• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    鞠玮, 肖宇航, 田永净, 王玫珠, 马立民, 吴春龙, 曾碧涛, 赵宇峰, 丛彭, 卢海兵, 杨焦生, 程家耀, 袁航, 2026. 深部煤层气储层地质力学研究与进展. 地球科学. doi: 10.3799/dqkx.2025.294
    引用本文: 鞠玮, 肖宇航, 田永净, 王玫珠, 马立民, 吴春龙, 曾碧涛, 赵宇峰, 丛彭, 卢海兵, 杨焦生, 程家耀, 袁航, 2026. 深部煤层气储层地质力学研究与进展. 地球科学. doi: 10.3799/dqkx.2025.294
    Ju Wei, Xiao Yuhang, Tian Yongjing, Wang Meizhu, Ma Limin, Wu Chunlong, Zeng Bitao, Zhao Yufeng, Cong Peng, Lu Haibing, Yang Jiaosheng, Cheng Jiayao, Yuan Hang, 2026. Study and progress of reservoir geomechanics within deep coalbed methane. Earth Science. doi: 10.3799/dqkx.2025.294
    Citation: Ju Wei, Xiao Yuhang, Tian Yongjing, Wang Meizhu, Ma Limin, Wu Chunlong, Zeng Bitao, Zhao Yufeng, Cong Peng, Lu Haibing, Yang Jiaosheng, Cheng Jiayao, Yuan Hang, 2026. Study and progress of reservoir geomechanics within deep coalbed methane. Earth Science. doi: 10.3799/dqkx.2025.294

    深部煤层气储层地质力学研究与进展

    doi: 10.3799/dqkx.2025.294
    基金项目: 

    国家自然科学基金面上项目(42372185)、中国石油天然气股份有限公司基础性前瞻性科技项目(2024DJ23)、江苏高校“青蓝工程”优秀青年骨干教师培育项目和中央高校基本科研业务费专项资金资助(2025ZDPY10)联合资助

    详细信息
      作者简介:

      鞠玮(1988—),男,山东临沂人,博士,教授,博士生导师,主要从事油气储层地质力学领域研究与教学工作。E-mail:wju@cumt.edu.cn。ORCID: 0000-0002-4095-0946

      通讯作者:

      肖宇航(1990-),男,湖南衡阳人,博士,高级工程师,主要从事煤层气等非常规油气勘探开发工作。E-mail:yjy_xyh@petrochina.com.cn

    • 中图分类号: P55;TE12

    Study and progress of reservoir geomechanics within deep coalbed methane

    • 摘要: 深部煤层气资源潜力巨大,是中国非常规天然气未来规模性增储上产的重要领域。储层地质力学在深部煤层气勘探开发过程中起到至关重要的作用,是实现效益开发的关键支撑。为查明深部煤层气储层地质力学研究现状与进展,论文在深部煤层气储层地质力学特性、关键技术分析基础上,探讨未来发展方向。结果显示:(1)深部“三高”(高地温、高地应力、高流体压力)地质环境主导控制煤岩力学行为变化,是从浅部脆性向深部脆-延性乃至延性转变的关键因素,是造成储层低孔-特低渗、强非均质性和各向异性的核心研究挑战,开展考虑深部“三高”环境与裂缝非均质发育特征的流-固-热耦合分析是深部煤层气储层地质力学分析的重要研究内容;(2)基于多数据融合的原位地应力场精细反演、基于CT/深度学习算法的数字裂缝网络模型构建、多场耦合数值模拟是深部煤层气储层地质力学研究的重要技术方法,智能化和实时监测是深部煤层气开发降本增效的关键技术;(3)未来深部煤层气地质研究应当突破传统单一学科界限,重点发展融合地质力学-渗流-经济性的多目标协同优化算法,构建起数字孪生系统,实现深部煤层气安全、高效与经济开发。

       

