• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    倪鑫, 梁前勇, 刘修国, 董一飞, 郭斌斌, 吴杨, 吴学敏, 苏丹仪, 许安迪, 杨林, 肖曦, 王智刚, 吴晓钰, 窦晓峰, 李嘉成, 蒋钟叶, 2026. 海洋甲烷运移扩散机制及环境影响研究进展与展望. 地球科学. doi: 10.3799/dqkx.2025.291
    引用本文: 倪鑫, 梁前勇, 刘修国, 董一飞, 郭斌斌, 吴杨, 吴学敏, 苏丹仪, 许安迪, 杨林, 肖曦, 王智刚, 吴晓钰, 窦晓峰, 李嘉成, 蒋钟叶, 2026. 海洋甲烷运移扩散机制及环境影响研究进展与展望. 地球科学. doi: 10.3799/dqkx.2025.291
    Xin Ni, Qianyong Liang, Xiuguo Liu, Yifei Dong, Binbin Guo, Yang Wu, Xuemin Wu, Danyi Su, Andi Xu, Lin Yang, Xi Xiao, Zhigang Wang, Xiaoyu Wu, Xiaofeng Dou, Jiacheng Li, Zhongye Jiang, 2026. Progress and Prospect of Marine Methane Leakage, Migration and Diffusion Mechanism and Ecological Environment Impact. Earth Science. doi: 10.3799/dqkx.2025.291
    Citation: Xin Ni, Qianyong Liang, Xiuguo Liu, Yifei Dong, Binbin Guo, Yang Wu, Xuemin Wu, Danyi Su, Andi Xu, Lin Yang, Xi Xiao, Zhigang Wang, Xiaoyu Wu, Xiaofeng Dou, Jiacheng Li, Zhongye Jiang, 2026. Progress and Prospect of Marine Methane Leakage, Migration and Diffusion Mechanism and Ecological Environment Impact. Earth Science. doi: 10.3799/dqkx.2025.291

    海洋甲烷运移扩散机制及环境影响研究进展与展望

    doi: 10.3799/dqkx.2025.291
    基金项目: 

    国家自然科学基金项目(No. 42276087,U2544219);中国地质调查局项目(DD20221706、DD20230065);广东省基础与应用基础研究重大项目(2023B0303000021)

    详细信息
      作者简介:

      倪鑫(2001-),男,硕士研究生,研究方向为海洋环境. ORCID:0009-0004-6477-212X. E-mail:nixin.prc@cug.edu.cn

      通讯作者:

      梁前勇(1983-),男,正高级工程师,研究方向为海洋地球化学.ORCID:0000-0002-9172-1828.E-mail:tomlqy@163.com

    • 中图分类号: P731

    Progress and Prospect of Marine Methane Leakage, Migration and Diffusion Mechanism and Ecological Environment Impact

    • 摘要: 甲烷作为强效温室气体,其单分子温室效应在百年尺度上是二氧化碳的30倍,而海洋甲烷储量占全球总储量的95%,甲烷源汇过程直接影响全球气候变化.本文通过文献调研和数据分析方法,系统梳理了全球海洋甲烷渗漏的空间分布格局与运移扩散机理,并结合南海、墨西哥湾等典型案例区实测数据定量评估环境效应.结果显示全球甲烷渗漏呈显著空间差异,环太平洋海域渗漏最为活跃,北极与大西洋沿岸次之,环南极洲海域最低.这种分布格局主要由板块构造活动、天然气水合物稳定带条件以及沉积有机质供给共同控制.北极等高纬度地区的实际渗漏活跃度可能被低估,这些地方是海洋甲烷进入大气的主要来源.从全球来看约70%-90%的海底渗漏甲烷被微生物氧化消耗,但仍有1.5%-4%直接进入大气,年贡献量约6-12 Tg.海底甲烷渗漏通过水体运移扩散、生态重构和温室气体排放对全球环境产生显著影响.应加强动态监测及甲烷负排放技术研发,服务双碳目标与全球气候治理.

       

