|
Abrar, S.W., Mendhe, V.A., Kamble, A., et al., 2025. Cleat and Fracture Systems in Coal with Implications for Strength, Hydrofracking, and Gas–Water Flow Mechanisms: A Critical Review. ACS Omega, 10(28): 29909-29928. |
|
Ai, C., Li, X. X., Zhang, J., et al., 2018. Experimental Investigation of Propagation Mechanisms and Fracture Morphology for Coalbed Methane Reservoirs. Petroleum Science, 15(4): 815-829. |
|
Aston, M. S., Alberty, M. W., Mclean, M. R., et al., 2004. Drilling Fluids for Wellbore Strengthening. IADC/SPE, 87130. |
|
Cai, X., Li, D., Zhang, D., 2022. Methane Adsorption and Desorption on a Deep Shale Matrix Under Simulative Reservoir Temperature and Pressure. Energy and Fuels, 36(19): 11888-11902. |
|
Chang, C., Li, S., Tang, D. Z., et al., 2023. In-situ Stress Calculation for Coal Reservoirs Based on Log Parameters: A Case Study of the Southern Yanchuan Block. Coal Geology and Exploration, 51(5): 23-32 (in Chinese with English abstract). |
|
Chen, G., Qin, Y., Hu, Z.Q., 2016. Characteristics of Reservoir Assemblage of Deep CBM-bearing System in Baijiahai Dome of Junggar Basin. Journal of China Coal Society, 41(1): 80-86 (in Chinese with English abstract). |
|
Chen, J. X., Yang, R. Y., Qin, X. Z., et al., 2024. Mechanism of Stress-Permeability Evolution in Fan-Shaped Cavity Completion of Coalbed Methane Horizontal Wells. Natural Gas Industry, 44(3): 184-198 (in Chinese with English abstract). |
|
Chen, J. H., Chen, X. D., Li, J., et al., 2022. Optical-Fiber Monitoring Technology for Production Profile of Coalbed Methane Horizontal Well. China Coalbed Methane, 19(5): 27-31 (in Chinese with English abstract). |
|
Chen, M., 2025. A DEM-DFN Method for Assessing Mining-Induced Continuous Fracturing and Fracture Connectivity in Rock Masses. Rock Mechanics and Rock Engineering, https://doi.org/10.1007/s00603-025-04658-7. |
|
Chen, M., Zhou, J., Jin, Y., et al., 2008. Experimental Study on Fracturing Features in Naturally Fractured Reservoir. Acta Petrolei Sinica, (3): 431-434 (in Chinese with English abstract). |
|
Cheng, G., Deng, B., Liu, Y., et al., 2020. Experimental Investigation on the Feasibility and Efficiency of Shear-Fracturing Stimulation for Enhancing Coal Seam Permeability. Journal of Natural Gas Science and Engineering, 81: 103381. |
|
Cheng, H., Zhao, H., Xie, X., 2024. Deformation Characteristics and Layout Optimization of Roadway in Complex Jointed Rock Mass: A Case Study Based on Discrete Element Method. Computational Particle Mechanics, 11(4): 1735-1754. |
|
Cui, C., Li, H. Y., Liu, Y. Q., et al., 2018. Experiment Effect Study of Equivalent Confining Pressure on Mechanical Properties of Coal and Rock Under Condition of True Three Axis. Coal Science and Technology, 46(5): 47-53 (in Chinese with English abstract). |
|
Dong, H., Luo, B., Dang, C., et al., 2024. Quantitative Characterization of the Carbonate Rock Microstructure Considering Topological Features: A Case Study From the Gaoshiti–Moxi Block of the Sichuan Basin. Frontiers in Earth Science, 12: 1375637. |
|
Duan, Y. Q., Yang, Z. Z., Mei, Y. G., et al., 2015. The Research of Coalbed Fracturing Fracture Simulation Based on DEM. Petrochemical Industry Application, 34(9): 7-12, 22(in Chinese with English abstract). |
|
Fossen, H., 2016. Structural Geology (second edition). Cambridge: Cambridge University Press, 1−524. |
|
Gao, X. D., Sun, H., Wang, Y. B., et al., 2022. In-Situ Stress Field of Deep Coal Reservoir in Linxing Area and Its Control on Fracturing Crack. Coal Science and Technology, 50(8): 140-150 (in Chinese with English abstract). |
|
Gentzis, T., 2011. A Stability Analysis of Two Horizontal CBM Wells in the Deep Mannville Coals, Alberta Basin, Canada. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 33(24): 2281-2290. |
|
Gong, D. G., Qu, Z. Q., Guo, T. K., et al., 2016. Variation Rules of Fracture Initiation Pressure and Fracture Starting Point of Hydraulic Fracture in Radial Well. Journal of Petroleum Science and Engineering, 140: 41-56. |
|
Gong, F., Zou, G., Zhang, Z., et al., 2024. An Anisotropic Rock Physics Modeling for the Coalbed Methane Reservoirs and Its Applications in Anisotropy Parameter Prediction. Journal of Applied Geophysics, 225: 105381. |
|
Gong, S., Zhang, H. S., Sun, S. Y., et al., 2025. Anisotropic Evolution Characteristics of Fracture Toughness and Strain Localization of Qinshui Coal Under the Action of Acid-Based Fracturing Fluid. Journal of China Coal Society, https://doi.org/10.13225/j.cnki.jccs.2025.0400 (in Chinese with English abstract). |
|
Guo, G.S., Liu, Y.H., Lyu, Y.M., et al., 2015. Preliminary Exploration and Development Prospects on Deep Coalbed Methane in China. Clean Coal Technology, 21(1): 125-128 (in Chinese with English abstract). |
|
Guo, P., Cheng, Y., 2013. Permeability Prediction in Deep Coal Seam: A Case Study on the No. 3 Coal Seam of the Southern Qinshui Basin in China. The Scientific World Journal, (1): 161457. |
|
Han, F., Zhang, H., Rui, J., et al., 2020. Multiple Point Geostatistical Simulation With Adaptive Filter Derived From Neural Network for Sedimentary Facies Classification. Marine and Petroleum Geology, 118: 104406. |
|
Han, W. L., Li, Y., Wang, L., et al., 2024. Fracturing Fracture Propagation Law of Coal Seam and Its Influencing Factors in the Shizhuang North Block. Coal Science and Technology, 52(S1): 127-136 (in Chinese with English abstract). |