    • Abrar, S.W., Mendhe, V.A., Kamble, A., et al., 2025. Cleat and Fracture Systems in Coal with Implications for Strength, Hydrofracking, and Gas–Water Flow Mechanisms: A Critical Review. ACS Omega, 10(28): 29909-29928.
      Ai, C., Li, X. X., Zhang, J., et al., 2018. Experimental Investigation of Propagation Mechanisms and Fracture Morphology for Coalbed Methane Reservoirs. Petroleum Science, 15(4): 815-829.
      Aston, M. S., Alberty, M. W., Mclean, M. R., et al., 2004. Drilling Fluids for Wellbore Strengthening. IADC/SPE, 87130.
      Cai, X., Li, D., Zhang, D., 2022. Methane Adsorption and Desorption on a Deep Shale Matrix Under Simulative Reservoir Temperature and Pressure. Energy and Fuels, 36(19): 11888-11902.
      Chang, C., Li, S., Tang, D. Z., et al., 2023. In-situ Stress Calculation for Coal Reservoirs Based on Log Parameters: A Case Study of the Southern Yanchuan Block. Coal Geology and Exploration, 51(5): 23-32 (in Chinese with English abstract).
      Chen, G., Qin, Y., Hu, Z.Q., 2016. Characteristics of Reservoir Assemblage of Deep CBM-bearing System in Baijiahai Dome of Junggar Basin. Journal of China Coal Society, 41(1): 80-86 (in Chinese with English abstract).
      Chen, J. X., Yang, R. Y., Qin, X. Z., et al., 2024. Mechanism of Stress-Permeability Evolution in Fan-Shaped Cavity Completion of Coalbed Methane Horizontal Wells. Natural Gas Industry, 44(3): 184-198 (in Chinese with English abstract).
      Chen, J. H., Chen, X. D., Li, J., et al., 2022. Optical-Fiber Monitoring Technology for Production Profile of Coalbed Methane Horizontal Well. China Coalbed Methane, 19(5): 27-31 (in Chinese with English abstract).
      Chen, M., 2025. A DEM-DFN Method for Assessing Mining-Induced Continuous Fracturing and Fracture Connectivity in Rock Masses. Rock Mechanics and Rock Engineering, https://doi.org/10.1007/s00603-025-04658-7.
      Chen, M., Zhou, J., Jin, Y., et al., 2008. Experimental Study on Fracturing Features in Naturally Fractured Reservoir. Acta Petrolei Sinica, (3): 431-434 (in Chinese with English abstract).
      Cheng, G., Deng, B., Liu, Y., et al., 2020. Experimental Investigation on the Feasibility and Efficiency of Shear-Fracturing Stimulation for Enhancing Coal Seam Permeability. Journal of Natural Gas Science and Engineering, 81: 103381.
      Cheng, H., Zhao, H., Xie, X., 2024. Deformation Characteristics and Layout Optimization of Roadway in Complex Jointed Rock Mass: A Case Study Based on Discrete Element Method. Computational Particle Mechanics, 11(4): 1735-1754.
      Cui, C., Li, H. Y., Liu, Y. Q., et al., 2018. Experiment Effect Study of Equivalent Confining Pressure on Mechanical Properties of Coal and Rock Under Condition of True Three Axis. Coal Science and Technology, 46(5): 47-53 (in Chinese with English abstract).
      Dong, H., Luo, B., Dang, C., et al., 2024. Quantitative Characterization of the Carbonate Rock Microstructure Considering Topological Features: A Case Study From the Gaoshiti–Moxi Block of the Sichuan Basin. Frontiers in Earth Science, 12: 1375637.
      Duan, Y. Q., Yang, Z. Z., Mei, Y. G., et al., 2015. The Research of Coalbed Fracturing Fracture Simulation Based on DEM. Petrochemical Industry Application, 34(9): 7-12, 22(in Chinese with English abstract).
      Fossen, H., 2016. Structural Geology (second edition). Cambridge: Cambridge University Press, 1−524.
      Gao, X. D., Sun, H., Wang, Y. B., et al., 2022. In-Situ Stress Field of Deep Coal Reservoir in Linxing Area and Its Control on Fracturing Crack. Coal Science and Technology, 50(8): 140-150 (in Chinese with English abstract).
      Gentzis, T., 2011. A Stability Analysis of Two Horizontal CBM Wells in the Deep Mannville Coals, Alberta Basin, Canada. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 33(24): 2281-2290.
      Gong, D. G., Qu, Z. Q., Guo, T. K., et al., 2016. Variation Rules of Fracture Initiation Pressure and Fracture Starting Point of Hydraulic Fracture in Radial Well. Journal of Petroleum Science and Engineering, 140: 41-56.
      Gong, F., Zou, G., Zhang, Z., et al., 2024. An Anisotropic Rock Physics Modeling for the Coalbed Methane Reservoirs and Its Applications in Anisotropy Parameter Prediction. Journal of Applied Geophysics, 225: 105381.
      Gong, S., Zhang, H. S., Sun, S. Y., et al., 2025. Anisotropic Evolution Characteristics of Fracture Toughness and Strain Localization of Qinshui Coal Under the Action of Acid-Based Fracturing Fluid. Journal of China Coal Society, https://doi.org/10.13225/j.cnki.jccs.2025.0400 (in Chinese with English abstract).
      Guo, G.S., Liu, Y.H., Lyu, Y.M., et al., 2015. Preliminary Exploration and Development Prospects on Deep Coalbed Methane in China. Clean Coal Technology, 21(1): 125-128 (in Chinese with English abstract).
      Guo, P., Cheng, Y., 2013. Permeability Prediction in Deep Coal Seam: A Case Study on the No. 3 Coal Seam of the Southern Qinshui Basin in China. The Scientific World Journal, (1): 161457.
      Han, F., Zhang, H., Rui, J., et al., 2020. Multiple Point Geostatistical Simulation With Adaptive Filter Derived From Neural Network for Sedimentary Facies Classification. Marine and Petroleum Geology, 118: 104406.
      Han, W. L., Li, Y., Wang, L., et al., 2024. Fracturing Fracture Propagation Law of Coal Seam and Its Influencing Factors in the Shizhuang North Block. Coal Science and Technology, 52(S1): 127-136 (in Chinese with English abstract).
      He, H., Wang, K., Pan, J., et al., 2022. Characteristics of Coal Porosity Changes Before and After Triaxial Compression Shear Deformation Under Different Confining Pressures. ACS Omega, 7(19): 16728-16739.
      He, M. C., 2021. Research Progress of Deep Shaft Construction Mechanics. Journal of China Coal Society, 46(3): 726-746 (in Chinese with English abstract).
      He, Q., Suorineni, F. T., Ma, T., et al., 2017. Effect of Discontinuity Stress Shadows on Hydraulic Fracture Re-Orientation. International Journal of Rock Mechanics and Mining Sciences, 91: 179-194.
      He, X. P., Xiao, C., Gao, Q. Y., et al., 2025. Geological Characteristics and Key Technologies for Exploration and Development of the Yanchuannan Coalbed Methane Field, Ordos Basin. Coal Geology and Exploration, 53(3): 54-71 (in Chinese with English abstract).