    • Adler, M., W. Eckert & O. Sivan., 2011. Quantifying rates of methanogenesis and methanotrophy in Lake Kinneret sediments (Israel) using pore‐water profiles. Limnology & Oceanography, 56, 1525-1535. https://doi.org/10.4319/lo.2011.56.4.1525
      Adopted, I., 2014. Climate change 2014 synthesis report. IPCC: Geneva, Szwitzerland, 1059, 1072.
      Aguzzi, J., D. Chatzievangelou, S. Marini, et al., 2019. New high-tech flexible networks for the monitoring of deep-sea ecosystems. Environmental science technology, 53, 6616-6631. https://doi.org/10.1021/acs.est.9b00409
      Alperin, M. & T. Hoehler., 2010. The ongoing mystery of sea-floor methane. Science, 329, 288-289. https://doi.org/10.1126/science.1189966
      Aoyama, C. & N. Maeda., 2021. Proposed Methodology to Quantify the Amount of Methane Seepage by Understanding the Correlation Between Methane Plumes and Originating Seeps. Frontiers in Earth Science, 9, 589399. https://doi.org/10.3389/feart.2021.589399
      Archer, D., B. Buffett & V. Brovkin., 2009. Ocean methane hydrates as a slow tipping point in the global carbon cycle. Proceedings of the National Academy of Sciences, 106, 20596-20601. https://doi.org/10.1073/pnas.0800885105
      Ayasse, A. K., A. K. Thorpe, D. H. Cusworth., et al., 2022. Methane remote sensing and emission quantification of offshore shallow water oil and gas platforms in the Gulf of Mexico. Environmental Research Letters, 17, 084039. https://doi.org/10.1088/1748-9326/ac8566
      Bakunov, N., D. Y. Bolshiyanov, A. Aksenov., et al., 2023. On Global 137Cs Diffusion in Bottom Sediments of Northern Seas. Radiochemistry, 65, 485-492. https://doi.org/10.1134/s1066362223040100
      Bernstein, L., P. Bosch, O. Canziani., et al., 2008. IPCC, 2007: Climate Change 2007: Synthesis Report. Geneva: IPCC. ISBN 2-9169-122-4.
      Blair, N., 1998. The δ13C of biogenic methane in marine sediments: the influence of Corg deposition rate. Chemical geology, 152, 139-150. https://doi.org/10.1016/s0009-2541(98)00102-8
      Boetius, A., K. Ravenschlag, C. J. Schubert., et al., 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407, 623-626. https://doi.org/10.1038/35036572
      Boetius, A. & F. Wenzhöfer. 2013. Seafloor oxygen consumption fuelled by methane from cold seeps. Nature Geoscience, 6, 725-734. https://doi.org/10.1038/ngeo1926
      Bohnhoff, M., P. Martínez‐Garzón & Y. Ben‐Zion., 2024. Global warming will increase earthquake hazards through rising sea levels and cascading effects. Seismological Research Letters, 95, 2571-2576. https://doi.org/10.1785/0220240100
      Bonaglia, S., V. Brüchert, N. Callac., et al., 2017. Methane fluxes from coastal sediments are enhanced by macrofauna. Scientific reports, 7, 13145. https://doi.org/10.1038/s41598-017-13263-w
      Brown, K. M., M. D. Tryon, H. R. DeShon., et al., 2005. Correlated transient fluid pulsing and seismic tremor in the Costa Rica subduction zone. Earth and Planetary Science Letters, 238, 189-203. https://doi.org/10.1016/j.epsl.2005.06.055
      Bünz, S., J. Mienert & C. Berndt., 2003. Geological controls on the Storegga gas-hydrate system of the mid-Norwegian continental margin. Earth Planetary Science Letters, 209, 291-307. https://doi.org/10.1016/s0012-821x(03)00097-9
      Cahill, A. G., B. L. Parker, B. Mayer., et al., 2018. High resolution spatial and temporal evolution of dissolved gases in groundwater during a controlled natural gas release experiment. Science of the Total Environment, 622, 1178-1192. https://doi.org/10.1016/j.scitotenv.2017.12.049
      Caldwell, S. L., J. R. Laidler, E. A. Brewer., et al., 2008. Anaerobic oxidation of methane: mechanisms, bioenergetics, and the ecology of associated microorganisms. Environmental science & technology, 42, 6791-6799. https://doi.org/10.1021/es800120b
      . https://doi.org/10.1128/msystems.01179-22
      Chen, K.-T., S.-K. Hsu, A. T.-S. Lin., et al., 2024a. Changes in marine sedimentation patterns in the northeastern South China Sea in the past 35,000 years. Communications Earth & Environment, 5, 420. https://doi.org/10.1038/s43247-024-01593-3
      Chen, Q., Y. Hu, J. Peckmann., et al., 2023b. The formation of authigenic phosphorus minerals in cold-seep sediments from the South China Sea: Implications for carbon cycling below the sulfate-methane transition. Marine and Petroleum Geology, 155, 106425. https://doi.org/10.1016/j.marpetgeo.2023.106425
      Chen, Z., Z. Jia, S. Gong., et al., 2024b. Behaviors of trace elements under varying methane seepage intensity: Insight from tubular seep carbonates in the South China Sea. Marine and Petroleum Geology, 163, 106816. https://doi.org/10.1016/j.marpetgeo.2024.106816
      Chen, Y., Sun, Z. L., Wu, N. Y., et al., 2022. Advances in the study of methane-metabolizing microbial communities in marine sediments. Marine Geology & Quaternary Geology, 42(6): 82-92 (in Chinese with English abstract).
      Cheng, C., Q. He, J. Zhang., et al., 2022. Is the role of aerobic methanotrophs underestimated in methane oxidation under hypoxic conditions? Science of the Total Environment, 833, 155244. https://doi.org/10.1016/j.scitotenv.2022.155244
      Chuang, P.-C., A. W. Dale, K. Wallmann., et al., 2013. Relating sulfate and methane dynamics to geology: Accretionary prism offshore SW Taiwan. Geochemistry, Geophysics, Geosystems, 14, 2523-2545. https://doi.org/10.1002/ggge.20168
      Chuang, P.-C., T. F. Yang, W.-L. Hong., et al., 2010. Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate accumulation. Geofluids, 10, 497-510. https://doi.org/10.1111/j.1468-8123.2010.00313.x
      Chunwen, X., Y. Shuquan, T. Jianfeng., et al., 2024. Design and practice of indoor gas leak diffusion simulation experiment based on CFD. Experimental Technology Management Decision, 41, 119-126. https://doi.org/10.16791/j.cnki.sjg.2024.12.016
      Ciais, P., C. Sabine, G. Bala., et al., 2014. Carbon and other biogeochemical cycles. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Change. Cambridge University Press, 2014. 465-570.
