|
Adler, M., W. Eckert & O. Sivan., 2011. Quantifying rates of methanogenesis and methanotrophy in Lake Kinneret sediments (Israel) using pore‐water profiles. Limnology & Oceanography, 56, 1525-1535. https://doi.org/10.4319/lo.2011.56.4.1525 |
|
Adopted, I., 2014. Climate change 2014 synthesis report. IPCC: Geneva, Szwitzerland, 1059, 1072. |
|
Aguzzi, J., D. Chatzievangelou, S. Marini, et al., 2019. New high-tech flexible networks for the monitoring of deep-sea ecosystems. Environmental science technology, 53, 6616-6631. https://doi.org/10.1021/acs.est.9b00409 |
|
Alperin, M. & T. Hoehler., 2010. The ongoing mystery of sea-floor methane. Science, 329, 288-289. https://doi.org/10.1126/science.1189966 |
|
Aoyama, C. & N. Maeda., 2021. Proposed Methodology to Quantify the Amount of Methane Seepage by Understanding the Correlation Between Methane Plumes and Originating Seeps. Frontiers in Earth Science, 9, 589399. https://doi.org/10.3389/feart.2021.589399 |
|
Archer, D., B. Buffett & V. Brovkin., 2009. Ocean methane hydrates as a slow tipping point in the global carbon cycle. Proceedings of the National Academy of Sciences, 106, 20596-20601. https://doi.org/10.1073/pnas.0800885105 |
|
Ayasse, A. K., A. K. Thorpe, D. H. Cusworth., et al., 2022. Methane remote sensing and emission quantification of offshore shallow water oil and gas platforms in the Gulf of Mexico. Environmental Research Letters, 17, 084039. https://doi.org/10.1088/1748-9326/ac8566 |
|
Bakunov, N., D. Y. Bolshiyanov, A. Aksenov., et al., 2023. On Global 137Cs Diffusion in Bottom Sediments of Northern Seas. Radiochemistry, 65, 485-492. https://doi.org/10.1134/s1066362223040100 |
|
Bernstein, L., P. Bosch, O. Canziani., et al., 2008. IPCC, 2007: Climate Change 2007: Synthesis Report. Geneva: IPCC. ISBN 2-9169-122-4. |
|
Blair, N., 1998. The δ13C of biogenic methane in marine sediments: the influence of Corg deposition rate. Chemical geology, 152, 139-150. https://doi.org/10.1016/s0009-2541(98)00102-8 |
|
Boetius, A., K. Ravenschlag, C. J. Schubert., et al., 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407, 623-626. https://doi.org/10.1038/35036572 |
|
Boetius, A. & F. Wenzhöfer. 2013. Seafloor oxygen consumption fuelled by methane from cold seeps. Nature Geoscience, 6, 725-734. https://doi.org/10.1038/ngeo1926 |
|
Bohnhoff, M., P. Martínez‐Garzón & Y. Ben‐Zion., 2024. Global warming will increase earthquake hazards through rising sea levels and cascading effects. Seismological Research Letters, 95, 2571-2576. https://doi.org/10.1785/0220240100 |
|
Bonaglia, S., V. Brüchert, N. Callac., et al., 2017. Methane fluxes from coastal sediments are enhanced by macrofauna. Scientific reports, 7, 13145. https://doi.org/10.1038/s41598-017-13263-w |
|
Brown, K. M., M. D. Tryon, H. R. DeShon., et al., 2005. Correlated transient fluid pulsing and seismic tremor in the Costa Rica subduction zone. Earth and Planetary Science Letters, 238, 189-203. https://doi.org/10.1016/j.epsl.2005.06.055 |
|
Bünz, S., J. Mienert & C. Berndt., 2003. Geological controls on the Storegga gas-hydrate system of the mid-Norwegian continental margin. Earth Planetary Science Letters, 209, 291-307. https://doi.org/10.1016/s0012-821x(03)00097-9 |
|
Cahill, A. G., B. L. Parker, B. Mayer., et al., 2018. High resolution spatial and temporal evolution of dissolved gases in groundwater during a controlled natural gas release experiment. Science of the Total Environment, 622, 1178-1192. https://doi.org/10.1016/j.scitotenv.2017.12.049 |
|
Caldwell, S. L., J. R. Laidler, E. A. Brewer., et al., 2008. Anaerobic oxidation of methane: mechanisms, bioenergetics, and the ecology of associated microorganisms. Environmental science & technology, 42, 6791-6799. https://doi.org/10.1021/es800120b |
|
. https://doi.org/10.1128/msystems.01179-22 |
|
Chen, K.-T., S.-K. Hsu, A. T.-S. Lin., et al., 2024a. Changes in marine sedimentation patterns in the northeastern South China Sea in the past 35,000 years. Communications Earth & Environment, 5, 420. https://doi.org/10.1038/s43247-024-01593-3 |
|
Chen, Q., Y. Hu, J. Peckmann., et al., 2023b. The formation of authigenic phosphorus minerals in cold-seep sediments from the South China Sea: Implications for carbon cycling below the sulfate-methane transition. Marine and Petroleum Geology, 155, 106425. https://doi.org/10.1016/j.marpetgeo.2023.106425 |
|
Chen, Z., Z. Jia, S. Gong., et al., 2024b. Behaviors of trace elements under varying methane seepage intensity: Insight from tubular seep carbonates in the South China Sea. Marine and Petroleum Geology, 163, 106816. https://doi.org/10.1016/j.marpetgeo.2024.106816 |
|
Chen, Y., Sun, Z. L., Wu, N. Y., et al., 2022. Advances in the study of methane-metabolizing microbial communities in marine sediments. Marine Geology & Quaternary Geology, 42(6): 82-92 (in Chinese with English abstract). |
|
Cheng, C., Q. He, J. Zhang., et al., 2022. Is the role of aerobic methanotrophs underestimated in methane oxidation under hypoxic conditions? Science of the Total Environment, 833, 155244. https://doi.org/10.1016/j.scitotenv.2022.155244 |
|
