|
Aanins R, 2020. Land Cover Classification Using Very High Spatial Resolution Remote Sensing Data and Deep Learning. Latvian Journal of Physics and Technical Sciences, 57(1-2): 71-77. |
|
Akhtar A M, Qazi W A, Ahmad S R, et al., 2020. Integration of High-Resolution Optical and SAR Satellite Remote Sensing Datasets for Aboveground Biomass Estimation in Subtropical Pine Forest, Pakistan. Environmental Monitoring and Assessment, 192(9): 584. doi: 10.1007/s10661-020-08546-1 |
|
Arshad F, Iqbal M, Riaz A, et al., 2024. Road Corridors Vegetation in the Semi-Arid Region: Functional Trait Diversity and Dynamics. Scientific Reports, 14(1): 25212. doi: 10.1038/s41598-024-76484-w |
|
Chaurasia A , Culurciello E , 2017. LinkNet: Exploiting encoder representations for efficient semantic segmentation[J].IEEE, 2017.DOI: 10.1109/VCIP.2017.8305148. |
|
El-Husseini H, Chowyuk A N, Gustafson R R, et al., 2023. Roadside Vegetated Filter Strips to Simultaneously Lower Stormwater Pollution Loadings and Improve Economics of Biorefinery Feedstocks. Journal of Environmental Management, 347: 119168. doi: 10.1016/j.jenvman.2023.119168 |
|
Gao B.-c.1996. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257-266. doi: 10.1016/S0034-4257(96)00067-3 |
|
Genç ÇÖ,Altunel AO, 2025. Monitoring the operational changes in surface reflectances after logging, based on popular indices over Sentinel-2, Landsat-8, and ASTER imageries. Environ Monit Assess. 2025;197 (1):120. doi: 10.1007/s10661-024-13526-w |
|
Gitelson, A, & Merzlyak M N. 1994. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. 143(3), 286-292. |
|
Guo B, Yuan X, 2022. Dynamic Monitoring of the Ecological Vulnerability for Multi-Type Ecological Functional Areas during 2000–2018. Sustainability, 14: 15987. doi: 10.3390/su142315987 |
|
He X,Zhang F,Cai Y, et al., 2023. Spatio-temporal changes in fractional vegetation cover and the driving forces during 2001-2020 in the northern slopes of the Tianshan Mountains, China. Environ Sci Pollut Res Int. 2023;30 (30):75511-75531. doi: 10.1007/s11356-023-27702-x |
|
Jin S, & Sader S A. 2005. Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances. Remote Sensing of Environment, 94(3), 364-372. doi: 10.1016/j.rse.2004.10.012 |
|
Kaloyianni M, Feidantsis K, Nteli I, et al., 2019. Biochemical and Molecular Responses of Cyprinids in Two Mediterranean Lacustrine Ecosystems: Opportunities for Ecological Assessment and Biomonitoring. Aquatic Toxicology, 211: 105-115. doi: 10.1016/j.aquatox.2019.03.021 |
|
Karisa JF,Obura DO,Chen CA, 2020. Spatial heterogeneity of coral reef benthic communities in Kenya. PLoS One. doi: 10.1371/journal.pone.0237397 |
|
Khosravi V,Gholizadeh A,Saberioon M, 2022. Soil toxic elements determination using integration of Sentinel-2 and Landsat-8 images: Effect of fusion techniques on model performance. Environ Pollut. 2022;310:119828. doi: 10.1016/j.envpol.2022.119828 |
|
24-12801-0 |
|
Li Z, Jiang X, Wang J, et al. 2019. Multiple facets of stream macroinvertebrate alpha diversity are driven by different ecological factors across an extensive altitudinal gradient. Ecol Evol. 2019;9(3):1306-1322. doi: 10.1002/ece3.4841 |
|
Long,Jonathan,Shelhamer,et al., 2017. Fully Convolutional Networks for Semantic Segmentation[J].IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017.DOI: 10.1109/TPAMI.2016.2572683. |
|
Matyukira C, Mhangara P, 2024. Advances in Vegetation Mapping through Remote Sensing and Machine Learning Techniques: A Scientometric Review. European Journal of Remote Sensing, 57(1):1. doi: 10.1080/22797254.2024. |
|
Magidi J,Nhamo L,Mpandeli S, et al., 2021. Application of the Random Forest Classifier to Map Irrigated Areas Using Google Earth Engine. Remote Sens (Basel). 2021;13 (5):876. doi: 10.3390/rs13050876 |
|
Mohammadimanesh F, Salehi B, Mahdianpari M, et al., 2019. A New Fully Convolutional Neural Network for Semantic Segmentation of Polarimetric SAR Imagery in Complex Land Cover Ecosystem. ISPRS Journal of Photogrammetry and Remote Sensing, 151: 223-236. doi: 10.1016/j.isprsjprs.2019.04.015 |
|
Namazi F,Ezoji M,Parmehr EG, 2023. Paddy Rice mapping in fragmented lands by improved phenology curve and correlation measurements on Sentinel-2 imagery in Google earth engine. Environ Monit Assess. 2023;195 (10):1220. doi: 10.1007/s10661-023-11808-3 |
|
Qi J, Chehbouni A, Huete AR, et al., 2019. A modified soil adjusted vegetation index. Remote Sensing of Environment , 48:119-26. |
|
Ronneberger, O., Fischer, P., Brox, T., 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A., eds., Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Lecture Notes in Computer Science, 9351: 234-241. doi: 10.1007/978-3-319-24574-4_28 |