      Cicerone, R. J. & R. S. Oremland., 1988. Biogeochemical aspects of atmospheric methane. Global biogeochemical cycles, 2, 299-327. https://doi.org/10.1029/gb002i004p00299
      6229-1
      Daigle, H. & B. Dugan., 2010. Origin and evolution of fracture‐hosted methane hydrate deposits. Journal of Geophysical Research: Solid Earth, 115. https://doi.org/10.1029/2010jb007492
      Damm, E., E. Helmke, S. Thoms., et al., 2010. Methane production in aerobic oligotrophic surface water in the central Arctic Ocean. Biogeosciences, 7, 1099-1108. https://doi.org/10.5194/bgd-6-10355-2009
      Dean, J. F., J. J. Middelburg, T. Röckmann., et al., 2018. Methane feedbacks to the global climate system in a warmer world. Reviews of Geophysics, 56, 207-250. https://doi.org/10.1002/2017rg000559
      Denman, K. L., G. Brasseur, A. Chidthaisong., et al., 2007. Couplings between changes in the climate system and biogeochemistry. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change The Physical Science Basis, 499-587.
      Di, P., N. Li, L. Chen., et al., 2023. Elevated nutrients and surface chlorophyll-α associated with natural methane seeps in the Haima cold seep area of the Qiongdongnan Basin, northern South China Sea. Marine Pollution Bulletin, 191, 114873. https://doi.org/10.7185/gold2023.16375
      Dickens, G. R., 2003. Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor. Earth and Planetary Science Letters, 213, 169-183. https://doi.org/10.1016/s0012-821x(03)00325-x
      Dickens, G. R. & M. S. Quinby‐Hunt., 1994. Methane hydrate stability in seawater. Geophysical Research Letters, 21, 2115-2118. https://doi.org/10.1029/94gl01858
      Dølven, K. O., H. Espenes, A. Hanssen., et al., 2025. Modeling water column gas transformation, migration and atmospheric flux from seafloor seepage. EGUsphere, 2025, 1-38. https://doi.org/10.5194/egusphere-2025-998
      Duan, X., P. Yin, N. Tsona., et al., 2023. Biogenic methane in coastal unconsolidated sediment systems: A review. Environmental Research, 227, 115803. https://doi.org/10.1016/j.envres.2023.115803
      Egger, M., N. Riedinger, J. M. Mogollón., et al., 2018. Global diffusive fluxes of methane in marine sediments. Nature Geoscience, 11, 421-425. https://doi.org/10.1038/s41561-018-0122-8
      Erland, B. M., A. K. Thorpe & J. A. Gamon., 2022. Recent advances toward transparent methane emissions monitoring: a review. Environmental Science Technology, 56, 16567-16581. https://doi.org/10.1021/acs.est.2c02136
      Etiope, G., 2012. Methane uncovered. Nature Geoscience, 5, 373-374. https://doi.org/10.1038/ngeo1483
      Etminan, M., G. Myhre, E. J. Highwood., et al., 2016. Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing. Geophysical Research Letters, 43, 12-614. https://doi.org/10.1002/2016gl071930
      Fallati, L., G. Panieri, C. Argentino., et al., 2023. Characterizing Håkon Mosby Mud Volcano (Barents Sea) cold seep systems by combining ROV-based acoustic data and underwater photogrammetry. Frontiers in Marine Science, 10, 1269197. https://doi.org/10.3389/fmars.2023.1269197
      Feng, J.-C., J. Yan, Y. Wang., et al., 2022. Methane mitigation: Learning from the natural marine environment. The innovation, 3(5), 100297. https://doi.org/10.1016/j.xinn.2022.100297
      Ferré, B., P. G. Jansson, M. Moser., et al., 2020. Reduced methane seepage from Arctic sediments during cold bottom-water conditions. Nature Geoscience, 13, 144-148. https://doi.org/10.1038/s41561-019-0515-3
      Fu, X., W. F. Waite & C. D. Ruppel., 2021. Hydrate formation on marine seep bubbles and the implications for water column methane dissolution. Journal of Geophysical Research: Oceans, 126, e2021JC017363. https://doi.org/10.1029/2021jc017363
      Fung, I., J. John, J. Lerner., et al., 1991. Three‐dimensional model synthesis of the global methane cycle. Journal of Geophysical Research: Atmospheres, 96, 13033-13065. https://doi.org/10.1029/91jd01247
      Gamwo, I. K. & Y. Liu., 2010. Mathematical modeling and numerical simulation of methane production in a hydrate reservoir. Industrial engineering chemistry research, 49, 5231-5245. https://doi.org/10.1021/ie901452v
      Gelesh, L., K. Marshall, W. Boicourt., et al., 2016. Methane concentrations increase in bottom waters during summertime anoxia in the highly eutrophic estuary, Chesapeake Bay, USA. Limnology Oceanography, 61, S253-S266. https://doi.org/10.1002/lno.10272
      Gorchov Negron, A. M., E. A. Kort, S. A. Conley., et al., 2020. Airborne assessment of methane emissions from offshore platforms in the US Gulf of Mexico. Environmental science technology, 54, 5112-5120. https://doi.org/10.1021/acs.est.0c00179.s001
      Graves, C. A., L. Steinle, G. Rehder., et al., 2015. Fluxes and fate of dissolved methane released at the seafloor at the landward limit of the gas hydrate stability zone offshore western Svalbard. Journal of Geophysical Research: Oceans, 120, 6185-6201. https://doi.org/10.1002/2015jc011084
      Greinert, J., Y. Artemov, V. Egorov., et al., 2006. 1300-m-high rising bubbles from mud volcanoes at 2080 m in the Black Sea: Hydroacoustic characteristics and temporal variability. Earth and Planetary Science Letters, 244, 1-15. https://doi.org/10.1016/j.epsl.2006.02.011
      Greinert, J., D. F. McGinnis, L. Naudts., et al., 2010. Atmospheric methane flux from bubbling seeps: Spatially extrapolated quantification from a Black Sea shelf area. Journal of Geophysical Research: Oceans, 115. https://doi.org/10.1029/2009jc005381
      Hao, H. Y., Zhao, J., Liu, H. S., et al., 2018. Prediction of oil and gas reservoir traps by aromatic hydrocarbons from seabed sediments in Chaoshan depression,South China Sea. Acta Petrolei Sinica, 39(5): 528-540 (in Chinese with English abstract).
      Hilligsøe, K. M., J. B. Jensen, T. G. Ferdelman., et al., 2018. Methane fluxes in marine sediments quantified through core analyses and seismo-acoustic mapping (Bornholm Basin, Baltic Sea). Geochimica et Cosmochimica Acta, 239, 255-274. https://doi.org/10.1016/j.gca.2018.07.040