Chuang, P.-C., A. W. Dale, K. Wallmann., et al., 2013. Relating sulfate and methane dynamics to geology: Accretionary prism offshore SW Taiwan. Geochemistry, Geophysics, Geosystems, 14, 2523-2545. https://doi.org/10.1002/ggge.20168 |
|
Chuang, P.-C., T. F. Yang, W.-L. Hong., et al., 2010. Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate accumulation. Geofluids, 10, 497-510. https://doi.org/10.1111/j.1468-8123.2010.00313.x |
|
Chunwen, X., Y. Shuquan, T. Jianfeng., et al., 2024. Design and practice of indoor gas leak diffusion simulation experiment based on CFD. Experimental Technology Management Decision, 41, 119-126. https://doi.org/10.16791/j.cnki.sjg.2024.12.016 |
|
Ciais, P., C. Sabine, G. Bala., et al., 2014. Carbon and other biogeochemical cycles. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Change. Cambridge University Press, 2014. 465-570. |
|
Cicerone, R. J. & R. S. Oremland., 1988. Biogeochemical aspects of atmospheric methane. Global biogeochemical cycles, 2, 299-327. https://doi.org/10.1029/gb002i004p00299 |
|
6229-1 |
|
Daigle, H. & B. Dugan., 2010. Origin and evolution of fracture‐hosted methane hydrate deposits. Journal of Geophysical Research: Solid Earth, 115. https://doi.org/10.1029/2010jb007492 |
|
Damm, E., E. Helmke, S. Thoms., et al., 2010. Methane production in aerobic oligotrophic surface water in the central Arctic Ocean. Biogeosciences, 7, 1099-1108. https://doi.org/10.5194/bgd-6-10355-2009 |
|
Dean, J. F., J. J. Middelburg, T. Röckmann., et al., 2018. Methane feedbacks to the global climate system in a warmer world. Reviews of Geophysics, 56, 207-250. https://doi.org/10.1002/2017rg000559 |
|
Denman, K. L., G. Brasseur, A. Chidthaisong., et al., 2007. Couplings between changes in the climate system and biogeochemistry. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change The Physical Science Basis, 499-587. |
|
Di, P., N. Li, L. Chen., et al., 2023. Elevated nutrients and surface chlorophyll-α associated with natural methane seeps in the Haima cold seep area of the Qiongdongnan Basin, northern South China Sea. Marine Pollution Bulletin, 191, 114873. https://doi.org/10.7185/gold2023.16375 |
|
Dickens, G. R., 2003. Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor. Earth and Planetary Science Letters, 213, 169-183. https://doi.org/10.1016/s0012-821x(03)00325-x |
|
Dickens, G. R. & M. S. Quinby‐Hunt., 1994. Methane hydrate stability in seawater. Geophysical Research Letters, 21, 2115-2118. https://doi.org/10.1029/94gl01858 |
|
Dølven, K. O., H. Espenes, A. Hanssen., et al., 2025. Modeling water column gas transformation, migration and atmospheric flux from seafloor seepage. EGUsphere, 2025, 1-38. https://doi.org/10.5194/egusphere-2025-998 |
|
Duan, X., P. Yin, N. Tsona., et al., 2023. Biogenic methane in coastal unconsolidated sediment systems: A review. Environmental Research, 227, 115803. https://doi.org/10.1016/j.envres.2023.115803 |
|
Egger, M., N. Riedinger, J. M. Mogollón., et al., 2018. Global diffusive fluxes of methane in marine sediments. Nature Geoscience, 11, 421-425. https://doi.org/10.1038/s41561-018-0122-8 |
|
Erland, B. M., A. K. Thorpe & J. A. Gamon., 2022. Recent advances toward transparent methane emissions monitoring: a review. Environmental Science Technology, 56, 16567-16581. https://doi.org/10.1021/acs.est.2c02136 |
|
Etiope, G., 2012. Methane uncovered. Nature Geoscience, 5, 373-374. https://doi.org/10.1038/ngeo1483 |
|
Etminan, M., G. Myhre, E. J. Highwood., et al., 2016. Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing. Geophysical Research Letters, 43, 12-614. https://doi.org/10.1002/2016gl071930 |
|
Fallati, L., G. Panieri, C. Argentino., et al., 2023. Characterizing Håkon Mosby Mud Volcano (Barents Sea) cold seep systems by combining ROV-based acoustic data and underwater photogrammetry. Frontiers in Marine Science, 10, 1269197. https://doi.org/10.3389/fmars.2023.1269197 |
|
Feng, J.-C., J. Yan, Y. Wang., et al., 2022. Methane mitigation: Learning from the natural marine environment. The innovation, 3(5), 100297. https://doi.org/10.1016/j.xinn.2022.100297 |
|
Ferré, B., P. G. Jansson, M. Moser., et al., 2020. Reduced methane seepage from Arctic sediments during cold bottom-water conditions. Nature Geoscience, 13, 144-148. https://doi.org/10.1038/s41561-019-0515-3 |
|
Fu, X., W. F. Waite & C. D. Ruppel., 2021. Hydrate formation on marine seep bubbles and the implications for water column methane dissolution. Journal of Geophysical Research: Oceans, 126, e2021JC017363. https://doi.org/10.1029/2021jc017363 |
|
Fung, I., J. John, J. Lerner., et al., 1991. Three‐dimensional model synthesis of the global methane cycle. Journal of Geophysical Research: Atmospheres, 96, 13033-13065. https://doi.org/10.1029/91jd01247 |
|
Gamwo, I. K. & Y. Liu., 2010. Mathematical modeling and numerical simulation of methane production in a hydrate reservoir. Industrial engineering chemistry research, 49, 5231-5245. https://doi.org/10.1021/ie901452v |
|
Gelesh, L., K. Marshall, W. Boicourt., et al., 2016. Methane concentrations increase in bottom waters during summertime anoxia in the highly eutrophic estuary, Chesapeake Bay, USA. Limnology Oceanography, 61, S253-S266. https://doi.org/10.1002/lno.10272 |
|