      Hou, C.L., Jiang, B., Li, M., et al., 2025. Mechanical and Molecular Structure Essence of Deformation Differences in Organic Macerals of Tectonically Deformed Coal. Journal of China Coal Society,50(3): 1633-1646 (in Chinese with English abstract).
      Hou, L.L., Liu, X.J., Liang, L.X., et al., 2020. Investigation of Coal and Rock Geo-mechanical Properties Evaluation based on the Fracture Complexity and Wave Velocity. Journal of Natural Gas Science and Engineering, 75: 103133.
      Hu, Q. J., Liu, C. C., Zhang, J. G., et al., 2025. Machine Learning-Based Coalbed Methane Well Production Prediction and Fracturing Parameter Optimization. Petroleum Reservoir Evaluation and Development, 15(2): 266-273, 299 (in Chinese with English abstract).
      Huang, L., Xiong, X. Y., Wang, F., et al., 2024. A New Method for Determining Factors Influencing Productivity of Deep Coalbed Methane Vertical Cluster Wells. Petroleum Reservoir Evaluation and Development, 14(6): 990-996 (in Chinese with English abstract).
      Huang, S., Lu, Y., Ge, Z., et al., 2025. Influence of Anisotropy on the Fracture Pattern and Damage Mechanism of Coal Subjected to Drilling Under Preloaded Triaxial Stress Conditions. Energy and Fuels, 39(2): 1091-1105.
      Huangfu, Z.H., Lyu, W.Y., Tang, Y.H., et al., 2024. Present-day in-situ Stress Calculation by Conventional Logs of Deep Coalbed Methane Reservoirs: A Case Study in the Deep Coal Reservoir of the Benxi Formation in Daning-Jixian Area, Ordos Basin. Chinese Journal of Geology, 59(6): 1662-1674 (in Chinese with English abstract).
      Huo, C., Guo, H. X., Wang, L., et al., 2025. Research Progress of Deep Coalbed Methane Exploration and Development in China Under the Dual Carbon Background. Science Technology and Engineering, 25(14): 5705-5720 (in Chinese with English abstract).
      Jiang, W., Guan, B. S., Li, Y., et al., 2017. A New Water Soluble Temporary Plugging Agent and Its Temporary Plugging and Diverting Effects in Re-Fracturing. Drilling Fluid and Completion Fluid, 34(6): 100-104 (in Chinese with English abstract).
      Ju, W., Tao, S., Yang, Z.B., et al., 2025. Current Status and Development Trends of Deep Coalbed Methane Research in China. Petroleum Geology and Experiment, 47(1): 9-16 (in Chinese with English abstract).
      Ju, W., Wang, S. Y., Jiang, B., et al., 2022. Characteristics of Present-Day In-Situ Stress Field and the Permian Coal Reservoir Permeability in the Eastern Yunnan and Western Guizhou Regions. Coal Science and Technology, 50(2): 179-186 (in Chinese with English abstract).
      Košek, F., Dudák, J., Tymlová, V., et al., 2024. Evaluation of Pore-Fracture Microstructure of Gypsum Rock Fragments Using Micro-CT. Micron, 181: 103633.
      Lan, T.W., Liu, Y.H., Wang, F.P., et al., 2025. Study on Failure Mechanism and Energy Dissipation Law of Single Fissured Coal in Different Tectonic Stress Areas. Scientific Reports, 15: 6369.
      Li, G. X., Zhang, B., Zhang, J. F., et al., 2025. Major Basic Scientific Issues and Research Directions for Exploration and Development of Deep Coal-Rock Gas in China. Acta Petrolei Sinica, 46(6): 1025-1036 (in Chinese with English abstract).
      Li, S., Qin, Y., Tang, D., et al., 2023. A Comprehensive Review of Deep Coalbed Methane and Recent Developments in China. International Journal of Coal Geology, 279: 104369.
      Li, S., Tang, D. Z., Xu, H., et al., 2016. Progress in Geological Researches on the Deep Coalbed Methane Reservoirs. Earth Science Frontiers, 23(3): 10-16 (in Chinese with English abstract).
      Li, W., Yao, H. F., Liu, H. F., et al., 2014. Advanced Characterization of Three-Dimensional Pores in Coals with Different Coal-Body Structure by Micro-CT. Journal of China Coal Society, 39(6): 1127-1132 (in Chinese with English abstract).
      Li, Y., Yao, F., Wen, D. W., et al., 2005. The Development and Prospects of Refracturing Technology. Journal of Oil and Gas Technology, (S5): 789-791 (in Chinese with English abstract).
      Li, Y., Xu, F. Y., Tang, S. H., et al., 2024a. Progress and Development Direction of Coalbed Methane (Coal-Rock Gas) Exploration and Development in the Ordos Basin. Natural Gas Industry, 44(10): 63-79 (in Chinese with English abstract).
      Li, Y., Xu, L. F., Liu, Y., et al., 2024b. Occurrence Mechanism, Environment and Dynamic Evolution of Gas and Water in Deep Coal Seams. Coal Geology and Exploration, 52(2): 40-51 (in Chinese with English abstract).
      Li, Z. Q., Xian, X. F., Long, Q. M., et al., 2009. Experiment Study of Coal Permeability Under Different Temperature and Stress. Journal of China University of Mining and Technology, 38(4): 523-527 (in Chinese with English abstract).
      Liang, Y. H., Yang, Z. B., Chen, H. Q., et al., 2025. Evaluation and Fracture Optimization Scheme of Deep Coal Reservoirs in Baijiahai Bulge-Example of CaiMei-2-004H Well. Coal Science and Technology, https://link.cnki.net/urlid/11.2402.TD.20250427.1600.003 (in Chinese with English abstract).
      Liang, Z. F., Liu, C. S., Zhen, H. B., et al., 2022. Optimization and Field Application of Secondary Stimulation Technologies for Coalbed Methane Wells in Hancheng Block. Petroleum Drilling Techniques, 50(3): 92-98 (in Chinese with English abstract).
      Liu, H. L., Zhou, C. N., Yin, S., et al., 2024. Formation, Distribution, Sweet Spot Evaluation and Development Prospect of Coal-Measure Gas in China. Natural Gas Industry, 44(10): 1-21 (in Chinese with English abstract).
      Liu, J., Fokker, P. A., Spiers, C. J., 2017. Coupling of Swelling, Internal Stress Evolution, and Diffusion in Coal Matrix Material During Exposure to Methane. Journal of Geophysical Research: Solid Earth, 122(2): 844-865.
      Liu, J., Huang, C., Zhou, L., et al., 2024. Estimation of the Rock Mechanics and In-Situ Stress Parameters of Carbonate Reservoirs Using Array Sonic Logging: A Case Study of Shunbei No.4 Block. Journal of Geomechanics, 30(3): 394-407 (in Chinese with English abstract).
      Liu, J., Spiers, C. J., Peach, C. J., et al., 2016. Effect of Lithostatic Stress on Methane Sorption by Coal: Theory vs. Experiment and Implications for Predicting In-Situ Coalbed Methane Content. International Journal of Coal Geology, 167: 48-64.