      Hiruta, A. & R. Matsumoto., 2023. Seafloor activity and deep-subsurface geology of gas hydrate areas revealed from δ13C of methane-derived authigenic carbonates along the eastern margin of the Sea of Japan. Marine Geology, 464, 107124. https://doi.org/10.1016/j.margeo.2023.107124
      Hofmann, H., L. Federwisch & F. Peeters., 2010. Wave‐induced release of methane: Littoral zones as source of methane in lakes. Limnology and Oceanography, 55, 1990-2000. https://doi.org/10.4319/lo.2010.55.5.1990
      Hu, C.-Y., T. Frank Yang, G. S. Burr., et al., 2017. Biogeochemical cycles at the sulfate-methane transition zone (SMTZ) and geochemical characteristics of the pore fluids offshore southwestern Taiwan. Journal of Asian Earth Sciences, 149, 172-183. https://doi.org/10.1016/j.jseaes.2017.07.002
      Hu, L., S. A. Yvon‐Lewis, J. D. Kessler., et al., 2012. Methane fluxes to the atmosphere from deepwater hydrocarbon seeps in the northern Gulf of Mexico. Journal of Geophysical Research: Oceans, 117. https://doi.org/10.1029/2011jc007208
      Hu, Y., D. Feng, J. Peckmann., et al., 2023. The crucial role of deep-sourced methane in maintaining the subseafloor sulfate budget. Geoscience Frontiers, 14, 101530. https://doi.org/10.1016/j.gsf.2022.101530
      Hu, Y., X. Zhang, D. Feng., et al., 2022. Enhanced sulfate consumption fueled by deep-sourced methane in a hydrate-bearing area. Science bulletin, 67, 122-124. https://doi.org/10.1016/j.scib.2021.09.006
      Irakulis-Loitxate, I., J. Gorroño, D. Zavala-Araiza., et al., 2022. Satellites detect a methane ultra-emission event from an offshore platform in the Gulf of Mexico. Environmental Science Technology Letters, 9, 520-525. https://doi.org/10.31223/x5504g
      Iyer, S., C. Mehta, P. Das., et al., 2012. Seamounts: characteristics, formation, mineral deposits and biodiversity. Geologica Acta, 10, 0295-308. https://doi.org/10.1344/105.000001758
      James, R. H., P. Bousquet, I. Bussmann., et al., 2016. Effects of climate change on methane emissions from seafloor sediments in the Arctic Ocean: A review. Limnology oceanography, 61, S283-S299. https://doi.org/10.1002/lno.10307
      Jansson, P., B. Ferré, A. Silyakova., et al., 2019. A new numerical model for understanding free and dissolved gas progression toward the atmosphere in aquatic methane seepage systems. Limnology and Oceanography: Methods, 17, 223-239. https://doi.org/10.1002/lom3.10307
      Jia, Z., H. Wu, J. Peng., et al., 2023. The deep origin of ground fissures in the Kenya Rift Valley. Scientific Reports, 13, 3672. https://doi.org/10.1038/s41598-023-30918-z
      Jing, J. N., Zhao, Q. X., Deng, M., et al., 2018. A study on natural gas hydrates and their forming model using marine controlled-source electromagnetic survey in the Qiongdongnan Basin. Chinese Journal of Geophysics (in Chinese), 61(11): 4677-4689 (in Chinese with English abstract).
      91. https://doi.org/10.1038/s41561-022-01044-8
      Judd, A., M. Hovland, L. Dimitrov., et al., 2002. The geological methane budget at continental margins and its influence on climate change. Geofluids, 2, 109-126. https://doi.org/10.1046/j.1468-8123.2002.00027.x
      Karstens, J., H. Haflidason, C. Berndt., et al., 2023. Revised Storegga Slide reconstruction reveals two major submarine landslides 12,000 years apart. Communications Earth & Environment, 4, 55. https://doi.org/10.1038/s43247-023-00710-y
      Kessler, J. D., D. L. Valentine, M. C. Redmond., et al., 2011. A persistent oxygen anomaly reveals the fate of spilled methane in the deep Gulf of Mexico. Science, 331, 312-315. https://doi.org/10.1126/science.1199697
      Kim, B., Y. G. Zhang, R. E. Zeebe., et al., 2025. Arctic CO2 emissions amplified by aerobic methane oxidation during the Palaeocene–Eocene Thermal Maximum. Nature Geoscience, 1-8. https://doi.org/10.1038/s41561-025-01784-3
      Knittel, K. & A. Boetius., 2009. Anaerobic Oxidation of Methane: Progress with an Unknown Process. Annual review of microbiology, 63, 311-334. https://doi.org/10.1146/annurev.micro.61.080706.093130
      Kotelnikova, S., 2002. Microbial production and oxidation of methane in deep subsurface. Earth-Science Reviews, 58, 367-395. https://doi.org/10.1016/s0012-8252(01)00082-4
      Kretschmer, K., A. Biastoch, L. Rüpke., et al., 2015. Modeling the fate of methane hydrates under global warming. Global Biogeochemical Cycles, 29, 610-625. https://doi.org/10.1002/2014gb005011
      Kulkarni, A. A. & J. B. Joshi., 2005. Bubble formation and bubble rise velocity in gas− liquid systems: a review. Industrial & engineering chemistry research, 44, 5873-5931. https://doi.org/10.1021/ie049131p
      Kvenvolden, K. A., 1988. Methane hydrates and global climate. Global biogeochemical cycles, 2, 221-229. https://doi.org/10.1029/gb002i003p00221
      Kvenvolden, K. A. & B. W. Rogers., 2005. Gaia's breath—global methane exhalations. Marine and Petroleum Geology, 22, 579-590. https://doi.org/10.1016/j.marpetgeo.2004.08.004
      Lai, H., Y. Fang, Z. Kuang., et al., 2021. Geochemistry, origin and accumulation of natural gas hydrates in the Qiongdongnan Basin, South China Sea: Implications from site GMGS5-W08. Marine and Petroleum Geology, 123, 104774. https://doi.org/10.1016/j.marpetgeo.2020.104774
      Lawton, T. J. & A. C. Rosenzweig., 2016. Methane-oxidizing enzymes: an upstream problem in biological gas-to-liquids conversion. Journal of the American Chemical Society, 138, 9327-9340. https://doi.org/10.1021/jacs.6b04568
      Leifer, I. & A. Judd., 2002a. Oceanic methane layers: the hydrocarbon seep bubble deposition hypothesis. Terra Nova, 14, 417-424. https://doi.org/10.1046/j.1365-3121.2002.00442.x
      Leifer, I., B. P. Luyendyk, J. Boles., et al., 2006. Natural marine seepage blowout: Contribution to atmospheric methane. Global Biogeochemical Cycles, 20. https://doi.org/10.1029/2005gb002668