|
He, H., Wang, K., Pan, J., et al., 2022. Characteristics of Coal Porosity Changes Before and After Triaxial Compression Shear Deformation Under Different Confining Pressures. ACS Omega, 7(19): 16728-16739. |
|
He, M. C., 2021. Research Progress of Deep Shaft Construction Mechanics. Journal of China Coal Society, 46(3): 726-746 (in Chinese with English abstract). |
|
He, Q., Suorineni, F. T., Ma, T., et al., 2017. Effect of Discontinuity Stress Shadows on Hydraulic Fracture Re-Orientation. International Journal of Rock Mechanics and Mining Sciences, 91: 179-194. |
|
He, X. P., Xiao, C., Gao, Q. Y., et al., 2025. Geological Characteristics and Key Technologies for Exploration and Development of the Yanchuannan Coalbed Methane Field, Ordos Basin. Coal Geology and Exploration, 53(3): 54-71 (in Chinese with English abstract). |
|
Hou, C.L., Jiang, B., Li, M., et al., 2025. Mechanical and Molecular Structure Essence of Deformation Differences in Organic Macerals of Tectonically Deformed Coal. Journal of China Coal Society,50(3): 1633-1646 (in Chinese with English abstract). |
|
Hou, L.L., Liu, X.J., Liang, L.X., et al., 2020. Investigation of Coal and Rock Geo-mechanical Properties Evaluation based on the Fracture Complexity and Wave Velocity. Journal of Natural Gas Science and Engineering, 75: 103133. |
|
Hu, Q. J., Liu, C. C., Zhang, J. G., et al., 2025. Machine Learning-Based Coalbed Methane Well Production Prediction and Fracturing Parameter Optimization. Petroleum Reservoir Evaluation and Development, 15(2): 266-273, 299 (in Chinese with English abstract). |
|
Huang, L., Xiong, X. Y., Wang, F., et al., 2024. A New Method for Determining Factors Influencing Productivity of Deep Coalbed Methane Vertical Cluster Wells. Petroleum Reservoir Evaluation and Development, 14(6): 990-996 (in Chinese with English abstract). |
|
Huang, S., Lu, Y., Ge, Z., et al., 2025. Influence of Anisotropy on the Fracture Pattern and Damage Mechanism of Coal Subjected to Drilling Under Preloaded Triaxial Stress Conditions. Energy and Fuels, 39(2): 1091-1105. |
|
Huangfu, Z.H., Lyu, W.Y., Tang, Y.H., et al., 2024. Present-day in-situ Stress Calculation by Conventional Logs of Deep Coalbed Methane Reservoirs: A Case Study in the Deep Coal Reservoir of the Benxi Formation in Daning-Jixian Area, Ordos Basin. Chinese Journal of Geology, 59(6): 1662-1674 (in Chinese with English abstract). |
|
Huo, C., Guo, H. X., Wang, L., et al., 2025. Research Progress of Deep Coalbed Methane Exploration and Development in China Under the Dual Carbon Background. Science Technology and Engineering, 25(14): 5705-5720 (in Chinese with English abstract). |
|
Jiang, W., Guan, B. S., Li, Y., et al., 2017. A New Water Soluble Temporary Plugging Agent and Its Temporary Plugging and Diverting Effects in Re-Fracturing. Drilling Fluid and Completion Fluid, 34(6): 100-104 (in Chinese with English abstract). |
|
Ju, W., Tao, S., Yang, Z.B., et al., 2025. Current Status and Development Trends of Deep Coalbed Methane Research in China. Petroleum Geology and Experiment, 47(1): 9-16 (in Chinese with English abstract). |
|
Ju, W., Wang, S. Y., Jiang, B., et al., 2022. Characteristics of Present-Day In-Situ Stress Field and the Permian Coal Reservoir Permeability in the Eastern Yunnan and Western Guizhou Regions. Coal Science and Technology, 50(2): 179-186 (in Chinese with English abstract). |
|
Košek, F., Dudák, J., Tymlová, V., et al., 2024. Evaluation of Pore-Fracture Microstructure of Gypsum Rock Fragments Using Micro-CT. Micron, 181: 103633. |
|
Lan, T.W., Liu, Y.H., Wang, F.P., et al., 2025. Study on Failure Mechanism and Energy Dissipation Law of Single Fissured Coal in Different Tectonic Stress Areas. Scientific Reports, 15: 6369. |
|
Li, G. X., Zhang, B., Zhang, J. F., et al., 2025. Major Basic Scientific Issues and Research Directions for Exploration and Development of Deep Coal-Rock Gas in China. Acta Petrolei Sinica, 46(6): 1025-1036 (in Chinese with English abstract). |
|
Li, S., Qin, Y., Tang, D., et al., 2023. A Comprehensive Review of Deep Coalbed Methane and Recent Developments in China. International Journal of Coal Geology, 279: 104369. |
|
Li, S., Tang, D. Z., Xu, H., et al., 2016. Progress in Geological Researches on the Deep Coalbed Methane Reservoirs. Earth Science Frontiers, 23(3): 10-16 (in Chinese with English abstract). |
|
Li, W., Yao, H. F., Liu, H. F., et al., 2014. Advanced Characterization of Three-Dimensional Pores in Coals with Different Coal-Body Structure by Micro-CT. Journal of China Coal Society, 39(6): 1127-1132 (in Chinese with English abstract). |
|
Li, Y., Yao, F., Wen, D. W., et al., 2005. The Development and Prospects of Refracturing Technology. Journal of Oil and Gas Technology, (S5): 789-791 (in Chinese with English abstract). |
|
Li, Y., Xu, F. Y., Tang, S. H., et al., 2024a. Progress and Development Direction of Coalbed Methane (Coal-Rock Gas) Exploration and Development in the Ordos Basin. Natural Gas Industry, 44(10): 63-79 (in Chinese with English abstract). |
|
Li, Y., Xu, L. F., Liu, Y., et al., 2024b. Occurrence Mechanism, Environment and Dynamic Evolution of Gas and Water in Deep Coal Seams. Coal Geology and Exploration, 52(2): 40-51 (in Chinese with English abstract). |
|
