Fault Development Characteristics in the Western Junggar Basin and Implications for Petroleum Geology
-
摘要: 准噶尔盆地西部地区(准西地区)经历多旋回构造演化,其内部复杂断裂的形成时代、复活机制及控藏作用不明,制约油气勘探部署.通过覆盖区地震资料和盆缘露头构造解析,开展断裂发育特征、形成机制及油气地质意义研究.该区发育四期构造变形,受控于不同动力学背景:海西期受多板块多向碰撞挤压,形成N-S向脆韧性、NW向韧脆性及NE向脆性逆冲推覆断裂;印支期受准噶尔地块旋转与E-W向挤压,发育盆缘右旋压扭断裂及近E-W向共轭剪破裂体系;燕山期,受班公湖‒怒江洋NNE向俯冲影响,达尔布特断裂带左行走滑剪切,派生NW向与E-W向缝网状次级走滑断裂;喜山期,受北天山快速隆升影响,准西地区掀斜拉张,形成放射状、阶梯状正断裂.油气地质意义上,海西期逆冲断裂构成油气封堵边界,形成断背斜、断块圈闭;印支期“断‒断”输导体系输导油气,形成石炭系风化壳和内幕2类古油藏,发育复合圈闭;燕山期缝网状断裂主导油气向西超远距离输导,并推动部分油气向侏罗‒白垩系聚集;喜山期正断裂沟通深层油气向新近系调整,形成构造‒地层圈闭.不同期次断裂通过储层改造、纵横输导、古藏上调,控制多套含油层系纵向有序叠置,构成立体勘探格架,为准西地区油气勘探提供理论支撑.Abstract: The western Junggar Basin (WJB) has undergone multi-stage tectonic evolution. However, there are still uncertainties regarding the deformation timing, reactivation dynamics, and reservoir-controlling effect of complex faults within the WJB, which restricts oil and gas evaluation and exploration efforts. In this paper, it clarified the development characteristics and reservoir-controlling mechanisms of faults at different stages through integrated structural analysis of intra-basin seismic data and basin-margin field outcrops. The research shows that the WJB has mainly undergone four stages of deformation, each controlled by differential dynamic settings. During the Hercynian, multi-directional plate collisions and compressions generated multi-episode thrust-nappe faults, including N-striking brittle-ductile, NW-striking ductile-brittle, and NE-striking brittle faults. During the Indosinian, thrust-transpressional faults developed in the WJB, driven by the counterclockwise rotation of the Junggar Block and EW-directed compression, with basin-margin dextral transpressional faults and near EW-striking conjugate shear faults formed. During the Yanshanian, the NNE-directed subduction of the Bangong-Nujiang Ocean and the subsequent Lhasa Block collision drove left-lateral strike-slip shearing of the Darbut Fault Zone, and its Riedel shears derived NW-striking and E-striking dextral secondary strike-slip faults. During the Himalayan, the rapid uplift of the North Tianshan Mountains, driven by the India-Eurasia continental collision, triggered the rapid southward tilting of the WJB, generating extensional normal faults within the WJB. In terms of hydrocarbon geological significance, Hercynian thrust-nappe faults were later intensely filled with hydrothermal fluids, forming boundaries that seal oil and gas in deep formations, and basic traps such as faulted anticlines and fault blocks developed concurrently. The Indosinian "fault-fault" migration system transported oil and gas from source rock areas to the Carboniferous, forming two types of paleo-oil reservoirs in the Carboniferous, namely weathered crust reservoirs and interior reservoirs, and developing composite traps concurrently.Yanshanian reticular faults dominated ultra-long-distance westward oil and gas migration, and differential strike-slip movement promoted the migration and accumulation of some oil and gas into the overlying Jurassic-Cretaceous strata. Himalayan normal faults channeled deep oil and gas upward to adjust and accumulate in the Neogene, with the concurrent formation of structural-stratigraphic traps. Multi-stage faults regulated differential hydrocarbon accumulation through reservoir modification, vertical-horizontal migration, and paleo-reservoir adjustment. The vertically ordered superimposition of multiple oil-bearing intervals forms a stereoscopic exploration framework, providing theoretical support for hydrocarbon exploration breakthroughs in the WJB.