      Leifer, I. & I. MacDonald., 2003. Dynamics of the gas flux from shallow gas hydrate deposits: interaction between oily hydrate bubbles and the oceanic environment. Earth and Planetary Science Letters, 210, 411-424. https://doi.org/10.1016/s0012-821x(03)00173-0
      Leifer, I. & R. K. Patro., 2002b. The bubble mechanism for methane transport from the shallow sea bed to the surface: A review and sensitivity study. Continental shelf research, 22, 2409-2428. https://doi.org/10.1016/s0278-4343(02)00065-1
      Levin, L., P. R. Girguis, C. R. German., et al., 2016. Exploration and discovery of methane seeps and associated communities in the California Borderland. Oceanography, 29, 40-43. https://www.jstor.org/stable/27218126
      Li, C., J.-C. Feng, X. Chen., et al., 2024. Behaviours of methane metabolism and community dynamics of methane anaerobic oxidation microbes on carbonate rocks with long-term cultivation in cold seep environment. Applied Energy, 365, 123296. https://doi.org/10.1016/j.apenergy.2024.123296
      Li, M., T. J. Bralower, L. R. Kump., et al., 2022a. Astrochronology of the Paleocene-Eocene Thermal Maximum on the Atlantic coastal plain. Nature communications, 13, 5618. https://doi.org/10.1038/s41467-022-33390-x
      Li, Y., H. Xie, M. G. Scarratt., et al., 2022b. Dissolved methane in the world's largest semi‐enclosed estuarine system: The estuary and Gulf of St. Lawrence (Canada). Journal of Geophysical Research: Oceans, 127, e2022JC018850. https://doi.org/10.1029/2022jc018850
      Li, S. X., Dong, H. P., Zhao, Q. F., et al., 2020. Experimental Simulation of Seabed Hydrocarbon Gas Seepage: Variation of Content and Molecular Composition of the Hydrocarbon Gas and Reconstruction of Seepage Process. Marine Geology Frontiers, 36(5): 1-13 (in Chinese with English abstract).
      Liang, J. H., J. C. McWilliams, P. P. Sullivan., et al., 2012. Large eddy simulation of the bubbly ocean: New insights on subsurface bubble distribution and bubble‐mediated gas transfer. Journal of Geophysical Research: Oceans, 117. https://doi.org/10.1029/2011jc007766
      Liang, Q. Y., Zhao, J., Xia, Z., et al., 2017. Distribution characteristics and influential factors of dissolved methane in sea water above gas hydrate area on the northern slope of the South China Sea. Earth Science Frontiers, 24(4):089-101 (in Chinese with English abstract).
      Liang, Q., Zhao, J., Xia, Y., et al., 2025. Submarine deformation monitoring during the second gas hydrate production test in the South China Sea. Energy, 138149. https://doi.org/10.2139/ssrn.4958241
      Liebner, S., J. Zeyer, D. Wagner., et al., 2011. Methane oxidation associated with submerged brown mosses reduces methane emissions from Siberian polygonal tundra. Journal of Ecology, 99, 914-922. https://doi.org/10.1111/j.1365-2745.2011.01823.x
      Lin, J. J., C. Buehler, A. Datta., et al., 2023. Laboratory and field evaluation of a low-cost methane sensor and key environmental factors for sensor calibration. Environmental Science: Atmospheres, 3, 683-694. https://doi.org/10.1039/d2ea00100d
      Liu, H., L. Zhan & H. Lu., 2022. Mechanisms for upward migration of methane in marine sediments. Frontiers in Marine Science, 9, 1031096. https://doi.org/10.3389/fmars.2022.1031096
      Lollar, B. S., G. Lacrampe-Couloume, G. F. Slater., et al., 2006. Unravelling abiogenic and biogenic sources of methane in the Earth's deep subsurface. Chemical Geology, 226, 328-339. https://doi.org/10.1016/j.chemgeo.2005.09.027
      421. https://doi.org/10.1016/s0016-7037(03)00127-3
      Madison, A. S., B. M. Tebo, A. Mucci., et al., 2013. Abundant porewater Mn (III) is a major component of the sedimentary redox system. science, 341, 875-878. https://doi.org/10.1126/science.1241396
      Maltby, J., S. Sommer, A. W. Dale., et al., 2016. Microbial methanogenesis in the sulfate-reducing zone of surface sediments traversing the Peruvian margin. Biogeosciences, 13, 283-299. https://doi.org/10.5194/bgd-12-14869-2015
      Masson-Delmotte, V., P. Zhai, A. Pirani., et al., 2021. Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, 2, 2391.
      McGinnis, D. F., J. Greinert, Y. Artemov., et al., 2006. Fate of rising methane bubbles in stratified waters: How much methane reaches the atmosphere? Journal of Geophysical Research: Oceans, 111. https://doi.org/10.1029/2005jc003183
      Michaelis, W., R. Seifert, K. Nauhaus., et al., 2002. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science, 297, 1013-1015. https://doi.org/10.1126/science.1072502
      Mienert, J., M. Vanneste, S. Bünz., et al., 2005. Ocean warming and gas hydrate stability on the mid-Norwegian margin at the Storegga Slide. Marine petroleum geology, 22, 233-244. https://doi.org/10.1016/b978-0-08-044694-3.50024-x
      Milkov & A. V., 2005. Molecular and stable isotope compositions of natural gas hydrates: A revised global dataset and basic interpretations in the context of geological settings. Organic geochemistry, 36, 681-702. https://doi.org/10.1016/j.orggeochem.2005.01.010
      Milkov, A. V. & G. Etiope., 2018. Revised genetic diagrams for natural gases based on a global dataset of >20,000 samples. Organic Geochemistry, 125, 109-120. https://doi.org/10.1016/j.orggeochem.2018.09.002
      32. https://doi.org/10.1016/s0925-8574(02)00081-2
      Mogollón, J. M., A. W. Dale, I. L'Heureux., et al., 2011. Impact of seasonal temperature and pressure changes on methane gas production, dissolution, and transport in unfractured sediments. Journal of Geophysical Research: Biogeosciences, 116. https://doi.org/10.1029/2010jg001592
      Ni, X., X. Liu, S. Pang., et al., 2025. Global marine methane seepage: Spatiotemporal patterns and ocean current control. Marine Geology, 487, 107589. https://doi.org/10.1016/j.margeo.2025.107589
      Niemann, H., J. Duarte, C. Hensen., et al., 2006. Microbial methane turnover at mud volcanoes of the Gulf of Cadiz. Geochimica et Cosmochimica Acta, 70, 5336-5355. https://doi.org/10.1016/j.gca.2006.08.010
      Niewöhner, C., C. Hensen, S. Kasten., et al., 1998. Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia. Cosmochimica Acta, 62(3), 455-464, 455. https://doi.org/10.1016/S0016-7037(98)00055-6