      Liu, Q. S., Xu, X. C., 2000. Damage Analysis of Brittle Rock at High Temperature. Chinese Journal of Rock Mechanics and Engineering, (4): 408-411 (in Chinese with English abstract).
      Liu, W. L., Han, D. K., 2022. Digital Twin System of Oil and Gas Reservoirs: A New Direction for Smart Oil and Gas Field Construction. Acta Petrolei Sinica, 43(10): 1450-1461 (in Chinese with English abstract).
      Liu, Y., Tang, D., Xu, H., et al., 2022. Effect of Interlayer Mechanical Properties on Initiation and Propagation of Hydraulic Fracturing in Laminated Coal Reservoirs. Journal of Petroleum Science and Engineering, 208: 109381.
      Liu, Y.J, Zhu, H.Y., Tang, X.H., et al., 2022. Four-dimensional in-situ Stress Model of CBM Reservoirs based on Geology-Engineering Integration. Natural Gas Industry, 42(2): 82-92 (in Chinese with English abstract).
      Liu, Y. C., Zhang, L., Pan, J. Z., et al., 2025. Research Status and Prospect of Coalbed Methane Intelligent Extraction in China. Coal Science and Technology, 53(S1): 223-232 (in Chinese with English abstract).
      Ma, Z. G., Mao, X. B., Li, Y. S., et al., 2005. Experimental Study on the Influence of Temperature on the Mechanical Properties of Coal. Journal of Mining and Safety Engineering, (3): 46-48 (in Chinese with English abstract).
      Mahmoudi, S., Asghari, O., Boisvert, J., 2025. Addressing Class Imbalance in Micro-CT Image Segmentation: A Modified U-Net Model With Pixel-Level Class Weighting. Computers and Geosciences, 196: 105853.
      Mao, Z., Wang, E., Liu, Q., et al., 2025. Vibration-Enhanced Coalbed Methane Recovery: Coupled Vibration-Thermo-Hydro-Mechanical Modeling. Gas Science and Engineering, 139: 205634.
      Meng, Z. P., Tian, Y. D., Li, G. F., et al., 2010. Characteristics of In-Situ Stress Field in Southern Qinshui Basin and Its Research Significance. Journal of China Coal Society, 35(6): 975-981 (in Chinese with English abstract).
      Meng, Z. P., Yu, Y. N., Li, G. F., et al., 2023. Geothermal Field Condition of Coal Reservoir and Its Genetic Mechanism of Low Geothermal Anomaly Area in the Qinshui Basin. Journal of China Coal Society, 48(1): 307-316 (in Chinese with English abstract).
      Mi, H.G., Wu, J., Peng, W.C., et al., 2024. Mechanical Characteristics and Fracture Propagation Mechanism of Deep Coal Reservoirs in the Shenfu Block. Coal Geology and Exploration, 52(8): 32-43 (in Chinese with English abstract).
      Ming, Y., Sun, H.F., Tang, D.Z., et al., 2024. Potential for the Production of Deep to Ultradeep Coalbed Methane Resources in the Upper Permian Longtan Formation, Sichuan Basin. Coal Geology and Exploration, 52(2): 102-112 (in Chinese with English abstract).
      Ni, X. M., Yang, Y. H., Ye, J. P., et al., 2016. Study on Comprehensively Selecting Wells by Repeated Hydraulic Fracturing in Single Coal Seam. Safety in Coal Mines, 47(2): 170-174 (in Chinese with English abstract).
      Ni, X. M., Zhu, M. Y., Su, X. B., et al., 2012. Study on Methods of Repeated Hydraulic Fracturing Comprehensive Evaluation About CBM Vertical Wells. Journal of Henan Polytechnic University (Natural Science), 31(1): 39-43 (in Chinese with English abstract).
      Ning, W. D., Chen, J. H., Li, J., et al., 2024. Application of Long-Term Fiber Optic Monitoring Technology in Coalbed Methane Development. China Coalbed Methane, 21(4): 38-42 (in Chinese with English abstract).
      Niu, R., Liu, D., Huo, Z. D., et al., 2024. In-Situ Stress and Fracture Pressure of Coal Reservoir in Shizhuangnan Block and Their Coupling Relations. Safety in Coal Mines, 55(4): 11-18 (in Chinese with English abstract).
      Paul, S., Chatterjee, R., 2011. Determination of In-Situ Stress Direction From Cleat Orientation Mapping for Coal Bed Methane Exploration in South-Eastern Part of Jharia Coalfield, India. International Journal of Coal Geology, 87(2): 87-96.
      Peng, W. C., Mi, H. G., Xu, L. F., et al., 2025. Fracability Evaluation and Classification of Deep Coal Reservoirs in the Shenfu Block. Science and Technology, 53(3): 238-247 (in Chinese with English abstract).
      Qin, Y., 2021. Strategic Thinking on Research of Coal Measure Gas Accumulation System and Development Geology. Journal of China Coal Society, 46(8): 2387-2399 (in Chinese with English abstract).
      Qin, Y., 2023. Progress on Geological Research of Deep Coalbed Methane in China. Acta Petrolei Sinica, 44(11): 1791-1811 (in Chinese with English abstract).
      Qin, Y., Moore, T.A., Shen, J., et al., 2018. Resources and Geology of Coalbed Methane in China: A review. International Journal of Geological Review, 60: 777-812.
      Qin, Y., Shen, J., 2016. On the Fundamental Issues of Deep Coalbed Methane Geology. Acta Petrolei Sinica, 37(1): 125-136 (in Chinese with English abstract).
      Qin, Y., Shen, J., Shi, R., 2022. Strategic Value and Choice on Construction of Large CMG Industry in China. Journal of China Coal Society, 47(1): 371-387 (in Chinese with English abstract).
      Qin, Y., Shen, J., Wang, B. W., et al., 2012. Accumulation Effects and Coupling Relationship of Deep Coalbed Methane. Acta Petrolei Sinica, 33(1): 48-54 (in Chinese with English abstract).
      Rajabi, M., Tingay, M., King, R., et al., 2017. Present-day Stress Orientation in the Clarence-Moreton Basin of New South Wales, Australia: A New High Density Dataset Reveals Local Stress Rotations. Basin Research, 29: 622-640.
      Salmachi, A., Rajabi, M., Wainman, C., et al., 2021. History, Geology, in Situ Stress Pattern, Gas Content and Permeability of Coal Seam Gas Basins in Australia: A Review. Energies, 14(9): 2651.
      Sang, S. X., Zheng, S. J., Wang, J. G., et al., 2023. Application of New Rock Mechanical Stratigraphy in Sweet Spot Prediction for Deep Coalbed Methane Exploration and Development. Acta Petrolei Sinica, 44(11): 1840-1853 (in Chinese with English abstract).
      Santos, L., Dahi Taleghani, A., Li, G., 2018. Expandable Proppants to Moderate Production Drop in Hydraulically Fractured Wells. Journal of Natural Gas Science and Engineering, 55: 182-190.