-
图 2 准西地区断裂体系地震剖面图(剖面位置见图 1)
Fig. 2. Seismic profile of the fault system in the western Junggar Basin
图 3 准西车排子凸起侏罗系平面分布(a)与剖面连井储层发育特征图(b)(位置见图 1)
Fig. 3. Jurassic distribution (a) and connecting-well section of reservoir development characteristics in the Chepaizi Uplift, western Junggar Basin (b)
图 5 准西盆‒山过渡区地震相干‒时间切片与断裂分期活动特征(平面位置见图 1)
Fig. 5. Seismic coherence-time slices and staged activity characteristics of faults in the basin-mountain transition zone of the western Junggar
图 6 准西缘石炭系野外构造变形特征(野外点位位置见图 1)
a.石炭系S1面理卷入N-S向F1褶皱变形(白色虚线),被NW向F2褶皱(黄色虚线)叠加改造,形成S2面理,整体被后期E-W向花状走滑断裂(红色实线)所切割,吴氏网,下半球,黑点为面理极点,红线为褶皱轴面;b. 石炭系NW向F2逆断裂(黄色实线)被NE向F3逆断裂(红色实线)截切,吴氏网,下半球,灰线为F2断裂,黑线为F3断裂;c. 石炭系最晚期E-W向推覆断裂(白色实线),为区域露头最后一期变形,图中切割了F2褶皱(黄色虚线)及E-W向花状走滑断裂(红色实线);d. 三叠系发育E-W向和NWW向共轭剪切断裂(红色粗线),切割了早期NW向等逆冲断裂,吴氏网,下半球,黑线为F2断裂,蓝线为共轭剪切断裂;e. 侏罗系发育E-W向、NW向两组走滑断裂,花状构造,向深层收敛(白色虚线),并被后期正断裂(浅蓝色实线)所截切
Fig. 6. Field deformation characteristics of the Carboniferous in the western Junggar
图 7 准西地区及邻区构造演化及应力场演变示意图
据Yi et al.(2015);Van der Voo et al.(2015)修改
Fig. 7. Schematic diagrams of tectonic evolution and associated stress field changes in the western Junggar Block and its adjacent areas
-
Aydin, A., 2000. Fractures, Faults, and Hydrocarbon Entrapment, Migration and Flow. Marine and Petroleum Geology, 17(7): 797-814. https://doi.org/10.1016/S0264-8172(00)00020-9 Chen, L., 2018. Hydrocarbon Accumulation Features of Carboniferous Pyroclastic Sedimentary Rock Reservoir in Western Wing of Chepaizi Uplift. Journal of Northeast Petroleum University, 42(3): 46-55 (in Chinese with English abstract). Chen, P., Wu, X. N., Lin, Y., et al., 2025. Carboniferous Structural Characteristics and Hydrocarbon Accumulation Regularity of Chepaizi Uplift in Junggar Basin. Lithologic Reservoirs, 37(1): 68-77 (in Chinese with English abstract). Chen, S., Guo, Z. J., Qi, J. F., et al., 2016. Three-Stage Strike-Slip Fault Systems at Northwestern Margin of Junggar Basin and Their Implications for Hydrocarbon Exploration. Oil & Gas Geology, 37(3): 322-331 (in Chinese with English abstract). Choulet, F., Faure, M., Cluzel, D., et al., 2012. From Oblique Accretion to Transpression in the Evolution of the Altaid Collage: New Insights from West Junggar, Northwestern China. Gondwana Research, 21(2-3): 530-547. https://doi.org/10.1016/j.gr.2011.07.015 Dong, D. W., Li, L., Wang, X. L., et al., 2015. Structural Evolution and Dislocation Mechanism of Western Margin Chepaizi Uplift of Junggar Basin. Journal of Jilin University (Earth Science Edition), 45(4): 1132-1141 (in Chinese with English abstract). Dou, F. P., Li, J. H., Peng, M., 2024. Tectonic Deformation Mechanism of the Fault Zone in the Northwest Margin of Junggar Basin: Based on Physical Experimental Simulation. Geological Bulletin of China, 43(4): 527-535 (in Chinese with English abstract). Fan, C., Su, Z., Zhou, L., 2014. Kinematic Features of Darlbute Fault in Northwestern Margin of Junggar Basin. Chinese Journal of Geology, 49(4): 1045-1058 (in Chinese with English abstract). Fan, J. J., Li, C., Wang, M., et al., 2018. Reconstructing in Space and Time the Closure of the Middle and Western Segments of the Bangong-Nujiang Tethyan Ocean in the Tibetan Plateau. International Journal of Earth Sciences, 107(1): 231-249. https://doi.org/10.1007/s00531-017-1487-4 Feng, J. W., Dai, J. S., Ge, S. Q., 2008. Structural Evolution and Pool-Forming in Wuxia Fault Belt of Junggar Basin. Journal of China University of Petroleum (Edition of Natural Science), 32(3): 23-29 (in Chinese with English abstract). Feng, Q. W., Li, J. Y., Liu, J. F., et al., 2012. Ages of the Hongshan Granite and Intruding Dioritic Dyke Swarms, in Western Junggar, Xinjiang, NW China: Evidence form LA-ICP-MS Zircon Chronology. Acta Petrologica Sinica, 28(9): 2935-2949 (in Chinese with English abstract). Fu, Y. H., Neng, Y., Xing, X. J., et al., 2025. Layered and Segmented Deformation Characteristics and Formation and Evolution Process of the Dazhuluogou Strike-Slip Fault Zone in the Northwestern Margin of Junggar Basin. Geotectonica et Metallogenia, 1-18 (in Chinese with English abstract). https://link.cnki.net/doi/10.16539/j.ddgzyckx.2025.00.006 doi: 10.16539/j.ddgzyckx.2025.00.006 Gu, P. Y., Li, Y. J., Zhang, B., et al., 2009. LA-ICP-MS Zircon U-Pb Dating of Gabbro in the Darbut Ophiolite, Western