      Nisbet, E. G., 2022. Methane’s unknowns better known. Nature Geoscience, 15, 861-862. https://doi.org/10.1038/s41561-022-01049-3
      Niu, M. Y, Liang, W. Y. & Wang, F. P., 2018. Methane biotransformation in the ocean and its effects on climate change: A review. Science China Earth Sciences, 61: 1697–1773 (in Chinese with English abstract).
      Peckmann, J. & V. Thiel., 2004. Carbon cycling at ancient methane–seeps. Chemical Geology, 205, 443-467. https://doi.org/10.1016/j.chemgeo.2003.12.025
      Plaza‐Faverola, A., S. Vadakkepuliyambatta, W. L. Hong., et al., 2017. Bottom‐simulating reflector dynamics at Arctic thermogenic gas provinces: An example from Vestnesa Ridge, offshore west Svalbard. Journal of Geophysical Research: Solid Earth, 122, 4089-4105. https://doi.org/10.1002/2016jb013761
      Polonik, N. S. & A. A. Legkodimov., 2024. Methane distribution above the Emperor Seamount chain. Deep Sea Research Part II: Topical Studies in Oceanography, 218, 105431. https://doi.org/10.1016/j.dsr2.2024.105431
      Portnov, A., A. J. Smith, J. Mienert., et al., 2013. Offshore permafrost decay and massive seabed methane escape in water depths> 20 m at the South Kara Sea shelf. Geophysical Research Letters, 40, 3962-3967. https://doi.org/10.1002/grl.50735
      Radziejewska, T., J. M. Węsławski, M. Tomczak., et al., 2024. Deep Sea Research Methods to Be Used During the Exploration of the Mid-Atlantic Ridge Polymetallic Sulphide Areas. The Natural Environment of the Mid-Atlantic Ridge: A Case Study of the Potential Mining Site. Cham: Springer International Publishing, 2024. 101-111. https://doi.org/10.1007/978-3-031-51865-2_7
      Reay, D. S., P. Smith, T. R. Christensen., et al., 2018. Methane and global environmental change. Annual Review of Environment and Resources, 43, 165-192. https://doi.org/10.1146/annurev-environ-102017-030154
      Reeburgh, W. S., 2007. Oceanic methane biogeochemistry. Chemical reviews, 107, 486-513. https://doi.org/10.1002/chin.200720267
      Regnier, P., A. W. Dale, S. Arndt., et al., 2011. Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective. Earth-Science Reviews, 106, 105-130. https://doi.org/10.1016/j.earscirev.2011.01.002
      Rehder, G., R. S. Keir, E. Suess., et al., 1999. Methane in the northern Atlantic controlled by microbial oxidation and atmospheric history. Geophysical Research Letters, 26, 587-590. https://doi.org/10.1029/1999gl900049
      Rehder, G. & E. Suess., 2001. Methane and pCO2 in the Kuroshio and the South China Sea during maximum summer surface temperatures. Marine Chemistry, 75, 89-108. https://doi.org/10.1016/s0304-4203(01)00026-3
      Rice, D. D. & G. E. Claypool., 1981. Generation, accumulation, and resource potential of biogenic gas. AAPG bulletin, 65, 5-25. https://doi.org/10.1306/2f919765-16ce-11d7-8645000102c1865d
      Ruff, S. E., J. Arnds, K. Knittel., et al., 2013. Microbial communities of deep-sea methane seeps at Hikurangi continental margin (New Zealand). PLoS One, 8, e72627. https://doi.org/10.1371/journal.pone.0072627
      Ruppel, C. D., 2011. Methane hydrates and contemporary climate change. Nature Eduction Knowledge, 3(10):29.
      Ruppel, C. D. & J. D. Kessler., 2017. The interaction of climate change and methane hydrates. Reviews of Geophysics, 55, 126-168. https://doi.org/10.1002/2016rg000534
      Rusakov, O. & R. Kutas., 2018. Mantle origin of methane in the Black Sea. Geofizicheskiy zhurnal, 40, 191-207. https://doi.org/10.24028/gzh.0203-3100.v40i5.2018.147482
      Saunois, M., A. R. Stavert, B. Poulter., et al., 2019. The global methane budget 2000–2017. Earth System Science Data Discussions, 2019, 12(3), 1561-1623. https://doi.org/10.5194/essd-12-1561-2020
      Schmale, O., M. Haeckel & D. F. McGinnis., 2010. Response of the Black Sea methane budget to massive short-term submarine inputs of methane. Biogeosciences, 8, 911-918. https://doi.org/10.5194/bgd-7-9117-2010
      Schreiber, L., T. Holler, K. Knittel., et al., 2010. Identification of the dominant sulfate‐reducing bacterial partner of anaerobic methanotrophs of the ANME‐2 clade. Environmental microbiology, 12, 2327-2340. https://doi.org/10.1111/j.1462-2920.2010.02275.x
      Serov, P., R. Mattingsdal, M. Winsborrow., et al., 2023. Widespread natural methane and oil leakage from sub-marine Arctic reservoirs. Nature Communications, 14, 1782. https://doi.org/10.21203/rs.3.rs-1225012/v1
      Serov, P., S. Vadakkepuliyambatta, J. Mienert., et al., 2017. Postglacial response of Arctic Ocean gas hydrates to climatic amelioration. Proceedings of the National Academy of Sciences, 114, 6215-6220. https://doi.org/10.1073/pnas.1619288114
      Sha, Z. B., Liang, J. Q., Su, P. B., et al., 2015, Natural gas hydrate accumulation elements and drilling results analysis in the eastern part of the Pearl River Mouth Basin. Earth science frontiers, 22(6): 125 (in Chinese with English abstract).
      Shakhova, N., I. Semiletov, O. Gustafsson., et al., 2017. Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf. Nature communications, 8, 15872. https://doi.org/10.1038/ncomms15872
      Shakhova, N., I. Semiletov, A. Salyuk., et al., 2010. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science, 327, 1246-1250. https://doi.org/10.1126/science.1182221
      Shakhova, N., I. Semiletov, V. Sergienko., et al., 2015. The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373, 20140451. https://doi.org/10.1098/rsta.2014.0451
      Shakirov, R. B., S. Mau, G. I. Mishukova., et al., 2020. The features of methane fluxes in the western and eastern Arctic: A review. Part I. Геосистемы переходных зон, 4, 4-25. https://doi.org/10.30730/2541-8912.2020.4.1.004-025
      Skarke, A., C. Ruppel, M. o. Kodis., et al., 2014. Widespread methane leakage from the sea floor on the northern US Atlantic margin. Nature Geoscience, 7, 657-661. https://doi.org/10.1038/ngeo2232