Gorchov Negron, A. M., E. A. Kort, S. A. Conley., et al., 2020. Airborne assessment of methane emissions from offshore platforms in the US Gulf of Mexico. Environmental science technology, 54, 5112-5120. https://doi.org/10.1021/acs.est.0c00179.s001 |
|
Graves, C. A., L. Steinle, G. Rehder., et al., 2015. Fluxes and fate of dissolved methane released at the seafloor at the landward limit of the gas hydrate stability zone offshore western Svalbard. Journal of Geophysical Research: Oceans, 120, 6185-6201. https://doi.org/10.1002/2015jc011084 |
|
Greinert, J., Y. Artemov, V. Egorov., et al., 2006. 1300-m-high rising bubbles from mud volcanoes at 2080 m in the Black Sea: Hydroacoustic characteristics and temporal variability. Earth and Planetary Science Letters, 244, 1-15. https://doi.org/10.1016/j.epsl.2006.02.011 |
|
Greinert, J., D. F. McGinnis, L. Naudts., et al., 2010. Atmospheric methane flux from bubbling seeps: Spatially extrapolated quantification from a Black Sea shelf area. Journal of Geophysical Research: Oceans, 115. https://doi.org/10.1029/2009jc005381 |
|
Hao, H. Y., Zhao, J., Liu, H. S., et al., 2018. Prediction of oil and gas reservoir traps by aromatic hydrocarbons from seabed sediments in Chaoshan depression,South China Sea. Acta Petrolei Sinica, 39(5): 528-540 (in Chinese with English abstract). |
|
Hilligsøe, K. M., J. B. Jensen, T. G. Ferdelman., et al., 2018. Methane fluxes in marine sediments quantified through core analyses and seismo-acoustic mapping (Bornholm Basin, Baltic Sea). Geochimica et Cosmochimica Acta, 239, 255-274. https://doi.org/10.1016/j.gca.2018.07.040 |
|
Hiruta, A. & R. Matsumoto., 2023. Seafloor activity and deep-subsurface geology of gas hydrate areas revealed from δ13C of methane-derived authigenic carbonates along the eastern margin of the Sea of Japan. Marine Geology, 464, 107124. https://doi.org/10.1016/j.margeo.2023.107124 |
|
Hofmann, H., L. Federwisch & F. Peeters., 2010. Wave‐induced release of methane: Littoral zones as source of methane in lakes. Limnology and Oceanography, 55, 1990-2000. https://doi.org/10.4319/lo.2010.55.5.1990 |
|
Hu, C.-Y., T. Frank Yang, G. S. Burr., et al., 2017. Biogeochemical cycles at the sulfate-methane transition zone (SMTZ) and geochemical characteristics of the pore fluids offshore southwestern Taiwan. Journal of Asian Earth Sciences, 149, 172-183. https://doi.org/10.1016/j.jseaes.2017.07.002 |
|
Hu, L., S. A. Yvon‐Lewis, J. D. Kessler., et al., 2012. Methane fluxes to the atmosphere from deepwater hydrocarbon seeps in the northern Gulf of Mexico. Journal of Geophysical Research: Oceans, 117. https://doi.org/10.1029/2011jc007208 |
|
Hu, Y., D. Feng, J. Peckmann., et al., 2023. The crucial role of deep-sourced methane in maintaining the subseafloor sulfate budget. Geoscience Frontiers, 14, 101530. https://doi.org/10.1016/j.gsf.2022.101530 |
|
Hu, Y., X. Zhang, D. Feng., et al., 2022. Enhanced sulfate consumption fueled by deep-sourced methane in a hydrate-bearing area. Science bulletin, 67, 122-124. https://doi.org/10.1016/j.scib.2021.09.006 |
|
Irakulis-Loitxate, I., J. Gorroño, D. Zavala-Araiza., et al., 2022. Satellites detect a methane ultra-emission event from an offshore platform in the Gulf of Mexico. Environmental Science Technology Letters, 9, 520-525. https://doi.org/10.31223/x5504g |
|
Iyer, S., C. Mehta, P. Das., et al., 2012. Seamounts: characteristics, formation, mineral deposits and biodiversity. Geologica Acta, 10, 0295-308. https://doi.org/10.1344/105.000001758 |
|
James, R. H., P. Bousquet, I. Bussmann., et al., 2016. Effects of climate change on methane emissions from seafloor sediments in the Arctic Ocean: A review. Limnology oceanography, 61, S283-S299. https://doi.org/10.1002/lno.10307 |
|
Jansson, P., B. Ferré, A. Silyakova., et al., 2019. A new numerical model for understanding free and dissolved gas progression toward the atmosphere in aquatic methane seepage systems. Limnology and Oceanography: Methods, 17, 223-239. https://doi.org/10.1002/lom3.10307 |
|
Jia, Z., H. Wu, J. Peng., et al., 2023. The deep origin of ground fissures in the Kenya Rift Valley. Scientific Reports, 13, 3672. https://doi.org/10.1038/s41598-023-30918-z |
|
Jing, J. N., Zhao, Q. X., Deng, M., et al., 2018. A study on natural gas hydrates and their forming model using marine controlled-source electromagnetic survey in the Qiongdongnan Basin. Chinese Journal of Geophysics (in Chinese), 61(11): 4677-4689 (in Chinese with English abstract). |
|
91. https://doi.org/10.1038/s41561-022-01044-8 |
|
Judd, A., M. Hovland, L. Dimitrov., et al., 2002. The geological methane budget at continental margins and its influence on climate change. Geofluids, 2, 109-126. https://doi.org/10.1046/j.1468-8123.2002.00027.x |
|
Karstens, J., H. Haflidason, C. Berndt., et al., 2023. Revised Storegga Slide reconstruction reveals two major submarine landslides 12,000 years apart. Communications Earth & Environment, 4, 55. https://doi.org/10.1038/s43247-023-00710-y |
|
Kessler, J. D., D. L. Valentine, M. C. Redmond., et al., 2011. A persistent oxygen anomaly reveals the fate of spilled methane in the deep Gulf of Mexico. Science, 331, 312-315. https://doi.org/10.1126/science.1199697 |
|