Li, Z. Q., Xian, X. F., Long, Q. M., et al., 2009. Experiment Study of Coal Permeability Under Different Temperature and Stress. Journal of China University of Mining and Technology, 38(4): 523-527 (in Chinese with English abstract). |
|
Liang, Y. H., Yang, Z. B., Chen, H. Q., et al., 2025. Evaluation and Fracture Optimization Scheme of Deep Coal Reservoirs in Baijiahai Bulge-Example of CaiMei-2-004H Well. Coal Science and Technology, https://link.cnki.net/urlid/11.2402.TD.20250427.1600.003 (in Chinese with English abstract). |
|
Liang, Z. F., Liu, C. S., Zhen, H. B., et al., 2022. Optimization and Field Application of Secondary Stimulation Technologies for Coalbed Methane Wells in Hancheng Block. Petroleum Drilling Techniques, 50(3): 92-98 (in Chinese with English abstract). |
|
Liu, H. L., Zhou, C. N., Yin, S., et al., 2024. Formation, Distribution, Sweet Spot Evaluation and Development Prospect of Coal-Measure Gas in China. Natural Gas Industry, 44(10): 1-21 (in Chinese with English abstract). |
|
Liu, J., Fokker, P. A., Spiers, C. J., 2017. Coupling of Swelling, Internal Stress Evolution, and Diffusion in Coal Matrix Material During Exposure to Methane. Journal of Geophysical Research: Solid Earth, 122(2): 844-865. |
|
Liu, J., Huang, C., Zhou, L., et al., 2024. Estimation of the Rock Mechanics and In-Situ Stress Parameters of Carbonate Reservoirs Using Array Sonic Logging: A Case Study of Shunbei No.4 Block. Journal of Geomechanics, 30(3): 394-407 (in Chinese with English abstract). |
|
Liu, J., Spiers, C. J., Peach, C. J., et al., 2016. Effect of Lithostatic Stress on Methane Sorption by Coal: Theory vs. Experiment and Implications for Predicting In-Situ Coalbed Methane Content. International Journal of Coal Geology, 167: 48-64. |
|
Liu, Q. S., Xu, X. C., 2000. Damage Analysis of Brittle Rock at High Temperature. Chinese Journal of Rock Mechanics and Engineering, (4): 408-411 (in Chinese with English abstract). |
|
Liu, W. L., Han, D. K., 2022. Digital Twin System of Oil and Gas Reservoirs: A New Direction for Smart Oil and Gas Field Construction. Acta Petrolei Sinica, 43(10): 1450-1461 (in Chinese with English abstract). |
|
Liu, Y., Tang, D., Xu, H., et al., 2022. Effect of Interlayer Mechanical Properties on Initiation and Propagation of Hydraulic Fracturing in Laminated Coal Reservoirs. Journal of Petroleum Science and Engineering, 208: 109381. |
|
Liu, Y.J, Zhu, H.Y., Tang, X.H., et al., 2022. Four-dimensional in-situ Stress Model of CBM Reservoirs based on Geology-Engineering Integration. Natural Gas Industry, 42(2): 82-92 (in Chinese with English abstract). |
|
Liu, Y. C., Zhang, L., Pan, J. Z., et al., 2025. Research Status and Prospect of Coalbed Methane Intelligent Extraction in China. Coal Science and Technology, 53(S1): 223-232 (in Chinese with English abstract). |
|
Ma, Z. G., Mao, X. B., Li, Y. S., et al., 2005. Experimental Study on the Influence of Temperature on the Mechanical Properties of Coal. Journal of Mining and Safety Engineering, (3): 46-48 (in Chinese with English abstract). |
|
Mahmoudi, S., Asghari, O., Boisvert, J., 2025. Addressing Class Imbalance in Micro-CT Image Segmentation: A Modified U-Net Model With Pixel-Level Class Weighting. Computers and Geosciences, 196: 105853. |
|
Mao, Z., Wang, E., Liu, Q., et al., 2025. Vibration-Enhanced Coalbed Methane Recovery: Coupled Vibration-Thermo-Hydro-Mechanical Modeling. Gas Science and Engineering, 139: 205634. |
|
Meng, Z. P., Tian, Y. D., Li, G. F., et al., 2010. Characteristics of In-Situ Stress Field in Southern Qinshui Basin and Its Research Significance. Journal of China Coal Society, 35(6): 975-981 (in Chinese with English abstract). |
|
Meng, Z. P., Yu, Y. N., Li, G. F., et al., 2023. Geothermal Field Condition of Coal Reservoir and Its Genetic Mechanism of Low Geothermal Anomaly Area in the Qinshui Basin. Journal of China Coal Society, 48(1): 307-316 (in Chinese with English abstract). |
|
Mi, H.G., Wu, J., Peng, W.C., et al., 2024. Mechanical Characteristics and Fracture Propagation Mechanism of Deep Coal Reservoirs in the Shenfu Block. Coal Geology and Exploration, 52(8): 32-43 (in Chinese with English abstract). |
|
Ming, Y., Sun, H.F., Tang, D.Z., et al., 2024. Potential for the Production of Deep to Ultradeep Coalbed Methane Resources in the Upper Permian Longtan Formation, Sichuan Basin. Coal Geology and Exploration, 52(2): 102-112 (in Chinese with English abstract). |
|
Ni, X. M., Yang, Y. H., Ye, J. P., et al., 2016. Study on Comprehensively Selecting Wells by Repeated Hydraulic Fracturing in Single Coal Seam. Safety in Coal Mines, 47(2): 170-174 (in Chinese with English abstract). |
|
Ni, X. M., Zhu, M. Y., Su, X. B., et al., 2012. Study on Methods of Repeated Hydraulic Fracturing Comprehensive Evaluation About CBM Vertical Wells. Journal of Henan Polytechnic University (Natural Science), 31(1): 39-43 (in Chinese with English abstract). |
|
Ning, W. D., Chen, J. H., Li, J., et al., 2024. Application of Long-Term Fiber Optic Monitoring Technology in Coalbed Methane Development. China Coalbed Methane, 21(4): 38-42 (in Chinese with English abstract). |
|
Niu, R., Liu, D., Huo, Z. D., et al., 2024. In-Situ Stress and Fracture Pressure of Coal Reservoir in Shizhuangnan Block and Their Coupling Relations. Safety in Coal Mines, 55(4): 11-18 (in Chinese with English abstract). |
|