      Sloan Jr, E. D. & C. A. Koh., 2007. Clathrate hydrates of natural gases. CRC press. https://doi.org/10.1201/9781420008494
      Sluijs, A., H. Brinkhuis, S. Schouten., et al., 2007. Environmental precursors to rapid light carbon injection at the Palaeocene/Eocene boundary. Nature, 450, 1218-1221. https://doi.org/10.1038/nature06400
      Solomon, E. A., M. Kastner, I. R. MacDonald., et al., 2009a. Considerable methane fluxes to the atmosphere from hydrocarbon seeps in the Gulf of Mexico. Nature Geoscience, 2, 561-565. https://doi.org/10.1038/ngeo574
      Solomon, S., G.-K. Plattner, R. Knutti., et al., 2009b. Irreversible climate change due to carbon dioxide emissions. Proceedings of the national academy of sciences, 106, 1704-1709. https://doi.org/10.1073/pnas.0812721106
      Stolper, D. A., A. M. Martini, M. Clog., et al., 2015. Distinguishing and understanding thermogenic and biogenic sources of methane using multiply substituted isotopologues. Geochimica et Cosmochimica Acta, 161, 219-247. https://doi.org/10.1016/j.gca.2015.04.015
      Stotler, R. L., S. K. Frape, L. Ahonen., et al., 2010. Origin and stability of a permafrost methane hydrate occurrence in the Canadian Shield. Earth and Planetary Science Letters, 296, 384-394. https://doi.org/10.1016/j.epsl.2010.05.024
      14-1010-0
      Sultan, N., P. Cochonat, J. P. Foucher., et al., 2004. Effect of gas hydrates melting on seafloor slope instability. Marine geology, 213, 379-401. https://doi.org/10.1016/j.margeo.2004.10.015
      Sultan, N., A. Plaza-Faverola, S. Vadakkepuliyambatta., et al., 2020. Impact of tides and sea-level on deep-sea Arctic methane emissions. Nature communications, 11, 5087. https://doi.org/10.1038/s41467-020-18899-3
      Sun, X., Z. Wang, B. Sun., et al., 2018. Modeling of dynamic hydrate shell growth on bubble surface considering multiple factor interactions. Chemical Engineering Journal, 331, 221-233. https://doi.org/10.1016/j.cej.2017.08.105
      Talling, P. J., M. L. CLARE, M. Urlaub., et al., 2014. Large submarine landslides on continental slopes: geohazards, methane release, and climate change. Oceanography, 27, 32-45. https://doi.org/10.5670/oceanog.2014.38
      Thanwerdas, J., M. Saunois, A. Berchet., et al., 2019. Impact of atomic chlorine on the modelling of total methane and its 13 C: 12 C isotopic ratio at global scale. Atmospheric Chemistry and Physics Discussions, 2019, 1-28. https://doi.org/10.5194/acp-2019-925
      Timmers, P. H. A., D. A. Suarez-Zuluaga, M. van Rossem., et al., 2016. Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source. The ISME journal, 10, 1400-1412. https://doi.org/10.1038/ismej.2015.213
      Tishchenko, P., C. Hensen, K. Wallmann., et al., 2005. Calculation of the stability and solubility of methane hydrate in seawater. Chemical geology, 219, 37-52. https://doi.org/10.1016/j.chemgeo.2005.02.008
      Tori, M., Hoehler., et al., 1999. Acetogenesis from CO2in an anoxic marine sediment. Limnology & Oceanography. https://doi.org/10.4319/lo.1999.44.3.066
      Treude, T., V. Orphan, K. Knittel., et al., 2007. Consumption of methane and CO2 by methanotrophic microbial mats from gas seeps of the anoxic Black Sea. Applied and environmental microbiology, 73, 2271-2283. https://doi.org/10.1128/aem.00806-07
      Tryon, M. D., K. M. Brown & M. E. Torres., 2002. Fluid and chemical flux in and out of sediments hosting methane hydrate deposits on Hydrate Ridge, OR, II: Hydrological processes. Earth and Planetary Science Letters, 201, 541-557. https://doi.org/10.1016/s0012-821x(02)00732-x
      Valentine, D. L., 2011. Emerging topics in marine methane biogeochemistry. Annual review of marine science, 3, 147-171. https://doi.org/10.1146/annurev-marine-120709-142734
      Valentine, D. L., D. C. Blanton, W. S. Reeburgh., et al., 2001. Water column methane oxidation adjacent to an area of active hydrate dissociation, Eel River Basin. Geochimica et Cosmochimica Acta, 65, 2633-2640. https://doi.org/10.1016/s0016-7037(01)00625-1
      Vereshchagina, O. F., E. V. Korovitskaya & G. I. Mishukova., 2013. Methane in water columns and sediments of the north western Sea of Japan. Deep Sea Research Part II: Topical Studies in Oceanography, 86, 25-33. https://doi.org/10.1016/j.dsr2.2012.08.017
      Wallenius, A. J., P. Dalcin Martins, C. P. Slomp., et al., 2021. Anthropogenic and environmental constraints on the microbial methane cycle in coastal sediments. Frontiers in microbiology, 12, 631621. https://doi.org/10.3389/fmicb.2021.631621
      Wang, Q., A. Alowaifeer, P. Kerner., et al., 2021. Aerobic bacterial methane synthesis. Proceedings of the National Academy of Sciences, 28, 118(27): e2019229118. https://doi.org/10.1073/pnas.2019229118
      Wang, X., B. Chen, L. Chen., et al., 2024. Biogenic methane clumped isotope signatures: Insights from microbially enhanced coal bed methane. Fuel, 365, 131307. https://doi.org/10.1016/j.fuel.2024.131307
      Wang, X. D., Zhuang, G. C. & Feng, D., 2024. Advancements in studying the biogeochemistry of methane in marine depositional systems through traceelement geochemistry. Marine Geology & Quaternary Geology, 44(6): 82-95 (in Chinese with English abstract).
      Weber, T., N. A. Wiseman & A. Kock., 2019. Global ocean methane emissions dominated by shallow coastal waters. Nature Communications, 10, 4584. https://doi.org/10.1038/s41467-019-12541-7
      Westbrook, G. K., K. E. Thatcher, E. J. Rohling., et al., 2009. Escape of methane gas from the seabed along the West Spitsbergen continental margin. Geophysical Research Letters, 36. https://doi.org/10.1029/2009gl039191
      14. https://doi.org/10.1016/s0009-2541(99)00092-3
      Wohleber, A., C. Blouzon, J. Witwicky., et al., 2025. A membrane inlet laser spectrometer for in situ measurement of triple water isotopologues. Limnology Oceanography: Methods, 23, 26-38. https://doi.org/10.1002/lom3.10660
      Wood, J. M. & H. Sanei., 2016. Secondary migration and leakage of methane from a major tight-gas system. Nature Communications, 7, 13614. https://doi.org/10.1038/ncomms13614