Kim, B., Y. G. Zhang, R. E. Zeebe., et al., 2025. Arctic CO2 emissions amplified by aerobic methane oxidation during the Palaeocene–Eocene Thermal Maximum. Nature Geoscience, 1-8. https://doi.org/10.1038/s41561-025-01784-3 |
|
Knittel, K. & A. Boetius., 2009. Anaerobic Oxidation of Methane: Progress with an Unknown Process. Annual review of microbiology, 63, 311-334. https://doi.org/10.1146/annurev.micro.61.080706.093130 |
|
Kotelnikova, S., 2002. Microbial production and oxidation of methane in deep subsurface. Earth-Science Reviews, 58, 367-395. https://doi.org/10.1016/s0012-8252(01)00082-4 |
|
Kretschmer, K., A. Biastoch, L. Rüpke., et al., 2015. Modeling the fate of methane hydrates under global warming. Global Biogeochemical Cycles, 29, 610-625. https://doi.org/10.1002/2014gb005011 |
|
Kulkarni, A. A. & J. B. Joshi., 2005. Bubble formation and bubble rise velocity in gas− liquid systems: a review. Industrial & engineering chemistry research, 44, 5873-5931. https://doi.org/10.1021/ie049131p |
|
Kvenvolden, K. A., 1988. Methane hydrates and global climate. Global biogeochemical cycles, 2, 221-229. https://doi.org/10.1029/gb002i003p00221 |
|
Kvenvolden, K. A. & B. W. Rogers., 2005. Gaia's breath—global methane exhalations. Marine and Petroleum Geology, 22, 579-590. https://doi.org/10.1016/j.marpetgeo.2004.08.004 |
|
Lai, H., Y. Fang, Z. Kuang., et al., 2021. Geochemistry, origin and accumulation of natural gas hydrates in the Qiongdongnan Basin, South China Sea: Implications from site GMGS5-W08. Marine and Petroleum Geology, 123, 104774. https://doi.org/10.1016/j.marpetgeo.2020.104774 |
|
Lawton, T. J. & A. C. Rosenzweig., 2016. Methane-oxidizing enzymes: an upstream problem in biological gas-to-liquids conversion. Journal of the American Chemical Society, 138, 9327-9340. https://doi.org/10.1021/jacs.6b04568 |
|
Leifer, I. & A. Judd., 2002a. Oceanic methane layers: the hydrocarbon seep bubble deposition hypothesis. Terra Nova, 14, 417-424. https://doi.org/10.1046/j.1365-3121.2002.00442.x |
|
Leifer, I., B. P. Luyendyk, J. Boles., et al., 2006. Natural marine seepage blowout: Contribution to atmospheric methane. Global Biogeochemical Cycles, 20. https://doi.org/10.1029/2005gb002668 |
|
Leifer, I. & I. MacDonald., 2003. Dynamics of the gas flux from shallow gas hydrate deposits: interaction between oily hydrate bubbles and the oceanic environment. Earth and Planetary Science Letters, 210, 411-424. https://doi.org/10.1016/s0012-821x(03)00173-0 |
|
Leifer, I. & R. K. Patro., 2002b. The bubble mechanism for methane transport from the shallow sea bed to the surface: A review and sensitivity study. Continental shelf research, 22, 2409-2428. https://doi.org/10.1016/s0278-4343(02)00065-1 |
|
Levin, L., P. R. Girguis, C. R. German., et al., 2016. Exploration and discovery of methane seeps and associated communities in the California Borderland. Oceanography, 29, 40-43. https://www.jstor.org/stable/27218126 |
|
Li, C., J.-C. Feng, X. Chen., et al., 2024. Behaviours of methane metabolism and community dynamics of methane anaerobic oxidation microbes on carbonate rocks with long-term cultivation in cold seep environment. Applied Energy, 365, 123296. https://doi.org/10.1016/j.apenergy.2024.123296 |
|
Li, M., T. J. Bralower, L. R. Kump., et al., 2022a. Astrochronology of the Paleocene-Eocene Thermal Maximum on the Atlantic coastal plain. Nature communications, 13, 5618. https://doi.org/10.1038/s41467-022-33390-x |
|
Li, Y., H. Xie, M. G. Scarratt., et al., 2022b. Dissolved methane in the world's largest semi‐enclosed estuarine system: The estuary and Gulf of St. Lawrence (Canada). Journal of Geophysical Research: Oceans, 127, e2022JC018850. https://doi.org/10.1029/2022jc018850 |
|
Li, S. X., Dong, H. P., Zhao, Q. F., et al., 2020. Experimental Simulation of Seabed Hydrocarbon Gas Seepage: Variation of Content and Molecular Composition of the Hydrocarbon Gas and Reconstruction of Seepage Process. Marine Geology Frontiers, 36(5): 1-13 (in Chinese with English abstract). |
|
Liang, J. H., J. C. McWilliams, P. P. Sullivan., et al., 2012. Large eddy simulation of the bubbly ocean: New insights on subsurface bubble distribution and bubble‐mediated gas transfer. Journal of Geophysical Research: Oceans, 117. https://doi.org/10.1029/2011jc007766 |
|
Liang, Q. Y., Zhao, J., Xia, Z., et al., 2017. Distribution characteristics and influential factors of dissolved methane in sea water above gas hydrate area on the northern slope of the South China Sea. Earth Science Frontiers, 24(4):089-101 (in Chinese with English abstract). |
|
Liang, Q., Zhao, J., Xia, Y., et al., 2025. Submarine deformation monitoring during the second gas hydrate production test in the South China Sea. Energy, 138149. https://doi.org/10.2139/ssrn.4958241 |
|
Liebner, S., J. Zeyer, D. Wagner., et al., 2011. Methane oxidation associated with submerged brown mosses reduces methane emissions from Siberian polygonal tundra. Journal of Ecology, 99, 914-922. https://doi.org/10.1111/j.1365-2745.2011.01823.x |
|
Lin, J. J., C. Buehler, A. Datta., et al., 2023. Laboratory and field evaluation of a low-cost methane sensor and key environmental factors for sensor calibration. Environmental Science: Atmospheres, 3, 683-694. https://doi.org/10.1039/d2ea00100d |