      Scholtès, L., Donzé, F. V., 2012. Modelling Progressive Failure in Fractured Rock Masses Using a 3D Discrete Element Method. International Journal of Rock Mechanics and Mining Sciences, 52: 18-30.
      Shan, P., Li, W., Lai, X., et al., 2023. Research on the Response Mechanism of Coal Rock Mass Under Stress and Pressure. Materials, 16(8): 3235.
      Shen, J., 2021. Prediction of Deep Coalbed Methane Resources in Major Basins [R]. China University of Mining and Technology, Xuzhou (in Chinese).
      Shen, J., Qin, Y., Fu, X. H., et al., 2014. Properties of Deep Coalbed Methane Reservoir-Forming Conditions and Critical Depth Discussion. Natural Gas Geoscience, 25(09): 1470-1476 (in Chinese with English abstract).
      Shen, R., Wang, X., Gu, Z., et al., 2024. Analysis of the Dynamic Impact Behavior and Fracture Mechanism of Coal Samples at Various Temperatures. Engineering Fracture Mechanics, 310: 110481.
      Singh, V. K., 2014. Assessment of Sudden Permeability Uptick With Depletion in Coalbed Reservoirs . Southern Ilinois University.
      Song, H. B., An, H. L., Liu, S. X., et al., 2021. Controlling Geological Factors and Coalbed Methane Enrichment Areas in Southern Wuxiang Block, Qinshui Basin. Journal of China Coal Society, 46(12): 3974-3987 (in Chinese with English abstract).
      Su, X. B., Wang, Q., Yu, S. Y., et al., 2023. Integrated Development Technology Path for Deep Coal Measure Gas Based on Low-Negative Carbon Emission Reduction. Acta Petrolei Sinica, 44(11): 1931-1948 (in Chinese with English abstract).
      Tan, Y., Wang, S., Rijken, M. C. M., et al., 2021. Geomechanical Template for Distributed Acoustic Sensing Strain Patterns During Hydraulic Fracturing. SPE Journal, 26(02): 627-638.
      Tang, S. H., Xi, Z. D., Zhang, S. H., et al., 2025. Occurrence Phase and Gas-Bearing Evolution of Deep Coalbed Methane. Coal Science and Technology, 53(3): 91-100 (in Chinese with English abstract).
      Tang, X. H., Zhu, H. Y., Li, K. D., 2023. A FEM-DFN-Based Complex Fracture Staggered Propagation Model for Hydraulic Fracturing of Shale Gas Reservoirs. Natural Gas Industry, 43(1): 162-176 (in Chinese with English abstract).
      Tang, Z. T., Liu, J. S., Yan, X., et al., 2024. The Control Mechanism of Deep Coal Rock Microstructure on In Situ Stress. Earth Science Frontiers, 31(5): 344-357 (in Chinese with English abstract).
      Tao, C., Li, Y., Wang, Y., et al., 2023. Characteristics of Deep Coal Reservoir and Key Control Factors of Coalbed Methane Accumulation in Linxing Area. Energies, 16(16): 6085.
      Tian, W.G., Deng, Z., Zhang, Z., et al., 2025. Dynamic Evolution Laws of Free Gas and Adsorbed Gas in Deep Coal Reservoirs and Its Geological Controls: A Case Study of the Daning-Jixian Block, Ordos Basin. Earth Science, https://link.cnki.net/urlid/42.1874.P.20251016.1703.004 (in Chinese with English abstract).
      Tian, Y., Wang, D., Xia, J., et al., 2025. Digital Rock Modeling of Deformed Multi-Scale Media in Deep Hydrocarbon Reservoirs Based on In-Situ Stress-Loading CT Imaging and U-Net Deep Learning. Marine and Petroleum Geology, 171: 107177.
      Tong, S. K., Gao, D. L., 2019. Basic Research Progress and Development Suggestions on Hydraulic Fracturing. Oil Drilling and Production Technology, 41(1): 101-115 (in Chinese with English abstract).
      Wan, Y., Wang, Z., Hu, D., et al., 2024. Gas-Bearing Evaluation of Deep Coal Rock in the Yan’an Gas Field of the Ordos Basin. Frontiers in Earth Science, 12: 1438834.
      Wang, C. W., Feng, Y. Q., Yang, H. X., 2018. Potential-Tapping Technology and Its Application in Old CBM Wells in Hancheng Block of Ordos Basin. Coal Geology and Exploration, 46(5): 212-218 (in Chinese with English abstract).
      Wang, G., Chen, H., Chen, X. C., et al., 2024. Study on Seepage Characteristics of Coal Fissures with Variable Apertures Based on CT 3D Reconstruction. Journal of China University of Mining and Technology, 53(1): 59-67 (in Chinese with English abstract).
      Wang, G. Z., Zhao, X. T., Wang, G. J., 2016. Experimental Research on Mechanical Behavior of Coal Sample with Thermo-Mechanical Coupling Effect. China Coal, 42(4): 90-93, 111 (in Chinese with English abstract).
      Wang, L. J., Zhou, H. W., Rong, T. L., et al., 2018. Research on Experimental and Nonlinear Creep Constitutive Model of Coal at Depth. Journal of China Coal Society, 43(8): 2196-2202 (in Chinese with English abstract).
      Wang, R., Zhou, Y., Jia, G. L., et al., 2025. Comparative Analysis of Deep Coalbed Methane Reservoirs, Production Characteristics, and Gas-Bearing Property Evaluation. Unconventional Oil and Gas, 12(3): 45-54 (in Chinese with English abstract).
      Wang, S.G., Jin, Y., Tan, P., et al., 2022. Experimental Investigation on Hydraulic Facture Propagation of Coal Shale Reservoirs under Multi-gas Co-production. Chinese Journal of Geotechnical Engineering, 44(12): 2290-2296 (in Chinese with English abstract).
      Wei, X., Huang, W., Liu, L., et al., 2024. Low-Rank Coalbed Methane Production Capacity Prediction Method Based on Time-Series Deep Learning. Energy, 311: 133247.
      Wen, H., Yan, L., Jin, Y., et al., 2023. Coalbed Methane Concentration Prediction and Early-Warning in Fully Mechanized Mining Face Based on Deep Learning. Energy, 264: 126208.
      Weng, X., 2015. Modeling of Complex Hydraulic Fractures in Naturally Fractured Formation. Journal of Unconventional Oil and Gas Resources, 9: 114-135.
      Wu, D., Li, B., Wu, J., et al., 2023. Influence of Mineral Composition on Rock Mechanics Properties and Brittleness Evaluation of Surrounding Rocks in Soft Coal Seams. ACS Omega, 9(1): 1375-1388.
      Wu, Y., Liu, J., Elsworth, D., et al., 2010. Development of Anisotropic Permeability During Coalbed Methane Production. Journal of Natural Gas Science and Engineering, 2(4): 197-210.
      Xiao, Z. Y., Wang, G., Liu, J., et al., 2024. A Permeability Model of Water-Bearing Coal Seams Under Thermo-Hydro-Mechanical Coupling Effect and Its Application. Chinese Journal of Rock Mechanics and Engineering, 43(12): 3044-3057 (in Chinese with English abstract).
      Xie, H. P., 2019. Research Review of the State Key Research Development Program of China: Deep Rock Mechanics and Mining Theory. Journal of China Coal Society, 44(5): 1283-1305 (in Chinese with English abstract).