Paul, S., Chatterjee, R., 2011. Determination of In-Situ Stress Direction From Cleat Orientation Mapping for Coal Bed Methane Exploration in South-Eastern Part of Jharia Coalfield, India. International Journal of Coal Geology, 87(2): 87-96. |
|
Peng, W. C., Mi, H. G., Xu, L. F., et al., 2025. Fracability Evaluation and Classification of Deep Coal Reservoirs in the Shenfu Block. Science and Technology, 53(3): 238-247 (in Chinese with English abstract). |
|
Qin, Y., 2021. Strategic Thinking on Research of Coal Measure Gas Accumulation System and Development Geology. Journal of China Coal Society, 46(8): 2387-2399 (in Chinese with English abstract). |
|
Qin, Y., 2023. Progress on Geological Research of Deep Coalbed Methane in China. Acta Petrolei Sinica, 44(11): 1791-1811 (in Chinese with English abstract). |
|
Qin, Y., Moore, T.A., Shen, J., et al., 2018. Resources and Geology of Coalbed Methane in China: A review. International Journal of Geological Review, 60: 777-812. |
|
Qin, Y., Shen, J., 2016. On the Fundamental Issues of Deep Coalbed Methane Geology. Acta Petrolei Sinica, 37(1): 125-136 (in Chinese with English abstract). |
|
Qin, Y., Shen, J., Shi, R., 2022. Strategic Value and Choice on Construction of Large CMG Industry in China. Journal of China Coal Society, 47(1): 371-387 (in Chinese with English abstract). |
|
Qin, Y., Shen, J., Wang, B. W., et al., 2012. Accumulation Effects and Coupling Relationship of Deep Coalbed Methane. Acta Petrolei Sinica, 33(1): 48-54 (in Chinese with English abstract). |
|
Rajabi, M., Tingay, M., King, R., et al., 2017. Present-day Stress Orientation in the Clarence-Moreton Basin of New South Wales, Australia: A New High Density Dataset Reveals Local Stress Rotations. Basin Research, 29: 622-640. |
|
Salmachi, A., Rajabi, M., Wainman, C., et al., 2021. History, Geology, in Situ Stress Pattern, Gas Content and Permeability of Coal Seam Gas Basins in Australia: A Review. Energies, 14(9): 2651. |
|
Sang, S. X., Zheng, S. J., Wang, J. G., et al., 2023. Application of New Rock Mechanical Stratigraphy in Sweet Spot Prediction for Deep Coalbed Methane Exploration and Development. Acta Petrolei Sinica, 44(11): 1840-1853 (in Chinese with English abstract). |
|
Santos, L., Dahi Taleghani, A., Li, G., 2018. Expandable Proppants to Moderate Production Drop in Hydraulically Fractured Wells. Journal of Natural Gas Science and Engineering, 55: 182-190. |
|
Scholtès, L., Donzé, F. V., 2012. Modelling Progressive Failure in Fractured Rock Masses Using a 3D Discrete Element Method. International Journal of Rock Mechanics and Mining Sciences, 52: 18-30. |
|
Shan, P., Li, W., Lai, X., et al., 2023. Research on the Response Mechanism of Coal Rock Mass Under Stress and Pressure. Materials, 16(8): 3235. |
|
Shen, J., 2021. Prediction of Deep Coalbed Methane Resources in Major Basins [R]. China University of Mining and Technology, Xuzhou (in Chinese). |
|
Shen, J., Qin, Y., Fu, X. H., et al., 2014. Properties of Deep Coalbed Methane Reservoir-Forming Conditions and Critical Depth Discussion. Natural Gas Geoscience, 25(09): 1470-1476 (in Chinese with English abstract). |
|
Shen, R., Wang, X., Gu, Z., et al., 2024. Analysis of the Dynamic Impact Behavior and Fracture Mechanism of Coal Samples at Various Temperatures. Engineering Fracture Mechanics, 310: 110481. |
|
Singh, V. K., 2014. Assessment of Sudden Permeability Uptick With Depletion in Coalbed Reservoirs . Southern Ilinois University. |
|
Song, H. B., An, H. L., Liu, S. X., et al., 2021. Controlling Geological Factors and Coalbed Methane Enrichment Areas in Southern Wuxiang Block, Qinshui Basin. Journal of China Coal Society, 46(12): 3974-3987 (in Chinese with English abstract). |
|
Su, X. B., Wang, Q., Yu, S. Y., et al., 2023. Integrated Development Technology Path for Deep Coal Measure Gas Based on Low-Negative Carbon Emission Reduction. Acta Petrolei Sinica, 44(11): 1931-1948 (in Chinese with English abstract). |
|
Tan, Y., Wang, S., Rijken, M. C. M., et al., 2021. Geomechanical Template for Distributed Acoustic Sensing Strain Patterns During Hydraulic Fracturing. SPE Journal, 26(02): 627-638. |
|
Tang, S. H., Xi, Z. D., Zhang, S. H., et al., 2025. Occurrence Phase and Gas-Bearing Evolution of Deep Coalbed Methane. Coal Science and Technology, 53(3): 91-100 (in Chinese with English abstract). |
|
Tang, X. H., Zhu, H. Y., Li, K. D., 2023. A FEM-DFN-Based Complex Fracture Staggered Propagation Model for Hydraulic Fracturing of Shale Gas Reservoirs. Natural Gas Industry, 43(1): 162-176 (in Chinese with English abstract). |
|
Tang, Z. T., Liu, J. S., Yan, X., et al., 2024. The Control Mechanism of Deep Coal Rock Microstructure on In Situ Stress. Earth Science Frontiers, 31(5): 344-357 (in Chinese with English abstract). |
|
Tao, C., Li, Y., Wang, Y., et al., 2023. Characteristics of Deep Coal Reservoir and Key Control Factors of Coalbed Methane Accumulation in Linxing Area. Energies, 16(16): 6085. |
|
Tian, W.G., Deng, Z., Zhang, Z., et al., 2025. Dynamic Evolution Laws of Free Gas and Adsorbed Gas in Deep Coal Reservoirs and Its Geological Controls: A Case Study of the Daning-Jixian Block, Ordos Basin. Earth Science, https://link.cnki.net/urlid/42.1874.P.20251016.1703.004 (in Chinese with English abstract). |
|