      Wu, N. Y., Yang, S. X., Wang, H. B., et al., 2009. Gas-bearing fluid influx sub-system for gas hydrate geological system in Shenhu Area, Northern South China Sea. Chinese Journal of Geophysics (in Chinese), 52(6): 1641-1650 (in Chinese with English abstract).
      Wuebbles, D. J. & K. Hayhoe., 2002. Atmospheric methane and global change. Earth-Science Reviews, 57, 177-210. https://doi.org/10.1016/S0012-8252(01)00062-9
      Xie, Y., J. Feng, W. Hu., et al., 2022. Deep-sea sediment and water simulator for investigation of methane seeping and hydrate formation. Journal of Marine Science Engineering, 10, 514. https://doi.org/10.3390/jmse10040514
      Xu, S. N., Wu, Z. J., Zhang, X. L., et al., 2024. Advances in Numerical Modelling of Carbon Cycling Processes in Marine Sediments. Earth Science, 49(4): 1431-1447 (in Chinese with English abstract).
      Xu, S., Z. Sun, W. Geng., et al., 2022. Advance in numerical simulation research of marine methane processes. Frontiers in Earth Science, 10, 891393. https://doi.org/10.3389/feart.2022.891393
      Xu, W., R. P. Lowell & E. T. Peltzer., 2001. Effect of seafloor temperature and pressure variations on methane flux from a gas hydrate layer: Comparison between current and late Paleocene climate conditions. Journal of Geophysical Research: Solid Earth, 106, 26413-26423. https://doi.org/10.1029/2001jb000420
      Yang, K. H., Yu, X. G., Chu, F. Y., et al., 2016. Environmental Changes in Methane Seeps Recorded by Carbon and Oxygen Isotopes in the Northern South China Sea. Earth Science, 41(7): 1206-1215 (in Chinese with English abstract).
      Ye, J., J. Wei, J. Liang., et al., 2019. Complex gas hydrate system in a gas chimney, South China Sea. Marine Petroleum Geology, 104, 29-39. https://doi.org/10.1016/j.marpetgeo.2019.03.023
      Yin, X. J., Zhou, H. Y., Yang, Q. H., et al., 2008. The evidence for the existence of methane seepages in the northern South China Sea:abnormal high methane concentration in bottom waters. Acta Oceanologica Sinica, 30(6): 69-75 (in Chinese with English abstract).
      Yin, X. J., Zhou, H. Y., Yang, Q. H., et al., 2009. Sulfate reduction and reduced sulfur speciation in the coastal sediments of Qi'ao Island in the ZhujiangEstuary in China. Acta Oceanologica Sinica, 32(3): 31-39 (in Chinese with English abstract).
      Yu, Y.-S., X. Zhang, J.-W. Liu., et al., 2021. Natural gas hydrate resources and hydrate technologies: a review and analysis of the associated energy and global warming challenges. Energy & Environmental Science, 14, 5611-5668. https://doi.org/10.1039/d1ee02093e
      Yuan, J. S., Qiu, S., 2024. A review analysis of methane research progress related to IPCC AR6 and its implications for China. Climate Change Research, 20(3): 327-336 (in Chinese with English abstract).
      Zhang, C. L., Y. Li, J. D. Wall., et al., 2002. Lipid and carbon isotopic evidence of methane-oxidizing and sulfate-reducing bacteria in association with gas hydrates from the Gulf of Mexico. Geology, 30, 239-242. https://doi.org/10.1130/0091-7613(2002)030<0239:lacieo>2.0.co;2
      Zhang, J., Lei, H. Y., Yang, M., et al., 2018. The interactions of P-S-Fe in sediment from the continental slope of northern South China Sea and their implication for the sulfate methane transition zone. Earth Science Frontiers, 25(3): 285-293 (in Chinese with English abstract).
      Zhang, T. T., Liang, Q. Y., Zhao, J., et al., 2020. Discussion on the sources and mechanism of supersaturated methane in euphotic seawater. Marine Geology & Quaternary Geology, 40(1): 50-59 (in Chinese with English abstract).
      Zhao, G., G. Gong, H. Sun., et al., 2022. Effect of Methane Solubility on Hydrate Formation and Dissociation: Review and Perspectives. Energy & Fuels, 36, 7269-7283. https://doi.org/10.1021/acs.energyfuels.2c01017
      Zhao, J., Liang, Q. Y., Wei, J. G., et al., 2020. Seafloor geology and geochemistry characteristic of methane seepage of the “Haima” cold seep, northwestern slope of the South China Sea. GeoChimica, 49(1): 108-118 (in Chinese with English abstract).
      Zhao, Y., J. Yu, H. Shi., et al., 2024. Study of Methane Solubility Calculation Based on Modified Henry’s Law and BP Neural Network. Processes, 12, 1091. https://doi.org/10.3390/pr12061091
      Zhu, J., X. Ding, Z. Liu., et al., 2025. Geomorphological characteristics and formation mechanisms of large pockmarks in the Baiyun submarine channel system, northern South China Sea. Journal of Earth Science. https://doi.org/10.1007/s12583-025-0346-7
      陈烨, 孙治雷, 吴能友,等,2022. 海洋沉积物中甲烷代谢微生物的研究进展. 海洋地质与第四纪地质, 42, 82-92.
      郝海燕, 赵静, 刘海生,等,2018. 海洋沉积物中芳香烃预测中国南海潮汕坳陷油气圈闭方法. 石油学报, 39, 528.
      景建恩, 赵庆献, 邓明,等,2018. 琼东南盆地天然气水合物及其成藏模式的海洋可控源电磁研究. 地球物理学报, 61, 4677-4689.
      李双林, 董贺平, 赵青芳,等,2020. 海底烃类气体渗漏实验模拟: 烃类气体含量及分子组成变化与渗漏过程重建. 海洋地质前沿, 36, 1-13.
      梁前勇, 赵静, 夏真,等,2017. 南海北部陆坡天然气水合物区海水甲烷浓度分布特征及其影响因素探讨. 地学前缘, 24, 89-101.
      牛明杨, 梁文悦 & 王风平,2018. 海洋环境中甲烷的生物转化及其对气候变化的影响. 中国科学: 地球科学, 48, 1568-1588.
      沙志彬, 梁金强, 苏丕波,等,2015. 珠江口盆地东部海域天然气水合物钻探结果及其成藏要素研究. 地学前缘, 22, 125-135.
      王旭东, 庄光超 & 冯东,2024. 海洋沉积体系甲烷生物地球化学循环的微量元素地球化学示踪研究进展. 海洋地质与第四纪地质, 44, 82-95.
      吴能友, 杨胜雄, 王宏斌,等,2009. 南海北部陆坡神狐海域天然气水合物成藏的流体运移体系. 地球物理学报, 52, 1641-1650.
      徐思南, 吴自军, 张喜林,等,2024. 海洋沉积物碳循环过程数值模型的研究进展. 地球科学, 49, 1431-1447.
      杨克红, 于晓果, 初凤友,等,2016. 南海北部甲烷渗漏系统环境变化的碳, 氧同位素记录. 地球科学, 41, 1206-1215.
      尹希杰, 周怀阳, 杨群慧,等,2008. 南海北部甲烷渗漏活动存在的证据: 近底层海水甲烷高浓度异常. 海洋学报 (中文版), 30(6): 69-75.
      尹希杰, 周怀阳, 杨群慧,等,2009. 珠江口淇澳岛海岸带沉积物中硫酸盐还原和不同形态硫的分布. 海洋学报, 32, 31-39.
      袁佳双 & 邱爽,2024. IPCC AR6相关甲烷研究进展分析及其对中国的启示. 气候变化研究进展, 20, 327-336.
      张劼, 雷怀彦, 杨鸣,等,2018. 南海北部陆坡沉积物中P-S-Fe的相互作用及其对划分硫酸盐-甲烷转换带的指示意义. 地学前缘, 25, 285-293.
      张亭亭, 梁前勇, 赵静,等,2020. 真光层海水过饱和甲烷的来源及机制探讨. 海洋地质与第四纪地质, 40, 50-59.
      赵静, 梁前勇, 尉建功,等,2020. 南海北部陆坡西部海域"海马"冷泉甲烷渗漏及其海底表征. 地球化学, 108-118.
    • 加载中
    计量
    • 文章访问数:  102
    • HTML全文浏览量:  2
    • PDF下载量:  8
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-09-23
    • 网络出版日期:  2026-01-05

    目录

      /

      返回文章
      返回