|
Liu, H., L. Zhan & H. Lu., 2022. Mechanisms for upward migration of methane in marine sediments. Frontiers in Marine Science, 9, 1031096. https://doi.org/10.3389/fmars.2022.1031096 |
|
Lollar, B. S., G. Lacrampe-Couloume, G. F. Slater., et al., 2006. Unravelling abiogenic and biogenic sources of methane in the Earth's deep subsurface. Chemical Geology, 226, 328-339. https://doi.org/10.1016/j.chemgeo.2005.09.027 |
|
421. https://doi.org/10.1016/s0016-7037(03)00127-3 |
|
Madison, A. S., B. M. Tebo, A. Mucci., et al., 2013. Abundant porewater Mn (III) is a major component of the sedimentary redox system. science, 341, 875-878. https://doi.org/10.1126/science.1241396 |
|
Maltby, J., S. Sommer, A. W. Dale., et al., 2016. Microbial methanogenesis in the sulfate-reducing zone of surface sediments traversing the Peruvian margin. Biogeosciences, 13, 283-299. https://doi.org/10.5194/bgd-12-14869-2015 |
|
Masson-Delmotte, V., P. Zhai, A. Pirani., et al., 2021. Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, 2, 2391. |
|
McGinnis, D. F., J. Greinert, Y. Artemov., et al., 2006. Fate of rising methane bubbles in stratified waters: How much methane reaches the atmosphere? Journal of Geophysical Research: Oceans, 111. https://doi.org/10.1029/2005jc003183 |
|
Michaelis, W., R. Seifert, K. Nauhaus., et al., 2002. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science, 297, 1013-1015. https://doi.org/10.1126/science.1072502 |
|
Mienert, J., M. Vanneste, S. Bünz., et al., 2005. Ocean warming and gas hydrate stability on the mid-Norwegian margin at the Storegga Slide. Marine petroleum geology, 22, 233-244. https://doi.org/10.1016/b978-0-08-044694-3.50024-x |
|
Milkov & A. V., 2005. Molecular and stable isotope compositions of natural gas hydrates: A revised global dataset and basic interpretations in the context of geological settings. Organic geochemistry, 36, 681-702. https://doi.org/10.1016/j.orggeochem.2005.01.010 |
|
Milkov, A. V. & G. Etiope., 2018. Revised genetic diagrams for natural gases based on a global dataset of >20,000 samples. Organic Geochemistry, 125, 109-120. https://doi.org/10.1016/j.orggeochem.2018.09.002 |
|
32. https://doi.org/10.1016/s0925-8574(02)00081-2 |
|
Mogollón, J. M., A. W. Dale, I. L'Heureux., et al., 2011. Impact of seasonal temperature and pressure changes on methane gas production, dissolution, and transport in unfractured sediments. Journal of Geophysical Research: Biogeosciences, 116. https://doi.org/10.1029/2010jg001592 |
|
Ni, X., X. Liu, S. Pang., et al., 2025. Global marine methane seepage: Spatiotemporal patterns and ocean current control. Marine Geology, 487, 107589. https://doi.org/10.1016/j.margeo.2025.107589 |
|
Niemann, H., J. Duarte, C. Hensen., et al., 2006. Microbial methane turnover at mud volcanoes of the Gulf of Cadiz. Geochimica et Cosmochimica Acta, 70, 5336-5355. https://doi.org/10.1016/j.gca.2006.08.010 |
|
Niewöhner, C., C. Hensen, S. Kasten., et al., 1998. Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia. Cosmochimica Acta, 62(3), 455-464, 455. https://doi.org/10.1016/S0016-7037(98)00055-6 |
|
Nisbet, E. G., 2022. Methane’s unknowns better known. Nature Geoscience, 15, 861-862. https://doi.org/10.1038/s41561-022-01049-3 |
|
Niu, M. Y, Liang, W. Y. & Wang, F. P., 2018. Methane biotransformation in the ocean and its effects on climate change: A review. Science China Earth Sciences, 61: 1697–1773 (in Chinese with English abstract). |
|
Peckmann, J. & V. Thiel., 2004. Carbon cycling at ancient methane–seeps. Chemical Geology, 205, 443-467. https://doi.org/10.1016/j.chemgeo.2003.12.025 |
|
Plaza‐Faverola, A., S. Vadakkepuliyambatta, W. L. Hong., et al., 2017. Bottom‐simulating reflector dynamics at Arctic thermogenic gas provinces: An example from Vestnesa Ridge, offshore west Svalbard. Journal of Geophysical Research: Solid Earth, 122, 4089-4105. https://doi.org/10.1002/2016jb013761 |
|
Polonik, N. S. & A. A. Legkodimov., 2024. Methane distribution above the Emperor Seamount chain. Deep Sea Research Part II: Topical Studies in Oceanography, 218, 105431. https://doi.org/10.1016/j.dsr2.2024.105431 |
|
Portnov, A., A. J. Smith, J. Mienert., et al., 2013. Offshore permafrost decay and massive seabed methane escape in water depths> 20 m at the South Kara Sea shelf. Geophysical Research Letters, 40, 3962-3967. https://doi.org/10.1002/grl.50735 |
|
Radziejewska, T., J. M. Węsławski, M. Tomczak., et al., 2024. Deep Sea Research Methods to Be Used During the Exploration of the Mid-Atlantic Ridge Polymetallic Sulphide Areas. The Natural Environment of the Mid-Atlantic Ridge: A Case Study of the Potential Mining Site. Cham: Springer International Publishing, 2024. 101-111. https://doi.org/10.1007/978-3-031-51865-2_7 |
|
Reay, D. S., P. Smith, T. R. Christensen., et al., 2018. Methane and global environmental change. Annual Review of Environment and Resources, 43, 165-192. https://doi.org/10.1146/annurev-environ-102017-030154 |
|
Reeburgh, W. S., 2007. Oceanic methane biogeochemistry. Chemical reviews, 107, 486-513. https://doi.org/10.1002/chin.200720267 |
|