      Xu, F. Y., Nie, Z. H., Sun, W., et al., 2024. Theoretical and Technological System for Highly Efficient Development of Deep Coalbed Methane in the Eastern Edge of Erdos Basin. Journal of China Coal Society, 49(1): 528-544 (in Chinese with English abstract).
      Xu, F. Y., Xiao, Z. H., Chen, D., et al., 2019. Current Status and Development Direction of Coalbed Methane Exploration Technology in China. Coal Science and Technology, 47(10): 205-215 (in Chinese with English abstract).
      Xu, F. Y., Xiong, X. Y., Hou, W., et al., 2025a. Upgrading of Deep Coalbed Methane Industry and Establishment of the “Eight-in-One” System. Acta Petrolei Sinica, 46(2): 289-305 (in Chinese with English abstract).
      Xu, F. Y., Zhen, H. B., Li, S. G., et al., 2025b. History and Development Direction of Iterative Upgrading of Deep Coalbed Methane Reservoir Reconstruction Technology:Taking the Daji Block in the Eastern Margin of the Ordos Basin as an Example. Coal Science and Technology, 53(03): 1-18 (in Chinese with English abstract).
      Xu, F., Hou, W., Xiong, X., et al., 2023. The Status and Development Strategy of Coalbed Methane Industry in China. Petroleum Exploration and Development, 50(4): 765-783.
      Xu, L. F., Bai, Y. H., Xu, B. X., et al., 2025. Characteristics and Control Modes of Geothermal Fields in Deep Coal Reservoirs in the Linxing-Shenfu Block. Coal Geology and Exploration, 53(5): 81-92 (in Chinese with English abstract).
      Yan, R.C., Li, X.W., Li, X.D., et al., 2025. Enrichment Patterns and Favorable Area Evaluation of Deep Coalbed Methane in Carboniferous-Permian Residual Faulted Basins of Jizhong Depression. Earth Science, https://link.cnki.net/urlid/42.1874.p.20251017.0911.002 (in Chinese with English abstract).
      Yan, X., Xiong, X. Y., Xu, F. Y., et al., 2025. Deep Coal Geomechanical Influence Mechanism and Its Control Factors of Daji Block in Ordos Basin. Journal of China Coal Society, 50(5): 2550-2566 (in Chinese with English abstract).
      Yan, X., Xu, F. Y., Nie, Z. H., et al., 2021. Microstructure Characteristics of Daji Area in East Ordos Basin and Its Control Over the High Yield Dessert of CBM. Journal of China Coal Society, 46(8): 2426-2439 (in Chinese with English abstract).
      Yang, G. W., Bai, J. W., Chi, X. M., et al., 2014. Study on Performance and Surface Modification of the Degradable Fiber Plugging Agent Hydraulic Fracturing. Applied Chemical Industry, 43(8): 1431-1434, 1436 (in Chinese with English abstract).
      Yang, W., Wang, L., Wang, H., et al., 2023. Ultrasonic-Assisted Coalbed Methane Recovery: A Coupled Acoustic-Thermal-Mechanical-Hydrological Model. Energy and Fuels, 37(6): 4293-4307.
      Yang, Y. J., Song, Y., Chen, S. J., et al., 2006. Test Study of Coal's Strength and Deformation Characteristics Under Triaxial Compression. Journal of China Coal Society, (2): 150-153 (in Chinese with English abstract).
      Yang, Z. Z., Yang, C. X., Li, X. G., et al., 2020. Multiple Fracturing Well Selection of Coalbed Methane Wells Based on Technique for Order Preference by Similarity to Ideal Solution Method of Gray Correlation: Taking the Case of Qinshui Basin Shizhuang South Block as an Examples. Science Technology and Engineering, 20(12): 4680-4686 (in Chinese with English abstract).
      Yang, Z.Z., Zhang, D., Yi, L.P., et al., 2021. Longitudinal Propagation Model of Hydraulic Fracture and Numerical Simulation in Multi-layer Superimposed Coalbed. Journal of China Coal Society, 46(10): 3268-3277 (in Chinese with English abstract).
      Yao, J., Liu, Q., Liu, W., et al., 2020. 3D Reservoir Geological Modeling Algorithm Based on a Deep Feedforward Neural Network: A Case Study of the Delta Reservoir of Upper Urho Formation in the X Area of Karamay, Xinjiang, China. Energies, 13(24): 6699.
      Yao, Y., Liu, D., Che, Y., et al., 2009. Non-Destructive Characterization of Coal Samples From China Using Microfocus X-Ray Computed Tomography. International Journal of Coal Geology, 80(2): 113-123.
      Yu, Y. J., Zhu, W. C., Li, L. K., et al., 2017. Analysis on Stress Shadow of Mutual Interference of Fractures in Hydraulic Fracturing Engineering. Chinese Journal of Rock Mechanics and Engineering, 36(12): 2926-2939 (in Chinese with English abstract).
      Yu, Y., Meng, Z., 2021. Geothermal Distribution Characteristics in the Qinshui Basin and Its Significance to the Production of Coalbed Methane. ACS Omega, 6(29): 18914-18927.
      Zhang, B.H., Chen, Z.R., Ai, C.Z., et al., 2018. 4D Geomechanical Modeling Technique and its Application in the Coalbed Methane Development of Shouyang Block. China Offshore Oil and Gas, 30(4): 144-151 (in Chinese with English abstract).
      Zhang, C., Hu, Q. J., Feng, S. R., et al., 2024. Key Technologies for Integration of Coalbed Methane Geology and Engineering in Southern Qinshui Basin. Safety in Coal Mines, 55(2): 19-26 (in Chinese with English abstract).
      Zhang, H. L., Liu, S. Q., Tian, Y. C., et al., 2025. Impact of CO₂-Water-Coal on Enhanced Coalbed Methane Recovery by CO₂ Injection in Huainan Coalfield. Coal Science and Technology, 53(03): 274-290 (in Chinese with English abstract).
      Zhang, M., Liu, Y. K., 2016. Study on Improving Imbibition Oil Recovery by Adding Surfactants in Fracturing Fluid. Contemporary Chemical Industry, 45(08): 1767-1769 (in Chinese with English abstract).
      Zhang, P., 2020. Study on Geomechanical Condition and Coal Reservoir Stability in Coalbed Methane Development. China University of Mining and Technology (Beijing) (in Chinese with English abstract).
      Zhang, P., Meng, Z., Jiang, S., et al., 2020. Characteristics of In-Situ Stress Distribution in Zhengzhuang Region, Southern Qinshui Basin, China and Its Stress Path During Depletion. Engineering Geology, 264: 105413.
      Zhang, S. A., Liu, X. J., Wen, Q. Z., et al., 2021. Development Situation and Trend of Stimulation and Reforming Technology of Coalbed Methane. Acta Petrolei Sinica, 42(1): 105-118 (in Chinese with English abstract).
      Zhang, S. C., Guo, T. K., Zhou, T., et al., 2014. Fracture Propagation Mechanism Experiment of Hydraulic Fracturing in Natural Shale. Acta Petrolei Sinica, 35(03): 496-503+518 (in Chinese with English abstract).