Tian, Y., Wang, D., Xia, J., et al., 2025. Digital Rock Modeling of Deformed Multi-Scale Media in Deep Hydrocarbon Reservoirs Based on In-Situ Stress-Loading CT Imaging and U-Net Deep Learning. Marine and Petroleum Geology, 171: 107177. |
|
Tong, S. K., Gao, D. L., 2019. Basic Research Progress and Development Suggestions on Hydraulic Fracturing. Oil Drilling and Production Technology, 41(1): 101-115 (in Chinese with English abstract). |
|
Wan, Y., Wang, Z., Hu, D., et al., 2024. Gas-Bearing Evaluation of Deep Coal Rock in the Yan’an Gas Field of the Ordos Basin. Frontiers in Earth Science, 12: 1438834. |
|
Wang, C. W., Feng, Y. Q., Yang, H. X., 2018. Potential-Tapping Technology and Its Application in Old CBM Wells in Hancheng Block of Ordos Basin. Coal Geology and Exploration, 46(5): 212-218 (in Chinese with English abstract). |
|
Wang, G., Chen, H., Chen, X. C., et al., 2024. Study on Seepage Characteristics of Coal Fissures with Variable Apertures Based on CT 3D Reconstruction. Journal of China University of Mining and Technology, 53(1): 59-67 (in Chinese with English abstract). |
|
Wang, G. Z., Zhao, X. T., Wang, G. J., 2016. Experimental Research on Mechanical Behavior of Coal Sample with Thermo-Mechanical Coupling Effect. China Coal, 42(4): 90-93, 111 (in Chinese with English abstract). |
|
Wang, L. J., Zhou, H. W., Rong, T. L., et al., 2018. Research on Experimental and Nonlinear Creep Constitutive Model of Coal at Depth. Journal of China Coal Society, 43(8): 2196-2202 (in Chinese with English abstract). |
|
Wang, R., Zhou, Y., Jia, G. L., et al., 2025. Comparative Analysis of Deep Coalbed Methane Reservoirs, Production Characteristics, and Gas-Bearing Property Evaluation. Unconventional Oil and Gas, 12(3): 45-54 (in Chinese with English abstract). |
|
Wang, S.G., Jin, Y., Tan, P., et al., 2022. Experimental Investigation on Hydraulic Facture Propagation of Coal Shale Reservoirs under Multi-gas Co-production. Chinese Journal of Geotechnical Engineering, 44(12): 2290-2296 (in Chinese with English abstract). |
|
Wei, X., Huang, W., Liu, L., et al., 2024. Low-Rank Coalbed Methane Production Capacity Prediction Method Based on Time-Series Deep Learning. Energy, 311: 133247. |
|
Wen, H., Yan, L., Jin, Y., et al., 2023. Coalbed Methane Concentration Prediction and Early-Warning in Fully Mechanized Mining Face Based on Deep Learning. Energy, 264: 126208. |
|
Weng, X., 2015. Modeling of Complex Hydraulic Fractures in Naturally Fractured Formation. Journal of Unconventional Oil and Gas Resources, 9: 114-135. |
|
Wu, D., Li, B., Wu, J., et al., 2023. Influence of Mineral Composition on Rock Mechanics Properties and Brittleness Evaluation of Surrounding Rocks in Soft Coal Seams. ACS Omega, 9(1): 1375-1388. |
|
Wu, Y., Liu, J., Elsworth, D., et al., 2010. Development of Anisotropic Permeability During Coalbed Methane Production. Journal of Natural Gas Science and Engineering, 2(4): 197-210. |
|
Xiao, Z. Y., Wang, G., Liu, J., et al., 2024. A Permeability Model of Water-Bearing Coal Seams Under Thermo-Hydro-Mechanical Coupling Effect and Its Application. Chinese Journal of Rock Mechanics and Engineering, 43(12): 3044-3057 (in Chinese with English abstract). |
|
Xie, H. P., 2019. Research Review of the State Key Research Development Program of China: Deep Rock Mechanics and Mining Theory. Journal of China Coal Society, 44(5): 1283-1305 (in Chinese with English abstract). |
|
Xu, F. Y., Nie, Z. H., Sun, W., et al., 2024. Theoretical and Technological System for Highly Efficient Development of Deep Coalbed Methane in the Eastern Edge of Erdos Basin. Journal of China Coal Society, 49(1): 528-544 (in Chinese with English abstract). |
|
Xu, F. Y., Xiao, Z. H., Chen, D., et al., 2019. Current Status and Development Direction of Coalbed Methane Exploration Technology in China. Coal Science and Technology, 47(10): 205-215 (in Chinese with English abstract). |
|
Xu, F. Y., Xiong, X. Y., Hou, W., et al., 2025a. Upgrading of Deep Coalbed Methane Industry and Establishment of the “Eight-in-One” System. Acta Petrolei Sinica, 46(2): 289-305 (in Chinese with English abstract). |
|
Xu, F. Y., Zhen, H. B., Li, S. G., et al., 2025b. History and Development Direction of Iterative Upgrading of Deep Coalbed Methane Reservoir Reconstruction Technology:Taking the Daji Block in the Eastern Margin of the Ordos Basin as an Example. Coal Science and Technology, 53(03): 1-18 (in Chinese with English abstract). |
|
Xu, F., Hou, W., Xiong, X., et al., 2023. The Status and Development Strategy of Coalbed Methane Industry in China. Petroleum Exploration and Development, 50(4): 765-783. |
|
Xu, L. F., Bai, Y. H., Xu, B. X., et al., 2025. Characteristics and Control Modes of Geothermal Fields in Deep Coal Reservoirs in the Linxing-Shenfu Block. Coal Geology and Exploration, 53(5): 81-92 (in Chinese with English abstract). |
|
Yan, R.C., Li, X.W., Li, X.D., et al., 2025. Enrichment Patterns and Favorable Area Evaluation of Deep Coalbed Methane in Carboniferous-Permian Residual Faulted Basins of Jizhong Depression. Earth Science, https://link.cnki.net/urlid/42.1874.p.20251017.0911.002 (in Chinese with English abstract). |
|
Yan, X., Xiong, X. Y., Xu, F. Y., et al., 2025. Deep Coal Geomechanical Influence Mechanism and Its Control Factors of Daji Block in Ordos Basin. Journal of China Coal Society, 50(5): 2550-2566 (in Chinese with English abstract). |
|