Regnier, P., A. W. Dale, S. Arndt., et al., 2011. Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective. Earth-Science Reviews, 106, 105-130. https://doi.org/10.1016/j.earscirev.2011.01.002 |
|
Rehder, G., R. S. Keir, E. Suess., et al., 1999. Methane in the northern Atlantic controlled by microbial oxidation and atmospheric history. Geophysical Research Letters, 26, 587-590. https://doi.org/10.1029/1999gl900049 |
|
Rehder, G. & E. Suess., 2001. Methane and pCO2 in the Kuroshio and the South China Sea during maximum summer surface temperatures. Marine Chemistry, 75, 89-108. https://doi.org/10.1016/s0304-4203(01)00026-3 |
|
Rice, D. D. & G. E. Claypool., 1981. Generation, accumulation, and resource potential of biogenic gas. AAPG bulletin, 65, 5-25. https://doi.org/10.1306/2f919765-16ce-11d7-8645000102c1865d |
|
Ruff, S. E., J. Arnds, K. Knittel., et al., 2013. Microbial communities of deep-sea methane seeps at Hikurangi continental margin (New Zealand). PLoS One, 8, e72627. https://doi.org/10.1371/journal.pone.0072627 |
|
Ruppel, C. D., 2011. Methane hydrates and contemporary climate change. Nature Eduction Knowledge, 3(10):29. |
|
Ruppel, C. D. & J. D. Kessler., 2017. The interaction of climate change and methane hydrates. Reviews of Geophysics, 55, 126-168. https://doi.org/10.1002/2016rg000534 |
|
Rusakov, O. & R. Kutas., 2018. Mantle origin of methane in the Black Sea. Geofizicheskiy zhurnal, 40, 191-207. https://doi.org/10.24028/gzh.0203-3100.v40i5.2018.147482 |
|
Saunois, M., A. R. Stavert, B. Poulter., et al., 2019. The global methane budget 2000–2017. Earth System Science Data Discussions, 2019, 12(3), 1561-1623. https://doi.org/10.5194/essd-12-1561-2020 |
|
Schmale, O., M. Haeckel & D. F. McGinnis., 2010. Response of the Black Sea methane budget to massive short-term submarine inputs of methane. Biogeosciences, 8, 911-918. https://doi.org/10.5194/bgd-7-9117-2010 |
|
Schreiber, L., T. Holler, K. Knittel., et al., 2010. Identification of the dominant sulfate‐reducing bacterial partner of anaerobic methanotrophs of the ANME‐2 clade. Environmental microbiology, 12, 2327-2340. https://doi.org/10.1111/j.1462-2920.2010.02275.x |
|
Serov, P., R. Mattingsdal, M. Winsborrow., et al., 2023. Widespread natural methane and oil leakage from sub-marine Arctic reservoirs. Nature Communications, 14, 1782. https://doi.org/10.21203/rs.3.rs-1225012/v1 |
|
Serov, P., S. Vadakkepuliyambatta, J. Mienert., et al., 2017. Postglacial response of Arctic Ocean gas hydrates to climatic amelioration. Proceedings of the National Academy of Sciences, 114, 6215-6220. https://doi.org/10.1073/pnas.1619288114 |
|
Sha, Z. B., Liang, J. Q., Su, P. B., et al., 2015, Natural gas hydrate accumulation elements and drilling results analysis in the eastern part of the Pearl River Mouth Basin. Earth science frontiers, 22(6): 125 (in Chinese with English abstract). |
|
Shakhova, N., I. Semiletov, O. Gustafsson., et al., 2017. Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf. Nature communications, 8, 15872. https://doi.org/10.1038/ncomms15872 |
|
Shakhova, N., I. Semiletov, A. Salyuk., et al., 2010. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science, 327, 1246-1250. https://doi.org/10.1126/science.1182221 |
|
Shakhova, N., I. Semiletov, V. Sergienko., et al., 2015. The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373, 20140451. https://doi.org/10.1098/rsta.2014.0451 |
|
Shakirov, R. B., S. Mau, G. I. Mishukova., et al., 2020. The features of methane fluxes in the western and eastern Arctic: A review. Part I. Геосистемы переходных зон, 4, 4-25. https://doi.org/10.30730/2541-8912.2020.4.1.004-025 |
|
Skarke, A., C. Ruppel, M. o. Kodis., et al., 2014. Widespread methane leakage from the sea floor on the northern US Atlantic margin. Nature Geoscience, 7, 657-661. https://doi.org/10.1038/ngeo2232 |
|
Sloan Jr, E. D. & C. A. Koh., 2007. Clathrate hydrates of natural gases. CRC press. https://doi.org/10.1201/9781420008494 |
|
Sluijs, A., H. Brinkhuis, S. Schouten., et al., 2007. Environmental precursors to rapid light carbon injection at the Palaeocene/Eocene boundary. Nature, 450, 1218-1221. https://doi.org/10.1038/nature06400 |
|
Solomon, E. A., M. Kastner, I. R. MacDonald., et al., 2009a. Considerable methane fluxes to the atmosphere from hydrocarbon seeps in the Gulf of Mexico. Nature Geoscience, 2, 561-565. https://doi.org/10.1038/ngeo574 |
|
Solomon, S., G.-K. Plattner, R. Knutti., et al., 2009b. Irreversible climate change due to carbon dioxide emissions. Proceedings of the national academy of sciences, 106, 1704-1709. https://doi.org/10.1073/pnas.0812721106 |
|
Stolper, D. A., A. M. Martini, M. Clog., et al., 2015. Distinguishing and understanding thermogenic and biogenic sources of methane using multiply substituted isotopologues. Geochimica et Cosmochimica Acta, 161, 219-247. https://doi.org/10.1016/j.gca.2015.04.015 |
|
Stotler, R. L., S. K. Frape, L. Ahonen., et al., 2010. Origin and stability of a permafrost methane hydrate occurrence in the Canadian Shield. Earth and Planetary Science Letters, 296, 384-394. https://doi.org/10.1016/j.epsl.2010.05.024 |
|
14-1010-0 |
|