      Zhang, S. R., Sang, S. X., Wu, J., et al., 2022. Progress and Application of Key Technologies for CO₂ Enhancing Coalbed Methane. Journal of China Coal Society, 47(11): 3952-3964 (in Chinese with English abstract).
      Zhang, T.J., Ji, X., Pang, M.K., et al., 2023. Investigation of the Crack Evolution Characteristics of Coal and Rock Bodies around Boreholes during Progressive Damage based on Stress Threshold Values. Theoretical and Applied Fracture Mechanics, 125: 103935.
      Zhang, W. C., Guo, B. M., Kong, P., et al., 2022. Fracture Morphology Inversion and Effect Evaluation of CBM Refracturing in Southern Shizhuang Block. Unconventional Oil and Gas, 9(1): 119-128 (in Chinese with English abstract).
      Zhao, Q. B., 2004. Geological Features of the Coalbed Methane in China and Its New Exploration Domains. Natural Gas Industry, (5): 4-7, 143 (in Chinese with English abstract).
      Zhao, Q. B., 2011. Study on CBM Enrichment Law and Favorable Block Prediction and Evaluation. Langfang: PetroChina Exploration and Development Research Institute (in Chinese).
      Zhao, S.H., Li, Y., Liu, Y.L., et al., 2025. Study on Microscopic Pore Structures and Mechanical Properties. Petroleum Geology and Experiment, 47(1): 173-183 (in Chinese with English abstract).
      Zheng, C. S., Han, F. L., Jiang, B. Y., et al., 2024. Coal Multi-Scale Pore Fracture Variations and Permeability Sharp Increase Characteristics Induced by In-Situ Hydraulic Injection. Journal of China University of Mining and Technology, 53(4): 710-725 (in Chinese with English abstract).
      Zhou, D. H., Chen, G., Chen, Z. L., et al., 2022. Exploration and Development Progress, Key Evaluation Parameters and Prospect of Deep CBM in China. Natural Gas Industry, 42(6): 43-51 (in Chinese with English abstract).
      Zhou, J., Chen, M., Jin, Y., et al., 2008. Mechanism Study of Shearing Slippage Damage of Natural Fracture in Hydraulic Fracturing. Chinese Journal of Rock Mechanics and Engineering, 28(S1): 2637-2641 (in Chinese with English abstract).
      Zhou, L. H., Li, S. G., Zhen, H. B., et al., 2025. Engineering Controlling Factors and Prediction Model for Gas Production in Deep Coalbed Methane (Rock) Gas Wells. Drilling and Production Technology, 48(3): 101-109 (in Chinese with English abstract).
      Zhou, L., Chen, J., Gou, Y., et al., 2017. Numerical Investigation of the Time-Dependent and the Proppant Dominated Stress Shadow Effects in a Transverse Multiple Fracture System and Optimization. Energies, 10(1): 83.
      Zhou, T., Chen, M., Zhang, S. C., et al., 2020. Simulation of Fracture Propagation and Optimization of Ball-Sealer In-Stage Diversion Under the Effect of Heterogeneous Stress Field. Natural Gas Industry, 40(3): 82-91 (in Chinese with English abstract).
      Zhu, D. W., Hu, Y. L., Cui, M. Y., et al., 2020. Productivity Simulation of Hydraulically Fractured Wells Based on Hybrid Local Grid Refinement and Embedded Discrete Fracture Model. Petroleum Exploration and Development, 47(2): 341-348 (in Chinese with English abstract).
      Zhu, F., Guo, Z. D., Chen, S. B., et al., 2021. Research and Application of the Integrated Technology of Liquid Drainage and CBM Production by Coiled Tubing. China Petroleum Machinery, 49(1): 118-123 (in Chinese with English abstract).
      Zhu, J.Q., Pu, L.C., Gu, Q., et al., 2025. Distribution Patterns and Controlling Factors of Different Phase of the Deep Coalbed Methane (CBM) within the Dacheng Uplift, Jizhong Depression. Earth Science, https://link.cnki.net/urlid/42.1874.p.20251106.0819.002 (in Chinese with English abstract).
      Zhu, Q. Z., Xiong, W., Weng, D. W., et al., 2025. Theory and Practice of Energy-Focused Fracturing Development Technology. Petroleum Exploration and Development, 52(3): 665-676 (in Chinese with English abstract).
      Zhu, Y. X., Liu, J. F., 2023. Three-Dimensional Numerical Simulation for Estimating Subsidence and Stress Evolution in Coal Seams During Coalbed Methane Recovery. Chinese Journal of Rock Mechanics and Engineering, 42(S1): 3293-3308 (in Chinese with English abstract).
      Zoback, M. D., 2010. Reservoir Geomechanics. Cambridge: Cambridge University Press. pp.493.
      Zuo, J. P., Xie, H. P., Wu, A. M., et al., 2011. Investigation on Failure Mechanisms and Mechanical Behaviors of Deep Coal-Rock Single Body and Combined Body. Chinese Journal of Rock Mechanics and Engineering, 30(1): 84-92 (in Chinese with English abstract).
      附中文参考文献:
      常闯,李松,汤达祯,等,2023. 基于测井参数的煤储层地应力计算方法研究——以延川南区块为例.煤田地质与勘探,51 (5): 23-32.
      陈刚,秦勇,胡宗全,等,2016. 准噶尔盆地白家海凸起深部含煤层气系统储层组合特征. 煤炭学报,41(1): 80-86.
      陈健翔,杨睿月,秦小舟,等,2024. 煤层气水平井扇形洞穴完井应力——渗透率演化机理.天然气工业,44 (3): 184-198.
      陈金宏,陈晓冬,李剑,等,2022. 煤层气水平井产出剖面光纤监测工艺技术.中国煤层气,19 (5): 27-31.
      陈勉,周健,金衍,等,2008. 随机裂缝性储层压裂特征实验研究.石油学报,(3): 431-434.
      崔聪,李宏艳,刘永茜,等,2018. 真三轴条件下等效围压对煤岩力学特性影响试验研究.煤炭科学技术,46 (5): 47-53.
      段永强,杨兆中,梅永贵,等,2015. 基于离散元方法的煤层压裂裂缝模拟研究.石油化工应用,34 (9): 7-12, 22.
      高向东,孙昊,王延斌,等,2022. 临兴地区深部煤储层地应力场及其对压裂缝形态的控制.煤炭科学技术,50 (8): 140-150.
      龚爽,张寒松,孙世毅,等,2025. 酸基压裂液作用下沁水煤断裂韧度与应变局部化各向异性演化特征.煤炭学报,https://doi.org/10.13225/j.cnki.jccs.2025.0400.
      郭广山,柳迎红,吕玉民,2015. 中国深部煤层气勘探开发前景初探. 洁净煤技术,21(1): 125-128.
      韩文龙,李勇,王力,等,2024. 柿庄北煤层气区块煤层压裂裂缝扩展规律及影响因素.煤炭科学技术,52 (S1): 127-136.
      何满潮,2021. 深部建井力学研究进展.煤炭学报,46 (3): 726-746.
      何希鹏,肖翠,高玉巧,等,2025. 鄂尔多斯盆地延川南煤层气田地质特征及勘探开发关键技术.煤田地质与勘探,53 (3): 54-71.
      胡秋嘉,刘春春,张建国,等,2025. 基于机器学习的煤层气井产能预测与压裂参数优化.油气藏评价与开发,15 (2): 266-273, 299.
      黄力,熊先钺,王峰,等,2024. 深层煤层气直丛井产能影响因素确定新方法.油气藏评价与开发,14 (6): 990-996.
      皇甫展鸿,吕文雅,唐英航,等,2024. 深层煤层气储层现今地应力测井计算方法:以大宁-吉县地区本溪组煤层为例. 地质科学,59(6): 1662-1674.
      侯晨亮,姜波,李明,等,2025. 构造煤中有机显微组分变形差异的力学及分子结构本质. 煤炭学报,50(3): 1633-1646.
      霍超,郭海晓,王蕾,等,2025. 双碳背景下中国深部煤层气勘探开发研究进展.科学技术与工程,25 (14): 5705-5720.
      姜伟,管保山,李阳,等,2017. 新型水溶性暂堵剂在重复压裂中的暂堵转向效果.钻井液与完井液,34 (6): 100-104.
      鞠玮,陶树,杨兆彪,等,2025. 中国深部煤层气研究与勘探开发现状及其发展趋势. 石油实验地质,47(1): 9-16.
      鞠玮,王胜宇,姜波,等,2022. 滇东-黔西地区现今地应力场与二叠系煤储层渗透率特征.煤炭科学技术,50 (2): 179-186.
      李国欣,张斌,张君峰,等,2025. 中国深层煤岩气勘探开发重大基础科学问题与研究方向.石油学报,46 (6): 1025-1036.
      李松,汤达祯,许浩,等,2016. 深部煤层气储层地质研究进展.地学前缘,23 (3): 10-16.