Yan, X., Xu, F. Y., Nie, Z. H., et al., 2021. Microstructure Characteristics of Daji Area in East Ordos Basin and Its Control Over the High Yield Dessert of CBM. Journal of China Coal Society, 46(8): 2426-2439 (in Chinese with English abstract). |
|
Yang, G. W., Bai, J. W., Chi, X. M., et al., 2014. Study on Performance and Surface Modification of the Degradable Fiber Plugging Agent Hydraulic Fracturing. Applied Chemical Industry, 43(8): 1431-1434, 1436 (in Chinese with English abstract). |
|
Yang, W., Wang, L., Wang, H., et al., 2023. Ultrasonic-Assisted Coalbed Methane Recovery: A Coupled Acoustic-Thermal-Mechanical-Hydrological Model. Energy and Fuels, 37(6): 4293-4307. |
|
Yang, Y. J., Song, Y., Chen, S. J., et al., 2006. Test Study of Coal's Strength and Deformation Characteristics Under Triaxial Compression. Journal of China Coal Society, (2): 150-153 (in Chinese with English abstract). |
|
Yang, Z. Z., Yang, C. X., Li, X. G., et al., 2020. Multiple Fracturing Well Selection of Coalbed Methane Wells Based on Technique for Order Preference by Similarity to Ideal Solution Method of Gray Correlation: Taking the Case of Qinshui Basin Shizhuang South Block as an Examples. Science Technology and Engineering, 20(12): 4680-4686 (in Chinese with English abstract). |
|
Yang, Z.Z., Zhang, D., Yi, L.P., et al., 2021. Longitudinal Propagation Model of Hydraulic Fracture and Numerical Simulation in Multi-layer Superimposed Coalbed. Journal of China Coal Society, 46(10): 3268-3277 (in Chinese with English abstract). |
|
Yao, J., Liu, Q., Liu, W., et al., 2020. 3D Reservoir Geological Modeling Algorithm Based on a Deep Feedforward Neural Network: A Case Study of the Delta Reservoir of Upper Urho Formation in the X Area of Karamay, Xinjiang, China. Energies, 13(24): 6699. |
|
Yao, Y., Liu, D., Che, Y., et al., 2009. Non-Destructive Characterization of Coal Samples From China Using Microfocus X-Ray Computed Tomography. International Journal of Coal Geology, 80(2): 113-123. |
|
Yu, Y. J., Zhu, W. C., Li, L. K., et al., 2017. Analysis on Stress Shadow of Mutual Interference of Fractures in Hydraulic Fracturing Engineering. Chinese Journal of Rock Mechanics and Engineering, 36(12): 2926-2939 (in Chinese with English abstract). |
|
Yu, Y., Meng, Z., 2021. Geothermal Distribution Characteristics in the Qinshui Basin and Its Significance to the Production of Coalbed Methane. ACS Omega, 6(29): 18914-18927. |
|
Zhang, B.H., Chen, Z.R., Ai, C.Z., et al., 2018. 4D Geomechanical Modeling Technique and its Application in the Coalbed Methane Development of Shouyang Block. China Offshore Oil and Gas, 30(4): 144-151 (in Chinese with English abstract). |
|
Zhang, C., Hu, Q. J., Feng, S. R., et al., 2024. Key Technologies for Integration of Coalbed Methane Geology and Engineering in Southern Qinshui Basin. Safety in Coal Mines, 55(2): 19-26 (in Chinese with English abstract). |
|
Zhang, H. L., Liu, S. Q., Tian, Y. C., et al., 2025. Impact of CO₂-Water-Coal on Enhanced Coalbed Methane Recovery by CO₂ Injection in Huainan Coalfield. Coal Science and Technology, 53(03): 274-290 (in Chinese with English abstract). |
|
Zhang, M., Liu, Y. K., 2016. Study on Improving Imbibition Oil Recovery by Adding Surfactants in Fracturing Fluid. Contemporary Chemical Industry, 45(08): 1767-1769 (in Chinese with English abstract). |
|
Zhang, P., 2020. Study on Geomechanical Condition and Coal Reservoir Stability in Coalbed Methane Development. China University of Mining and Technology (Beijing) (in Chinese with English abstract). |
|
Zhang, P., Meng, Z., Jiang, S., et al., 2020. Characteristics of In-Situ Stress Distribution in Zhengzhuang Region, Southern Qinshui Basin, China and Its Stress Path During Depletion. Engineering Geology, 264: 105413. |
|
Zhang, S. A., Liu, X. J., Wen, Q. Z., et al., 2021. Development Situation and Trend of Stimulation and Reforming Technology of Coalbed Methane. Acta Petrolei Sinica, 42(1): 105-118 (in Chinese with English abstract). |
|
Zhang, S. C., Guo, T. K., Zhou, T., et al., 2014. Fracture Propagation Mechanism Experiment of Hydraulic Fracturing in Natural Shale. Acta Petrolei Sinica, 35(03): 496-503+518 (in Chinese with English abstract). |
|
Zhang, S. R., Sang, S. X., Wu, J., et al., 2022. Progress and Application of Key Technologies for CO₂ Enhancing Coalbed Methane. Journal of China Coal Society, 47(11): 3952-3964 (in Chinese with English abstract). |
|
Zhang, T.J., Ji, X., Pang, M.K., et al., 2023. Investigation of the Crack Evolution Characteristics of Coal and Rock Bodies around Boreholes during Progressive Damage based on Stress Threshold Values. Theoretical and Applied Fracture Mechanics, 125: 103935. |
|
Zhang, W. C., Guo, B. M., Kong, P., et al., 2022. Fracture Morphology Inversion and Effect Evaluation of CBM Refracturing in Southern Shizhuang Block. Unconventional Oil and Gas, 9(1): 119-128 (in Chinese with English abstract). |
|
Zhao, Q. B., 2004. Geological Features of the Coalbed Methane in China and Its New Exploration Domains. Natural Gas Industry, (5): 4-7, 143 (in Chinese with English abstract). |
|
Zhao, Q. B., 2011. Study on CBM Enrichment Law and Favorable Block Prediction and Evaluation. Langfang: PetroChina Exploration and Development Research Institute (in Chinese). |
|
Zhao, S.H., Li, Y., Liu, Y.L., et al., 2025. Study on Microscopic Pore Structures and Mechanical Properties. Petroleum Geology and Experiment, 47(1): 173-183 (in Chinese with English abstract). |