|
Rouse J W, Haas R H, Schell J A, et al., 1973. Monitoring vegetation systems in the great plains with ERTS. |
|
Santana F C, Francelino M R, Siqueira R G, et al., 2025. Sentinel-2 Imagery Coupled with Machine Learning to Model Water Turbidity in the Doce River Basin, Brazil. Environmental Monitoring and Assessment, 197(4): —. doi: 10.1007/s10661-025-13918-6 |
|
Salomonson V V, & Appel I. 2004. Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote Sensing of Environment, 89(3), 351-360. doi: 10.1016/j.rse.2003.10.016 |
|
Shen, Y.J., Chen, X., Peng, J.B., et al., 2024. Background Characteristics of Ecological Geological Environment System in Qinling Mountains and Assumption of Its Theoretical System. Earth Science, 49(6): 2103-2119. doi: 10.3799/dqkx.2023.210 (in Chinese with English abstract) |
|
Song S, Wang S, Gong Y, et al., 2024. The Past and Future Dynamics of Ecological Resilience and Its Spatial Response Analysis to Natural and Anthropogenic Factors in Southwest China with Typical Karst. Scientific Reports, 14: 19166. doi: 10.1038/s41598-024-67849-x |
|
Tsegaye L, Bharti R, 2022. The impacts of LULC and climate change scenarios on the hydrology and sediment yield of Rib watershed, Ethiopia. Environ Monit Assess. 2022;194 (10):717. doi: 10.1007/s10661-022-10391-3 |
|
Wang Bin, Fan Donglin, 2019. Research Advances in the Application of Deep Learning for Remote Sensing Image Classification and Identification: A Review. Bulletin of Surveying and Mapping, (02): 99-102+136. (in Chinese with English abstract) |
|
Wang DZ, Qiu PH, Fang YM, 2015. Scale effect of Li-Xiang Railway construction impact on landscape pattern and its ecological risk. Ying Yong Sheng Tai Xue Bao. 2015;26 (8):2493-503. |
|
Wang Q, Yu G A, Li Z, et al. 2025. Assessing the ecohydrological impact of hydropower-induced flow regulation on fish habitats in the Jinsha River. J Environ Manage. 2025;381:125303. doi: 10.1016/j.jenvman.2025.125303 |
|
Wen Y, Cai H, Han D, 2024. Driving Factors Analysis of Spatial-Temporal Evolution of Vegetation Ecosystem in Rocky Desertification Restoration Area of Guizhou Province, China. Environmental Science and Pollution Research International, 31(9): 13122-13140. doi: 10.1007/s11356-024-31934-w |
|
Xiao Y, Guo Y, Yin G, et al., 2022. UAV Multispectral Image-Based Urban River Water Quality Monitoring Using Stacked Ensemble Machine Learning Algorithms—A Case Study of the Zhanghe River, China. Remote Sensing, 14: 3272. doi: 10.3390/rs14133272 |
|
Xuan, B.X., Wei, X.Y., Mao, X.F., et al., 2025. Research on Ecosystem Services in the Xining-Haidong Metropolitan Area under Different Land Use Scenarios: Based on the GMOP-PLUS-InVEST Model. Earth Science. doi: 10.3799/dqkx.2025.114 (in Chinese with English abstract) |
|
Yadav PK, Jha P, Joy MS, et al., 2024. Ecosystem health assessment of East Kolkata Wetlands, India: Implications for environmental sustainability. J Environ Manage. 2024;366:121809. doi: 10.1016/j.jenvman.2024.121809 |
|
Yang S, Zhang L, Zhu G, 2023. Effects of transport infrastructures and climate change on ecosystem services in the integrated transport corridor region of the Qinghai-Tibet Plateau. Sci Total Environ. 2023;885:163961. doi: 10.1016/j.scitotenv.2023.163961 |
|
Zha Y, Gao J, & Ni S. 2003. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3), 583-594. doi: 10.1080/01431160304987 |
|
Zhang Bing, 2018. Remote Sensing Big Data Era and Intelligent Information Extraction. Geomatics and Information Science of Wuhan University, 43(12): 1861-1871. (in Chinese with English abstract) |
|
Zhang Y, Cong J, Lu H, et al. 2015. Soil bacterial diversity patterns and drivers along an elevational gradient on Shennongjia Mountain, China. Microb Biotechnol. 2015;8(4):739-746. doi: 10.1111/1751-7915.12288 |
|
Zhang Z, Zhang G, Song S, et al. 2020. Spatial Heterogeneity Influences of Environmental Control and Informal Regulation on Air Pollutant Emissions in China. Int J Environ Res Public Health, 2020;17 (13):null. doi: 10.3390/ijerph17134857 |
|
Zhou D, Song W, 2021. Identifying Ecological Corridors and Networks in Mountainous Areas. Int J Environ Res Public Health. 2021;18(9):. doi: 10.3390/ijerph18094797 |
|
王斌, 范冬林, 2019. 深度学习在遥感影像分类与识别中的研究进展综述[J]. 测绘通报, (02): 99-102+136. |
|
张兵, 2018. 遥感大数据时代与智能信息提取[J]. 武汉大学学报(信息科学版), 43(12): 1861-1871. |
|
申艳军, 陈兴, 彭建兵, 等, 2024. 秦岭生态地质环境系统本底特征及研究体系初步构想. 地球科学, 49(6): 2103-2119. doi: 10.3799/dqkx.2023.210 |
|
宣炳旭, 魏晓燕, 毛旭锋, 等, 2025. 西宁—海东都市圈不同土地利用情景下生态系统服务模拟:基于GMOP-PLUSInVEST模型. 地球科学. doi: 10.3799/dqkx.2025.114 |