      李伟,要惠芳,刘鸿福,等,2014. 基于显微CT的不同煤体结构煤三维孔隙精细表征.煤炭学报,39 (6): 1127-1132.
      李阳,姚飞,翁定为,等,2005. 重复压裂技术的发展及展望.石油天然气学报(江汉石油学院学报), (S5): 789-791.
      李勇,徐凤银,唐书恒,等,2024a. 鄂尔多斯盆地煤层(岩)气勘探开发进展及发展方向.天然气工业,44 (10): 63-79.
      李勇,徐立富,刘宇,等,2024b. 深部煤层气水赋存机制、环境及动态演化.煤田地质与勘探,52 (2): 40-51.
      李志强,鲜学福,隆晴明,2009. 不同温度应力条件下煤体渗透率实验研究.徐州:中国矿业大学学报,38 (4): 523-527.
      梁宇辉,杨兆彪,陈河青,等,2025. 白家海凸起深部煤储层可压性评价及压裂优化—— 以彩煤2-004H 井为例.煤炭科学技术,https://link.cnki.net/urlid/11.2402.TD.20250427.1600.003.
      梁智飞,刘长松,甄怀宾,等,2022. 韩城区块煤层气井二次改造工艺优化及现场试验.石油钻探技术,50 (3): 92-98.
      刘翰林,邹才能,尹帅,等,2024. 中国煤系气形成分布、甜点评价与展望.天然气工业,44 (10): 1-21.
      刘军,黄超,周磊,等,2024. 基于阵列声波测井估算碳酸盐岩储层岩石力学和地应力参数——以顺北4号带为例.地质力学学报,30 (3): 394-407.
      刘泉声,许锡昌,2000. 温度作用下脆性岩石的损伤分析.岩石力学与工程学报,(4): 408-411.
      刘文岭,韩大匡,2022. 数字孪生油气藏:智慧油气田建设的新方向.石油学报,43 (10): 1450-1461.
      刘英君,朱海燕,唐煊赫,等,2022. 基于地质工程一体化的煤层气储层四维地应力演化模型及规律. 天然气工业,42(2): 82-92.
      刘永成,张磊,潘建钟,等,2025. 我国煤层气智能化开发研究现状及展望.煤炭科学技术,53 (S1): 223-232.
      马占国,茅献彪,李玉寿,等,2005. 温度对煤力学特性影响的实验研究.矿山压力与顶板管理,(3): 46-48.
      孟召平,田永东,李国富,2010. 沁水盆地南部地应力场特征及其研究意义.煤炭学报,35 (6): 975-981.
      孟召平,禹艺娜,李国富,等,2023. 沁水盆地煤储层地温场条件及其低地温异常区形成机理.煤炭学报,48 (1): 307-316.
      米洪刚,吴见,彭文春,等,2024. 神府区块深部煤储层力学特性及裂缝扩展机制. 煤田地质与勘探,52(8): 32−43.
      明盈,孙豪飞,汤达祯,等,2024. 四川盆地上二叠统龙潭组深-超深部煤层气资源开发潜力. 煤田地质与勘探,52(2): 102-112.
      倪小明,杨艳辉,叶建平,2016. 单一煤层重复水力压裂综合选井研究.煤矿安全,47 (2): 170-174.
      倪小明,朱明阳,苏现波,等,2012. 煤层气垂直井重复水力压裂综合评价方法研究.河南理工大学学报(自然科学版), 31 (1): 39-43.
      宁卫东,陈金宏,李剑,等,2024. 光纤长期监测技术在煤层气开发中的应用.中国煤层气,21 (4): 38-42.
      牛然,刘度,霍中刚,等,2024. 柿庄南区块煤储层地应力和破裂压力特征及其耦合关系.煤矿安全,55 (4): 11-18.
      彭文春,米洪刚,徐立富,等,2025. 神府区块深部煤储层可压性评价方法及应用.煤炭科学技术,53 (3): 238-247.
      秦勇,2021. 煤系气聚集系统与开发地质研究战略思考.煤炭学报,46 (8): 2387-2399.
      秦勇,2023. 中国深部煤层气地质研究进展. 石油学报,44(11): 1791-1811.
      秦勇,申建,2016. 论深部煤层气基本地质问题.石油学报,37 (1): 125-136.
      秦勇,申建,史锐,2022. 中国煤系气大产业建设战略价值与战略选择.煤炭学报,47 (1): 371-387.
      秦勇,申建,王宝文,等,2012. 深部煤层气成藏效应及其耦合关系.石油学报,33 (1): 48-54.
      桑树勋,郑司建,王建国,等,2023. 岩石力学地层新方法在深部煤层气勘探开发 “甜点” 预测中的应用.石油学报,44 (11): 1840-1853.
      申建,2021. 我国主要盆地深部煤层气资源量预测[R]. 徐州:中国矿业大学.
      申建,秦勇,傅雪海,等,2014. 深部煤层气成藏条件特殊性及其临界深度探讨.天然气地球科学,25 (09): 1470-1476.
      宋慧波,安红亮,刘顺喜,等,2021. 沁水盆地武乡南煤层气赋存主控地质因素及富集区预测.煤炭学报,46 (12): 3974-3987.
      苏现波,王乾,于世耀,等,2023. 基于低负碳减排的深部煤系气一体化开发技术路径.石油学报,44 (11): 1931-1948.
      唐书恒,郗兆栋,张松航,等,2025. 深部煤层气赋存相态与含气性演化.煤炭科学技术,53 (3): 91-100.
      唐煊赫,朱海燕,李奎东,2023. 基于FEM-DFN的页岩气储层水力压裂复杂裂缝交错扩展模型.天然气工业,43 (1): 162-176.
      唐志潭,刘敬寿,闫霞,等,2024. 深层煤岩微构造对现今地应力的控制机理.地学前缘,31 (5): 344-357.
      田文广,邓泽,张政,等,2025. 深部煤储层游离气-吸附气动态演化规律及其地质控制——以鄂尔多斯盆地大宁-吉县区块为例. 地球科学,https://link.cnki.net/urlid/42.1874.P.20251016.1703.004.
      仝少凯,高德利,2019. 水力压裂基础研究进展及发展建议.石油钻采工艺,41 (1): 101-115.
      王成旺,冯延青,杨海星,等,2018. 鄂尔多斯盆地韩城区块煤层气老井挖潜技术及应用.煤田地质与勘探,46 (5): 212-218.
      王刚,陈昊,陈雪畅,等,2024. 基于CT三维重构煤体变开度裂缝渗流特性研究.中国矿业大学学报,53 (1): 59-67.
      王公忠,赵新涛,王国际,2016. 热力耦合作用下煤样力学行为影响的试验研究.中国煤炭,42 (4): 90-93, 111.
      王路军,周宏伟,荣腾龙,等,2018. 深部煤体非线性蠕变本构模型及实验研究.煤炭学报,43 (8): 2196-2202.
      王瑞,周毅,贾光亮,等,2025. 深部煤层气储层及生产特征与含气性评价对比分析.非常规油气,12 (3): 45-54.
      王士国,金衍,谭鹏,等,2022. 煤系页岩储层多气共采水力裂缝扩展规律试验研究. 岩土工程学报,44(12): 2290-2296.
      王芷桁,张镇,陈雁,等,2025. 基于数字孪生的压回法压井模拟技术框架体系研究.中国科技论文,20 (4): 297-309.
      肖智勇,王刚,刘杰,等,2024. 热-流-固耦合作用下含水煤层渗透率模型建立及应用研究.岩石力学与工程学报,43 (12): 3044-3057.
      谢和平,2019. 深部岩体力学与开采理论研究进展.煤炭学报,44 (5): 1283-1305.
      徐凤银,聂志宏,孙伟,等,2024. 鄂尔多斯盆地东缘深部煤层气高效开发理论技术体系.煤炭学报,49 (1): 528-544.
      徐凤银,肖芝华,陈东,等,2019. 我国煤层气开发技术现状与发展方向.煤炭科学技术,47 (10): 205-215.
      徐凤银,熊先钺,侯伟,等,2025a. 深部煤层气产业升级与 “八个一体化” 体系的建立.石油学报,46 (2): 289-305.
      徐凤银,甄怀宾,李曙光,等,2025b. 深部煤层气储层改造技术迭代升级历史与发展方向 ——以鄂尔多斯盆地东缘大吉区块为例.煤炭科学技术,53 (03): 1-18.
      徐立富,白玉湖,徐兵祥,等,2025. 临兴-神府区块深部煤储层地温场特征及控制模式.煤田地质与勘探,53 (5): 81-92.
      闫睿昶,李熹微,李小冬,等,2025. 冀中坳陷石炭-二叠系残留断陷盆地深部煤层气富集规律及有利区评价. 地球科学,https://link.cnki.net/urlid/42.1874.p.20251017.0911.002.
      闫霞,熊先钺,徐凤银,等,2025. 深部煤岩储层地质力学影响机制及控制因素¬——以鄂尔多斯盆地大吉区块为例.煤炭学报,50 (5): 2550-2566.
      闫霞,徐凤银,聂志宏,等,2021. 深部微构造特征及其对煤层气高产 “甜点区” 的控制 ——以鄂尔多斯盆地东缘大吉地区为例.煤炭学报,46 (8): 2426-2439.
      杨国威,白建文,池晓明,等,2014. 可降解纤维压裂暂堵剂表面改性与性能研究.应用化工,43 (8): 1431-1434, 1436.
      杨永杰,宋扬,陈绍杰,2006. 三轴压缩煤岩强度及变形特征的试验研究.煤炭学报,(2): 150-153.
      杨兆中,杨晨曦,李小刚,等,2020. 基于灰色关联的逼近理想解排序法的煤层气井重复压裂选井——以沁水盆地柿庄南区块为例.科学技术与工程,20 (12): 4680-4686.
      杨兆中,张丹,易良平,等,2021. 多层叠置煤层压裂裂缝纵向扩展模型与数值模拟. 煤炭学报,46(10): 3268-3277.
      于永军,朱万成,李连崇,等,2017. 水力压裂裂缝相互干扰应力阴影效应理论分析.岩石力学与工程学报,36 (12): 2926-2939.
      张滨海,陈峥嵘,艾传志,等,2018. 四维动态地应力建模方法及其在寿阳区块煤层气开发中的应用. 中国海上油气,30(4):144-151.
      张聪,胡秋嘉,冯树仁,等,2024. 沁水盆地南部煤层气地质工程一体化关键技术.煤矿安全,55 (2): 19-26.
      张贺龙,刘世奇,田钰琛,等,2025. CO₂-水-煤地球化学作用对淮南煤田 CO₂驱煤层气增产效果的影响.煤炭科学技术,53 (03): 274-290.
      张邈,刘义坤,2016. 表面活性剂在压裂液中对提高渗吸采收率的研究.当代化工,45 (08): 1767-1769.
      张士诚,郭天魁,周彤,等,2014. 天然页岩压裂裂缝扩展机理试验.石油学报,35 (03): 496-503+518.
      张守仁,桑树勋,吴见,等,2022. CO₂驱煤层气关键技术研发及应用.煤炭学报,47 (11): 3952-3964.
      张遂安,刘欣佳,温庆志,等,2021. 煤层气增产改造技术发展现状与趋势.石油学报,42 (1): 105-118.
      张万春,郭布民,孔鹏,等,2022. 柿庄南煤层气重复压裂裂缝形态反演及效果分析评价.非常规油气,9 (1): 119-128.
      章朋,2020. 煤层气开发的地质力学条件及煤储层稳定性研究.北京:中国矿业大学(北京).
      赵庆波,2004. 中国煤层气地质特征及勘探新领域. 天然气工业,(5): 4-7, 143.
      赵庆波,2011. 煤层气富集规律研究及有利区块预测评价. 廊坊:中国石油勘探开发研究院.
      赵石虎,李勇,刘雅丽,等,2025. 基于原子力显微镜的煤岩微观孔隙结构与力学性质研究. 石油实验地质,47(1): 173-183.
      郑春山,韩飞林,江丙友,等,2024. 煤体原位水力压注多尺度孔裂隙演化及渗透率跃变规律.中国矿业大学学报,53 (4): 710-725.
      周德华,陈刚,陈贞龙,等,2022. 中国深层煤层气勘探开发进展、关键评价参数与前景展望.天然气工业,42 (6): 43-51.
      周健,陈勉,金衍,等,2008. 压裂中天然裂缝剪切破坏机制研究.岩石力学与工程学报,(S1): 2637-2641.
      周立宏,李曙光,甄怀宾,等,2025. 深层煤层(岩)气井产气量工程控制因素及预测模型.钻采工艺,48 (3): 101-109.
      周彤,陈铭,张士诚,等,2020. 非均匀应力场影响下的裂缝扩展模拟及投球暂堵优化.天然气工业,40 (3): 82-91.
      朱大伟,胡永乐,崔明月,等,2020. 局部网格加密与嵌入式离散裂缝模型耦合预测压裂改造井产能.石油勘探与开发,47 (2): 341-348.
      朱峰,郭智栋,陈世波,等,2021. 煤层气连续管排液采气一体化工艺研究与应用.石油机械,49 (1): 118-123.
      朱洁琼,蒲龙川,古强,等,2025. 冀中坳陷大城凸起深部煤层气不同相态分布规律及控制因素. 地球科学,https://link.cnki.net/urlid/42.1874.p.20251106.0819.002.
      朱庆忠,熊伟,翁定为,等,2025. 聚能压裂开发技术理论及实践.石油勘探与开发,52 (3): 665-676.
      朱煜珣,刘金锋,2023. 煤层气采收诱发储层沉降及应力演化的三维模型数值模拟.岩石力学与工程学报,42 (S1): 3293-3308.
      左建平,谢和平,吴爱民,等,2011. 深部煤岩单体及组合体的破坏机制与力学特性研究.岩石力学与工程学报,30 (1): 84-92.
    • 加载中
    计量
    • 文章访问数:  106
    • HTML全文浏览量:  6
    • PDF下载量:  6
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-09-15
    • 网络出版日期:  2026-01-05

    目录

      /

      返回文章
      返回