|
Zheng, C. S., Han, F. L., Jiang, B. Y., et al., 2024. Coal Multi-Scale Pore Fracture Variations and Permeability Sharp Increase Characteristics Induced by In-Situ Hydraulic Injection. Journal of China University of Mining and Technology, 53(4): 710-725 (in Chinese with English abstract). |
|
Zhou, D. H., Chen, G., Chen, Z. L., et al., 2022. Exploration and Development Progress, Key Evaluation Parameters and Prospect of Deep CBM in China. Natural Gas Industry, 42(6): 43-51 (in Chinese with English abstract). |
|
Zhou, J., Chen, M., Jin, Y., et al., 2008. Mechanism Study of Shearing Slippage Damage of Natural Fracture in Hydraulic Fracturing. Chinese Journal of Rock Mechanics and Engineering, 28(S1): 2637-2641 (in Chinese with English abstract). |
|
Zhou, L. H., Li, S. G., Zhen, H. B., et al., 2025. Engineering Controlling Factors and Prediction Model for Gas Production in Deep Coalbed Methane (Rock) Gas Wells. Drilling and Production Technology, 48(3): 101-109 (in Chinese with English abstract). |
|
Zhou, L., Chen, J., Gou, Y., et al., 2017. Numerical Investigation of the Time-Dependent and the Proppant Dominated Stress Shadow Effects in a Transverse Multiple Fracture System and Optimization. Energies, 10(1): 83. |
|
Zhou, T., Chen, M., Zhang, S. C., et al., 2020. Simulation of Fracture Propagation and Optimization of Ball-Sealer In-Stage Diversion Under the Effect of Heterogeneous Stress Field. Natural Gas Industry, 40(3): 82-91 (in Chinese with English abstract). |
|
Zhu, D. W., Hu, Y. L., Cui, M. Y., et al., 2020. Productivity Simulation of Hydraulically Fractured Wells Based on Hybrid Local Grid Refinement and Embedded Discrete Fracture Model. Petroleum Exploration and Development, 47(2): 341-348 (in Chinese with English abstract). |
|
Zhu, F., Guo, Z. D., Chen, S. B., et al., 2021. Research and Application of the Integrated Technology of Liquid Drainage and CBM Production by Coiled Tubing. China Petroleum Machinery, 49(1): 118-123 (in Chinese with English abstract). |
|
Zhu, J.Q., Pu, L.C., Gu, Q., et al., 2025. Distribution Patterns and Controlling Factors of Different Phase of the Deep Coalbed Methane (CBM) within the Dacheng Uplift, Jizhong Depression. Earth Science, https://link.cnki.net/urlid/42.1874.p.20251106.0819.002 (in Chinese with English abstract). |
|
Zhu, Q. Z., Xiong, W., Weng, D. W., et al., 2025. Theory and Practice of Energy-Focused Fracturing Development Technology. Petroleum Exploration and Development, 52(3): 665-676 (in Chinese with English abstract). |
|
Zhu, Y. X., Liu, J. F., 2023. Three-Dimensional Numerical Simulation for Estimating Subsidence and Stress Evolution in Coal Seams During Coalbed Methane Recovery. Chinese Journal of Rock Mechanics and Engineering, 42(S1): 3293-3308 (in Chinese with English abstract). |
|
Zoback, M. D., 2010. Reservoir Geomechanics. Cambridge: Cambridge University Press. pp.493. |
|
Zuo, J. P., Xie, H. P., Wu, A. M., et al., 2011. Investigation on Failure Mechanisms and Mechanical Behaviors of Deep Coal-Rock Single Body and Combined Body. Chinese Journal of Rock Mechanics and Engineering, 30(1): 84-92 (in Chinese with English abstract). |
|
附中文参考文献: |
|
常闯,李松,汤达祯,等,2023. 基于测井参数的煤储层地应力计算方法研究——以延川南区块为例.煤田地质与勘探,51 (5): 23-32. |
|
陈刚,秦勇,胡宗全,等,2016. 准噶尔盆地白家海凸起深部含煤层气系统储层组合特征. 煤炭学报,41(1): 80-86. |
|
陈健翔,杨睿月,秦小舟,等,2024. 煤层气水平井扇形洞穴完井应力——渗透率演化机理.天然气工业,44 (3): 184-198. |
|
陈金宏,陈晓冬,李剑,等,2022. 煤层气水平井产出剖面光纤监测工艺技术.中国煤层气,19 (5): 27-31. |
|
陈勉,周健,金衍,等,2008. 随机裂缝性储层压裂特征实验研究.石油学报,(3): 431-434. |
|
崔聪,李宏艳,刘永茜,等,2018. 真三轴条件下等效围压对煤岩力学特性影响试验研究.煤炭科学技术,46 (5): 47-53. |
|
段永强,杨兆中,梅永贵,等,2015. 基于离散元方法的煤层压裂裂缝模拟研究.石油化工应用,34 (9): 7-12, 22. |
|
高向东,孙昊,王延斌,等,2022. 临兴地区深部煤储层地应力场及其对压裂缝形态的控制.煤炭科学技术,50 (8): 140-150. |
|
龚爽,张寒松,孙世毅,等,2025. 酸基压裂液作用下沁水煤断裂韧度与应变局部化各向异性演化特征.煤炭学报,https://doi.org/10.13225/j.cnki.jccs.2025.0400. |
|
郭广山,柳迎红,吕玉民,2015. 中国深部煤层气勘探开发前景初探. 洁净煤技术,21(1): 125-128. |
|
韩文龙,李勇,王力,等,2024. 柿庄北煤层气区块煤层压裂裂缝扩展规律及影响因素.煤炭科学技术,52 (S1): 127-136. |
|
何满潮,2021. 深部建井力学研究进展.煤炭学报,46 (3): 726-746. |
|
何希鹏,肖翠,高玉巧,等,2025. 鄂尔多斯盆地延川南煤层气田地质特征及勘探开发关键技术.煤田地质与勘探,53 (3): 54-71. |
|
胡秋嘉,刘春春,张建国,等,2025. 基于机器学习的煤层气井产能预测与压裂参数优化.油气藏评价与开发,15 (2): 266-273, 299. |
|
黄力,熊先钺,王峰,等,2024. 深层煤层气直丛井产能影响因素确定新方法.油气藏评价与开发,14 (6): 990-996. |
|
皇甫展鸿,吕文雅,唐英航,等,2024. 深层煤层气储层现今地应力测井计算方法:以大宁-吉县地区本溪组煤层为例. 地质科学,59(6): 1662-1674. |
|
侯晨亮,姜波,李明,等,2025. 构造煤中有机显微组分变形差异的力学及分子结构本质. 煤炭学报,50(3): 1633-1646. |
|
霍超,郭海晓,王蕾,等,2025. 双碳背景下中国深部煤层气勘探开发研究进展.科学技术与工程,25 (14): 5705-5720. |
|
姜伟,管保山,李阳,等,2017. 新型水溶性暂堵剂在重复压裂中的暂堵转向效果.钻井液与完井液,34 (6): 100-104. |
|
鞠玮,陶树,杨兆彪,等,2025. 中国深部煤层气研究与勘探开发现状及其发展趋势. 石油实验地质,47(1): 9-16. |
|
鞠玮,王胜宇,姜波,等,2022. 滇东-黔西地区现今地应力场与二叠系煤储层渗透率特征.煤炭科学技术,50 (2): 179-186. |
|
李国欣,张斌,张君峰,等,2025. 中国深层煤岩气勘探开发重大基础科学问题与研究方向.石油学报,46 (6): 1025-1036. |
|
李松,汤达祯,许浩,等,2016. 深部煤层气储层地质研究进展.地学前缘,23 (3): 10-16. |
|
李伟,要惠芳,刘鸿福,等,2014. 基于显微CT的不同煤体结构煤三维孔隙精细表征.煤炭学报,39 (6): 1127-1132. |
|
李阳,姚飞,翁定为,等,2005. 重复压裂技术的发展及展望.石油天然气学报(江汉石油学院学报), (S5): 789-791. |
|
李勇,徐凤银,唐书恒,等,2024a. 鄂尔多斯盆地煤层(岩)气勘探开发进展及发展方向.天然气工业,44 (10): 63-79. |
|
李勇,徐立富,刘宇,等,2024b. 深部煤层气水赋存机制、环境及动态演化.煤田地质与勘探,52 (2): 40-51. |
|
李志强,鲜学福,隆晴明,2009. 不同温度应力条件下煤体渗透率实验研究.徐州:中国矿业大学学报,38 (4): 523-527. |
|
梁宇辉,杨兆彪,陈河青,等,2025. 白家海凸起深部煤储层可压性评价及压裂优化—— 以彩煤2-004H 井为例.煤炭科学技术,https://link.cnki.net/urlid/11.2402.TD.20250427.1600.003. |
|