Sultan, N., P. Cochonat, J. P. Foucher., et al., 2004. Effect of gas hydrates melting on seafloor slope instability. Marine geology, 213, 379-401. https://doi.org/10.1016/j.margeo.2004.10.015 |
|
Sultan, N., A. Plaza-Faverola, S. Vadakkepuliyambatta., et al., 2020. Impact of tides and sea-level on deep-sea Arctic methane emissions. Nature communications, 11, 5087. https://doi.org/10.1038/s41467-020-18899-3 |
|
Sun, X., Z. Wang, B. Sun., et al., 2018. Modeling of dynamic hydrate shell growth on bubble surface considering multiple factor interactions. Chemical Engineering Journal, 331, 221-233. https://doi.org/10.1016/j.cej.2017.08.105 |
|
Talling, P. J., M. L. CLARE, M. Urlaub., et al., 2014. Large submarine landslides on continental slopes: geohazards, methane release, and climate change. Oceanography, 27, 32-45. https://doi.org/10.5670/oceanog.2014.38 |
|
Thanwerdas, J., M. Saunois, A. Berchet., et al., 2019. Impact of atomic chlorine on the modelling of total methane and its 13 C: 12 C isotopic ratio at global scale. Atmospheric Chemistry and Physics Discussions, 2019, 1-28. https://doi.org/10.5194/acp-2019-925 |
|
Timmers, P. H. A., D. A. Suarez-Zuluaga, M. van Rossem., et al., 2016. Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source. The ISME journal, 10, 1400-1412. https://doi.org/10.1038/ismej.2015.213 |
|
Tishchenko, P., C. Hensen, K. Wallmann., et al., 2005. Calculation of the stability and solubility of methane hydrate in seawater. Chemical geology, 219, 37-52. https://doi.org/10.1016/j.chemgeo.2005.02.008 |
|
Tori, M., Hoehler., et al., 1999. Acetogenesis from CO2in an anoxic marine sediment. Limnology & Oceanography. https://doi.org/10.4319/lo.1999.44.3.066 |
|
Treude, T., V. Orphan, K. Knittel., et al., 2007. Consumption of methane and CO2 by methanotrophic microbial mats from gas seeps of the anoxic Black Sea. Applied and environmental microbiology, 73, 2271-2283. https://doi.org/10.1128/aem.00806-07 |
|
Tryon, M. D., K. M. Brown & M. E. Torres., 2002. Fluid and chemical flux in and out of sediments hosting methane hydrate deposits on Hydrate Ridge, OR, II: Hydrological processes. Earth and Planetary Science Letters, 201, 541-557. https://doi.org/10.1016/s0012-821x(02)00732-x |
|
Valentine, D. L., 2011. Emerging topics in marine methane biogeochemistry. Annual review of marine science, 3, 147-171. https://doi.org/10.1146/annurev-marine-120709-142734 |
|
Valentine, D. L., D. C. Blanton, W. S. Reeburgh., et al., 2001. Water column methane oxidation adjacent to an area of active hydrate dissociation, Eel River Basin. Geochimica et Cosmochimica Acta, 65, 2633-2640. https://doi.org/10.1016/s0016-7037(01)00625-1 |
|
Vereshchagina, O. F., E. V. Korovitskaya & G. I. Mishukova., 2013. Methane in water columns and sediments of the north western Sea of Japan. Deep Sea Research Part II: Topical Studies in Oceanography, 86, 25-33. https://doi.org/10.1016/j.dsr2.2012.08.017 |
|
Wallenius, A. J., P. Dalcin Martins, C. P. Slomp., et al., 2021. Anthropogenic and environmental constraints on the microbial methane cycle in coastal sediments. Frontiers in microbiology, 12, 631621. https://doi.org/10.3389/fmicb.2021.631621 |
|
Wang, Q., A. Alowaifeer, P. Kerner., et al., 2021. Aerobic bacterial methane synthesis. Proceedings of the National Academy of Sciences, 28, 118(27): e2019229118. https://doi.org/10.1073/pnas.2019229118 |
|
Wang, X., B. Chen, L. Chen., et al., 2024. Biogenic methane clumped isotope signatures: Insights from microbially enhanced coal bed methane. Fuel, 365, 131307. https://doi.org/10.1016/j.fuel.2024.131307 |
|
Wang, X. D., Zhuang, G. C. & Feng, D., 2024. Advancements in studying the biogeochemistry of methane in marine depositional systems through traceelement geochemistry. Marine Geology & Quaternary Geology, 44(6): 82-95 (in Chinese with English abstract). |
|
Weber, T., N. A. Wiseman & A. Kock., 2019. Global ocean methane emissions dominated by shallow coastal waters. Nature Communications, 10, 4584. https://doi.org/10.1038/s41467-019-12541-7 |
|
Westbrook, G. K., K. E. Thatcher, E. J. Rohling., et al., 2009. Escape of methane gas from the seabed along the West Spitsbergen continental margin. Geophysical Research Letters, 36. https://doi.org/10.1029/2009gl039191 |
|
14. https://doi.org/10.1016/s0009-2541(99)00092-3 |
|
Wohleber, A., C. Blouzon, J. Witwicky., et al., 2025. A membrane inlet laser spectrometer for in situ measurement of triple water isotopologues. Limnology Oceanography: Methods, 23, 26-38. https://doi.org/10.1002/lom3.10660 |
|
Wood, J. M. & H. Sanei., 2016. Secondary migration and leakage of methane from a major tight-gas system. Nature Communications, 7, 13614. https://doi.org/10.1038/ncomms13614 |
|
Wu, N. Y., Yang, S. X., Wang, H. B., et al., 2009. Gas-bearing fluid influx sub-system for gas hydrate geological system in Shenhu Area, Northern South China Sea. Chinese Journal of Geophysics (in Chinese), 52(6): 1641-1650 (in Chinese with English abstract). |
|
Wuebbles, D. J. & K. Hayhoe., 2002. Atmospheric methane and global change. Earth-Science Reviews, 57, 177-210. https://doi.org/10.1016/S0012-8252(01)00062-9 |
|
Xie, Y., J. Feng, W. Hu., et al., 2022. Deep-sea sediment and water simulator for investigation of methane seeping and hydrate formation. Journal of Marine Science Engineering, 10, 514. https://doi.org/10.3390/jmse10040514 |
