性分析. 水科学进展, 34(5): 660–672. |
|
Guan, T. S., Bao, Z. X., He, R. M., et al., 2023. Uncertainties of Model Parameters Regionalization in Ungauged Basins. Advances in Water Science, 34(5): 660–672. (in Chinese with English abstract) |
|
郭敏丽, 刘天航, 毕二平, 等, 2025. 地下水位机器学习模型中的特征筛选及应用效果分析. 水资源保护, 41(3): 179–186, 221. |
|
Guo, M. L., Liu, T. H., Bi, E. P., et al., 2025. Feature Selection in Machine Learning Models of Groundwater Level and its Application Effect Analysis. Water Resources Protection, 41(3): 179–186, 221. (in Chinese with English abstract) |
|
雷灵, 唐弘久, 2025. 基于LUCC的洞庭湖区生态系统服务空间异质性及其驱动因素.环境科学,1-17. |
|
Lei, L., Tang, H. J., 2025. Spatial Heterogeneity of Ecosystem Services in Dongting Lake District Based on LUCC andIts Driving factors. Journal of Environmental Sciences, 1-17. (in Chinese with English abstract) |
|
李文超, 翟丽梅, 刘宏斌, 等.2017. 流域磷素面源污染产生与输移空间分异特征. 中国环境科学, 37(2): 711–719. |
|
Li, W. C., Zhai, L. M., Liu, H. B., et al., 2017. contrasting Spatial Distribution of the Emission and Export of Phosphorus Loss from a Typical Watershed in Yunnan Plateau Lakes Area . China Environmental Science, 37(2): 711–719. (in Chinese with English abstract) |
|
刘春蓁, 占车生, 夏军, 等.2014.关于气候变化与人类活动对径流影响研究的评述[J]. 水利学报, 45(4): 379–385, 393. |
|
Liu, C. Z., Zhan, C. S., Xia, J., et al., 2014. Review on the Influences of Climate Change and Human Activities on Runoff.Journal of Hydraulic Engineering, 2014, 45(4): 379–385, 393 . (in Chinese with English abstract) |
|
刘杰,陈前,许妍,等. 2024.长江流域洞庭湖区出入湖磷通量模拟及水质预测:机器学习与传统水文模型耦合方法[J].地球科学, 49(11):3995-4007. |
|
Liu,J., Chen,Q.,Xu,Y.,et al.,2024. Simulation of Phosphorus Inflow and Outflow Fluxes and Water Quality Prediction in Dongting Lake Area of the Yangtze River Basin: A Coupled Approach of Machine Learning and Traditional Hydrological Modeling. Earth Science , 2024,49(11):3995-4007. (in Chinese with English abstract) |
|
罗德荣, 邹进, 郭耀辉, 等, 2025. 云龙水库流域不同土地利用类型对径流的影响. 水土保持研究, 32(5): 87–94. |
|
Luo, D. R., Zou, J., Guo, Y. H., et al., 2025. Effect of Different Land Use Types on Runoff in Yunlong Reservoir Basin. Research of Soil and Water Conservation, 32(5): 87–94. (in Chinese with English abstract) |
|
渠勇建, 成向荣, 虞木奎, 等, 2019. 基于SWAT模型的衢江流域土地利用变化径流模拟研究. 水土保持研究, 26(1): 130–134. |
|
Qu, Y. J., Chen, X. R., Yu, M. K., et al., 2019. Study on Runoff Responses to Land Use Changes in Qujiang Basin Using SWAT Model. Research of Soildland Water conservation, 26(1): 130–134. (in Chinese with English abstract) |
|
王慧琳, 邹民忠, 方伟文, 等, 2024. 基于SWAT模型的武强溪流域非点源污染关键源区界定与控制策略. 农业工程学报, 40(2): 228–238. |
|
Wang, H. L., Zou, M. Z., Fang, W. W., et al., 2024. Definition and Control Strategy of the Key Source Areas Ofnon-point Source Pollution Based on SWAT Model in Wuqiang RiverBasin, Zhejiang of China. Transactions of the Chinese Society of Agricultural Engineering, 40(2): 228–238. (in Chinese with English abstract) |
|
吴紫阳. 浙江钱塘江典型支流分水江河流沉积物之源汇关系探讨[D]. 华东师范大学, 2016. |
|
Wu,Z. Y., 2016. Provenance Tracking of River Sediments in the Fenshui Watershed--a Typical Branch of Qiantang River Basin, Zhejiang Province, China. East China Normal University. (in Chinese with English abstract) |
|
赵良杰,王莹,周妍,等.基于SWAT模型的珠江流域地下水资源评价[J].地球科学,2024,49(05):1876-1890. |
|
Zhao L.J., Wang Y., Zhou Y., et al,2024. Groundwater Resources Evaluation in the Pearl River Basin Based on SWAT Model. Earth Science , 2024,49(05):1876-1890. (in Chinese with English abstract) |
|
中华人民共和国自然资源部, 2017. 土地利用现状分类: GB/T 21010—2017. 北京: 中国国家标准化管理委员会: 6-10.Ministry of Natural Resources, 2017. Current Land Use Classification: GB/T 21010—2017. Beijing: Standardization Administration of China: 6-10. |