梁智飞,刘长松,甄怀宾,等,2022. 韩城区块煤层气井二次改造工艺优化及现场试验.石油钻探技术,50 (3): 92-98. |
|
刘翰林,邹才能,尹帅,等,2024. 中国煤系气形成分布、甜点评价与展望.天然气工业,44 (10): 1-21. |
|
刘军,黄超,周磊,等,2024. 基于阵列声波测井估算碳酸盐岩储层岩石力学和地应力参数——以顺北4号带为例.地质力学学报,30 (3): 394-407. |
|
刘泉声,许锡昌,2000. 温度作用下脆性岩石的损伤分析.岩石力学与工程学报,(4): 408-411. |
|
刘文岭,韩大匡,2022. 数字孪生油气藏:智慧油气田建设的新方向.石油学报,43 (10): 1450-1461. |
|
刘英君,朱海燕,唐煊赫,等,2022. 基于地质工程一体化的煤层气储层四维地应力演化模型及规律. 天然气工业,42(2): 82-92. |
|
刘永成,张磊,潘建钟,等,2025. 我国煤层气智能化开发研究现状及展望.煤炭科学技术,53 (S1): 223-232. |
|
马占国,茅献彪,李玉寿,等,2005. 温度对煤力学特性影响的实验研究.矿山压力与顶板管理,(3): 46-48. |
|
孟召平,田永东,李国富,2010. 沁水盆地南部地应力场特征及其研究意义.煤炭学报,35 (6): 975-981. |
|
孟召平,禹艺娜,李国富,等,2023. 沁水盆地煤储层地温场条件及其低地温异常区形成机理.煤炭学报,48 (1): 307-316. |
|
米洪刚,吴见,彭文春,等,2024. 神府区块深部煤储层力学特性及裂缝扩展机制. 煤田地质与勘探,52(8): 32−43. |
|
明盈,孙豪飞,汤达祯,等,2024. 四川盆地上二叠统龙潭组深-超深部煤层气资源开发潜力. 煤田地质与勘探,52(2): 102-112. |
|
倪小明,杨艳辉,叶建平,2016. 单一煤层重复水力压裂综合选井研究.煤矿安全,47 (2): 170-174. |
|
倪小明,朱明阳,苏现波,等,2012. 煤层气垂直井重复水力压裂综合评价方法研究.河南理工大学学报(自然科学版), 31 (1): 39-43. |
|
宁卫东,陈金宏,李剑,等,2024. 光纤长期监测技术在煤层气开发中的应用.中国煤层气,21 (4): 38-42. |
|
牛然,刘度,霍中刚,等,2024. 柿庄南区块煤储层地应力和破裂压力特征及其耦合关系.煤矿安全,55 (4): 11-18. |
|
彭文春,米洪刚,徐立富,等,2025. 神府区块深部煤储层可压性评价方法及应用.煤炭科学技术,53 (3): 238-247. |
|
秦勇,2021. 煤系气聚集系统与开发地质研究战略思考.煤炭学报,46 (8): 2387-2399. |
|
秦勇,2023. 中国深部煤层气地质研究进展. 石油学报,44(11): 1791-1811. |
|
秦勇,申建,2016. 论深部煤层气基本地质问题.石油学报,37 (1): 125-136. |
|
秦勇,申建,史锐,2022. 中国煤系气大产业建设战略价值与战略选择.煤炭学报,47 (1): 371-387. |
|
秦勇,申建,王宝文,等,2012. 深部煤层气成藏效应及其耦合关系.石油学报,33 (1): 48-54. |
|
桑树勋,郑司建,王建国,等,2023. 岩石力学地层新方法在深部煤层气勘探开发 “甜点” 预测中的应用.石油学报,44 (11): 1840-1853. |
|
申建,2021. 我国主要盆地深部煤层气资源量预测[R]. 徐州:中国矿业大学. |
|
申建,秦勇,傅雪海,等,2014. 深部煤层气成藏条件特殊性及其临界深度探讨.天然气地球科学,25 (09): 1470-1476. |
|
宋慧波,安红亮,刘顺喜,等,2021. 沁水盆地武乡南煤层气赋存主控地质因素及富集区预测.煤炭学报,46 (12): 3974-3987. |
|
苏现波,王乾,于世耀,等,2023. 基于低负碳减排的深部煤系气一体化开发技术路径.石油学报,44 (11): 1931-1948. |
|
唐书恒,郗兆栋,张松航,等,2025. 深部煤层气赋存相态与含气性演化.煤炭科学技术,53 (3): 91-100. |
|
唐煊赫,朱海燕,李奎东,2023. 基于FEM-DFN的页岩气储层水力压裂复杂裂缝交错扩展模型.天然气工业,43 (1): 162-176. |
|
唐志潭,刘敬寿,闫霞,等,2024. 深层煤岩微构造对现今地应力的控制机理.地学前缘,31 (5): 344-357. |
|
田文广,邓泽,张政,等,2025. 深部煤储层游离气-吸附气动态演化规律及其地质控制——以鄂尔多斯盆地大宁-吉县区块为例. 地球科学,https://link.cnki.net/urlid/42.1874.P.20251016.1703.004. |
|
仝少凯,高德利,2019. 水力压裂基础研究进展及发展建议.石油钻采工艺,41 (1): 101-115. |
|
王成旺,冯延青,杨海星,等,2018. 鄂尔多斯盆地韩城区块煤层气老井挖潜技术及应用.煤田地质与勘探,46 (5): 212-218. |
|
王刚,陈昊,陈雪畅,等,2024. 基于CT三维重构煤体变开度裂缝渗流特性研究.中国矿业大学学报,53 (1): 59-67. |
|
王公忠,赵新涛,王国际,2016. 热力耦合作用下煤样力学行为影响的试验研究.中国煤炭,42 (4): 90-93, 111. |
|
王路军,周宏伟,荣腾龙,等,2018. 深部煤体非线性蠕变本构模型及实验研究.煤炭学报,43 (8): 2196-2202. |
|
王瑞,周毅,贾光亮,等,2025. 深部煤层气储层及生产特征与含气性评价对比分析.非常规油气,12 (3): 45-54. |
|
王士国,金衍,谭鹏,等,2022. 煤系页岩储层多气共采水力裂缝扩展规律试验研究. 岩土工程学报,44(12): 2290-2296. |
|
王芷桁,张镇,陈雁,等,2025. 基于数字孪生的压回法压井模拟技术框架体系研究.中国科技论文,20 (4): 297-309. |
|
肖智勇,王刚,刘杰,等,2024. 热-流-固耦合作用下含水煤层渗透率模型建立及应用研究.岩石力学与工程学报,43 (12): 3044-3057. |
|
谢和平,2019. 深部岩体力学与开采理论研究进展.煤炭学报,44 (5): 1283-1305. |
|
徐凤银,聂志宏,孙伟,等,2024. 鄂尔多斯盆地东缘深部煤层气高效开发理论技术体系.煤炭学报,49 (1): 528-544. |
|
徐凤银,肖芝华,陈东,等,2019. 我国煤层气开发技术现状与发展方向.煤炭科学技术,47 (10): 205-215. |
|
徐凤银,熊先钺,侯伟,等,2025a. 深部煤层气产业升级与 “八个一体化” 体系的建立.石油学报,46 (2): 289-305. |
|
徐凤银,甄怀宾,李曙光,等,2025b. 深部煤层气储层改造技术迭代升级历史与发展方向 ——以鄂尔多斯盆地东缘大吉区块为例.煤炭科学技术,53 (03): 1-18. |
|
徐立富,白玉湖,徐兵祥,等,2025. 临兴-神府区块深部煤储层地温场特征及控制模式.煤田地质与勘探,53 (5): 81-92. |
|
闫睿昶,李熹微,李小冬,等,2025. 冀中坳陷石炭-二叠系残留断陷盆地深部煤层气富集规律及有利区评价. 地球科学,https://link.cnki.net/urlid/42.1874.p.20251017.0911.002. |
|
闫霞,熊先钺,徐凤银,等,2025. 深部煤岩储层地质力学影响机制及控制因素¬——以鄂尔多斯盆地大吉区块为例.煤炭学报,50 (5): 2550-2566. |
|
闫霞,徐凤银,聂志宏,等,2021. 深部微构造特征及其对煤层气高产 “甜点区” 的控制 ——以鄂尔多斯盆地东缘大吉地区为例.煤炭学报,46 (8): 2426-2439. |
|
杨国威,白建文,池晓明,等,2014. 可降解纤维压裂暂堵剂表面改性与性能研究.应用化工,43 (8): 1431-1434, 1436. |
|
杨永杰,宋扬,陈绍杰,2006. 三轴压缩煤岩强度及变形特征的试验研究.煤炭学报,(2): 150-153. |
|
杨兆中,杨晨曦,李小刚,等,2020. 基于灰色关联的逼近理想解排序法的煤层气井重复压裂选井——以沁水盆地柿庄南区块为例.科学技术与工程,20 (12): 4680-4686. |
|
杨兆中,张丹,易良平,等,2021. 多层叠置煤层压裂裂缝纵向扩展模型与数值模拟. 煤炭学报,46(10): 3268-3277. |
|
于永军,朱万成,李连崇,等,2017. 水力压裂裂缝相互干扰应力阴影效应理论分析.岩石力学与工程学报,36 (12): 2926-2939. |
|
张滨海,陈峥嵘,艾传志,等,2018. 四维动态地应力建模方法及其在寿阳区块煤层气开发中的应用. 中国海上油气,30(4):144-151. |
|
张聪,胡秋嘉,冯树仁,等,2024. 沁水盆地南部煤层气地质工程一体化关键技术.煤矿安全,55 (2): 19-26. |
|
张贺龙,刘世奇,田钰琛,等,2025. CO₂-水-煤地球化学作用对淮南煤田 CO₂驱煤层气增产效果的影响.煤炭科学技术,53 (03): 274-290. |
|
张邈,刘义坤,2016. 表面活性剂在压裂液中对提高渗吸采收率的研究.当代化工,45 (08): 1767-1769. |
|
张士诚,郭天魁,周彤,等,2014. 天然页岩压裂裂缝扩展机理试验.石油学报,35 (03): 496-503+518. |
|
张守仁,桑树勋,吴见,等,2022. CO₂驱煤层气关键技术研发及应用.煤炭学报,47 (11): 3952-3964. |
|
张遂安,刘欣佳,温庆志,等,2021. 煤层气增产改造技术发展现状与趋势.石油学报,42 (1): 105-118. |
|
张万春,郭布民,孔鹏,等,2022. 柿庄南煤层气重复压裂裂缝形态反演及效果分析评价.非常规油气,9 (1): 119-128. |
|
章朋,2020. 煤层气开发的地质力学条件及煤储层稳定性研究.北京:中国矿业大学(北京). |
|
赵庆波,2004. 中国煤层气地质特征及勘探新领域. 天然气工业,(5): 4-7, 143. |
|
赵庆波,2011. 煤层气富集规律研究及有利区块预测评价. 廊坊:中国石油勘探开发研究院. |
|
赵石虎,李勇,刘雅丽,等,2025. 基于原子力显微镜的煤岩微观孔隙结构与力学性质研究. 石油实验地质,47(1): 173-183. |
|
郑春山,韩飞林,江丙友,等,2024. 煤体原位水力压注多尺度孔裂隙演化及渗透率跃变规律.中国矿业大学学报,53 (4): 710-725. |
|
周德华,陈刚,陈贞龙,等,2022. 中国深层煤层气勘探开发进展、关键评价参数与前景展望.天然气工业,42 (6): 43-51. |
|
周健,陈勉,金衍,等,2008. 压裂中天然裂缝剪切破坏机制研究.岩石力学与工程学报,(S1): 2637-2641. |
|
周立宏,李曙光,甄怀宾,等,2025. 深层煤层(岩)气井产气量工程控制因素及预测模型.钻采工艺,48 (3): 101-109. |
|
周彤,陈铭,张士诚,等,2020. 非均匀应力场影响下的裂缝扩展模拟及投球暂堵优化.天然气工业,40 (3): 82-91. |
|
朱大伟,胡永乐,崔明月,等,2020. 局部网格加密与嵌入式离散裂缝模型耦合预测压裂改造井产能.石油勘探与开发,47 (2): 341-348. |
|
朱峰,郭智栋,陈世波,等,2021. 煤层气连续管排液采气一体化工艺研究与应用.石油机械,49 (1): 118-123. |
|
朱洁琼,蒲龙川,古强,等,2025. 冀中坳陷大城凸起深部煤层气不同相态分布规律及控制因素. 地球科学,https://link.cnki.net/urlid/42.1874.p.20251106.0819.002. |
|
朱庆忠,熊伟,翁定为,等,2025. 聚能压裂开发技术理论及实践.石油勘探与开发,52 (3): 665-676. |
|
朱煜珣,刘金锋,2023. 煤层气采收诱发储层沉降及应力演化的三维模型数值模拟.岩石力学与工程学报,42 (S1): 3293-3308. |
|
左建平,谢和平,吴爱民,等,2011. 深部煤岩单体及组合体的破坏机制与力学特性研究.岩石力学与工程学报,30 (1): 84-92. |