|
Xu, S. N., Wu, Z. J., Zhang, X. L., et al., 2024. Advances in Numerical Modelling of Carbon Cycling Processes in Marine Sediments. Earth Science, 49(4): 1431-1447 (in Chinese with English abstract). |
|
Xu, S., Z. Sun, W. Geng., et al., 2022. Advance in numerical simulation research of marine methane processes. Frontiers in Earth Science, 10, 891393. https://doi.org/10.3389/feart.2022.891393 |
|
Xu, W., R. P. Lowell & E. T. Peltzer., 2001. Effect of seafloor temperature and pressure variations on methane flux from a gas hydrate layer: Comparison between current and late Paleocene climate conditions. Journal of Geophysical Research: Solid Earth, 106, 26413-26423. https://doi.org/10.1029/2001jb000420 |
|
Yang, K. H., Yu, X. G., Chu, F. Y., et al., 2016. Environmental Changes in Methane Seeps Recorded by Carbon and Oxygen Isotopes in the Northern South China Sea. Earth Science, 41(7): 1206-1215 (in Chinese with English abstract). |
|
Ye, J., J. Wei, J. Liang., et al., 2019. Complex gas hydrate system in a gas chimney, South China Sea. Marine Petroleum Geology, 104, 29-39. https://doi.org/10.1016/j.marpetgeo.2019.03.023 |
|
Yin, X. J., Zhou, H. Y., Yang, Q. H., et al., 2008. The evidence for the existence of methane seepages in the northern South China Sea:abnormal high methane concentration in bottom waters. Acta Oceanologica Sinica, 30(6): 69-75 (in Chinese with English abstract). |
|
Yin, X. J., Zhou, H. Y., Yang, Q. H., et al., 2009. Sulfate reduction and reduced sulfur speciation in the coastal sediments of Qi'ao Island in the ZhujiangEstuary in China. Acta Oceanologica Sinica, 32(3): 31-39 (in Chinese with English abstract). |
|
Yu, Y.-S., X. Zhang, J.-W. Liu., et al., 2021. Natural gas hydrate resources and hydrate technologies: a review and analysis of the associated energy and global warming challenges. Energy & Environmental Science, 14, 5611-5668. https://doi.org/10.1039/d1ee02093e |
|
Yuan, J. S., Qiu, S., 2024. A review analysis of methane research progress related to IPCC AR6 and its implications for China. Climate Change Research, 20(3): 327-336 (in Chinese with English abstract). |
|
Zhang, C. L., Y. Li, J. D. Wall., et al., 2002. Lipid and carbon isotopic evidence of methane-oxidizing and sulfate-reducing bacteria in association with gas hydrates from the Gulf of Mexico. Geology, 30, 239-242. https://doi.org/10.1130/0091-7613(2002)030<0239:lacieo>2.0.co;2 |
|
Zhang, J., Lei, H. Y., Yang, M., et al., 2018. The interactions of P-S-Fe in sediment from the continental slope of northern South China Sea and their implication for the sulfate methane transition zone. Earth Science Frontiers, 25(3): 285-293 (in Chinese with English abstract). |
|
Zhang, T. T., Liang, Q. Y., Zhao, J., et al., 2020. Discussion on the sources and mechanism of supersaturated methane in euphotic seawater. Marine Geology & Quaternary Geology, 40(1): 50-59 (in Chinese with English abstract). |
|
Zhao, G., G. Gong, H. Sun., et al., 2022. Effect of Methane Solubility on Hydrate Formation and Dissociation: Review and Perspectives. Energy & Fuels, 36, 7269-7283. https://doi.org/10.1021/acs.energyfuels.2c01017 |
|
Zhao, J., Liang, Q. Y., Wei, J. G., et al., 2020. Seafloor geology and geochemistry characteristic of methane seepage of the “Haima” cold seep, northwestern slope of the South China Sea. GeoChimica, 49(1): 108-118 (in Chinese with English abstract). |
|
Zhao, Y., J. Yu, H. Shi., et al., 2024. Study of Methane Solubility Calculation Based on Modified Henry’s Law and BP Neural Network. Processes, 12, 1091. https://doi.org/10.3390/pr12061091 |
|
Zhu, J., X. Ding, Z. Liu., et al., 2025. Geomorphological characteristics and formation mechanisms of large pockmarks in the Baiyun submarine channel system, northern South China Sea. Journal of Earth Science. https://doi.org/10.1007/s12583-025-0346-7 |
|
陈烨, 孙治雷, 吴能友,等,2022. 海洋沉积物中甲烷代谢微生物的研究进展. 海洋地质与第四纪地质, 42, 82-92. |
|
郝海燕, 赵静, 刘海生,等,2018. 海洋沉积物中芳香烃预测中国南海潮汕坳陷油气圈闭方法. 石油学报, 39, 528. |
|
景建恩, 赵庆献, 邓明,等,2018. 琼东南盆地天然气水合物及其成藏模式的海洋可控源电磁研究. 地球物理学报, 61, 4677-4689. |
|
李双林, 董贺平, 赵青芳,等,2020. 海底烃类气体渗漏实验模拟: 烃类气体含量及分子组成变化与渗漏过程重建. 海洋地质前沿, 36, 1-13. |
|
梁前勇, 赵静, 夏真,等,2017. 南海北部陆坡天然气水合物区海水甲烷浓度分布特征及其影响因素探讨. 地学前缘, 24, 89-101. |
|
牛明杨, 梁文悦 & 王风平,2018. 海洋环境中甲烷的生物转化及其对气候变化的影响. 中国科学: 地球科学, 48, 1568-1588. |
|
沙志彬, 梁金强, 苏丕波,等,2015. 珠江口盆地东部海域天然气水合物钻探结果及其成藏要素研究. 地学前缘, 22, 125-135. |
|
王旭东, 庄光超 & 冯东,2024. 海洋沉积体系甲烷生物地球化学循环的微量元素地球化学示踪研究进展. 海洋地质与第四纪地质, 44, 82-95. |
|
吴能友, 杨胜雄, 王宏斌,等,2009. 南海北部陆坡神狐海域天然气水合物成藏的流体运移体系. 地球物理学报, 52, 1641-1650. |
|
徐思南, 吴自军, 张喜林,等,2024. 海洋沉积物碳循环过程数值模型的研究进展. 地球科学, 49, 1431-1447. |
|
杨克红, 于晓果, 初凤友,等,2016. 南海北部甲烷渗漏系统环境变化的碳, 氧同位素记录. 地球科学, 41, 1206-1215. |
|
尹希杰, 周怀阳, 杨群慧,等,2008. 南海北部甲烷渗漏活动存在的证据: 近底层海水甲烷高浓度异常. 海洋学报 (中文版), 30(6): 69-75. |
|
尹希杰, 周怀阳, 杨群慧,等,2009. 珠江口淇澳岛海岸带沉积物中硫酸盐还原和不同形态硫的分布. 海洋学报, 32, 31-39. |
|
袁佳双 & 邱爽,2024. IPCC AR6相关甲烷研究进展分析及其对中国的启示. 气候变化研究进展, 20, 327-336. |
|
张劼, 雷怀彦, 杨鸣,等,2018. 南海北部陆坡沉积物中P-S-Fe的相互作用及其对划分硫酸盐-甲烷转换带的指示意义. 地学前缘, 25, 285-293. |
|
张亭亭, 梁前勇, 赵静,等,2020. 真光层海水过饱和甲烷的来源及机制探讨. 海洋地质与第四纪地质, 40, 50-59. |
|
赵静, 梁前勇, 尉建功,等,2020. 南海北部陆坡西部海域"海马"冷泉甲烷渗漏及其海底表征. 地球化学, 108-118. |