Junggar, China. Acta Petrologica Sinica, 25(6): 1364-1372 (in Chinese with English abstract). Guo, R. H., Li, S. Z., Zhou, J., et al., 2022. The Mesozoic Amdo Micro-Block and East Asian Superconvergent Tectonic System. Gondwana Research, 101: 257-277. https://doi.org/10.1016/j.gr.2021.09.001 He, D. F., Zhang, L., Wu, S. T., et al., 2018. Tectonic Evolution Stages and Features of the Junggar Basin. Oil & Gas Geology, 39(5): 845-861 (in Chinese with English abstract). He, X. X., Xiao, L., Wang, G. C., et al., 2015. Petrogenesis and Geological Implications of Late Paleozoic Intermediate-Basic Dyke Swarms in Western Junggar. Earth Science, 40(5): 777-796 (in Chinese with English abstract). Hu, Y., Xia, B., Wang, Y. K., et al., 2014. Tectonic Evolution and Hydrocarbon Accumulation Model in Eastern Precaspian Basin. Sedimentary Geology and Tethyan Geology, 34(3): 78-81 (in Chinese with English abstract). Ji, Y. L., Zhou, Y., Kuang, J., et al., 2010. The Formation and Evolution of Chepaizi-Mosuowan Paleo-Uplift and Its Control on the Distributions of Sedimentary Facies in the Junggar Basin. Science China Earth Sciences, 53(6): 818-831. https://doi.org/10.1007/s11430-010-3068-2 Li, L., Wang, G. C., Yan, W. B., et al., 2015. Characteristics of Cleavages with Different Directions in Houshan Area of Karamay, Xinjiang, NW China and Their Geodynamic Background. Earth Science, 40(3): 521-534 (in Chinese with English abstract). Li, P. F., Sun, M., Rosenbaum, G., et al., 2018. Geometry, Kinematics and Tectonic Models of the Kazakhstan Orocline, Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 153: 42-56. https://doi.org/10.1016/j.jseaes.2017.07.029 Li, X. G., Chen, G., Wu, C., et al., 2023. Tectono- Stratigraphic Framework and Evolution of East Junggar Basin, Central Asia. Tectonophysics, 851: 229758. https://doi.org/10.1016/j.tecto.2023.229758 Liang, Y. Y., 2020. Strike-Slip Fault System at the Northwestern Margin of Junggar Basin and Its Relationship with Hydrocarbon Accumulation (Dissertation). China University of Petroleum, Beijing, 16-23 (in Chinese with English abstract). Ma, C., Wu, K. Y., Pei, Y. W., et al., 2019. Quantitative Analysis of Tectonic Characteristics and Evolution in the Eastern Junggar Basin. Journal of Geomechanics, 25(3): 313-323 (in Chinese with English abstract). Ma, X. P., Zhuang, X. G., He, Y. L., et al., 2025. Reservoir Forming Conditions and Models of Oil Sands in Northwestern Margin of Junggar Basin, China. Journal of Earth Science, 36(2): 611-626. https://doi.org/10.1007/s12583-022-1751-9 Ren, X. C., Xiu, J. L., Liu, L., et al., 2023. Late Paleozoic- Mesozoic Structural Style, Deformation Sequence, and Formation Process and Mechanism of the Checkboard Structure in the Eastern Junggar Basin. Journal of Geomechanics, 29(2): 155-173 (in Chinese with English abstract). Shang, F. K., 2020. Characteristics and Formation Mechanism of Multi-Stage Complex Fault System of Uplift in Superimposed Basin: A Case Study of Chepaizi Uplift, Junggar Basin, NW China. Fault-Block Oil & Gas Field, 27(3): 278-283 (in Chinese with English abstract). Tang, W. B., Zhang, Y. Y., Pe-Piper, G., et al., 2021. Permian Rifting Processes in the NW Junggar Basin, China: Implications for the Post-Accretionary Successor Basins. Gondwana Research, 98: 107-124. https://doi.org/10.1016/j.gr.2021.06.005 Van der Voo, R., van Hinsbergen, D. J., Domeier, M., et al., 2015. Latest Jurassic-Earliest Cretaceous Closure of the Mongol-Okhotsk Ocean: A Paleomagnetic and Seismological-Tomographic Analysis. In: Anderson, T. H., Didenko, A. N., Johnson, C. L., et al., eds., Late Jurassic Margin of Laurasia-A Record of Faulting Accommodating Plate Rotation. The Geological Society of America, Boulder. Wang, J. W., Bao, J., Cao, J. J., et al., 2022. Two Types of Strike-Slip Fault Zones and Their Tectonic Deformation Patterns in the Central Junggar Basin. Earth Science, 47(9): 3389-3400 (in Chinese with English abstract). Wang, L., Xu, Y. D., Zhang, Y. J., et al., 2020. Predominant Factors and Development Mode of Carboniferous Reservoirs in Chepaizi Uplift, Junggar Basin. Journal of Northeast Petroleum University, 44(2): 79-90 (in Chinese with English abstract). Wang, Q. J., Ren, X. C., Zhang, Y. J., et al., 2025. Carboniferous Volcanic Rock Reservoir Characteristics and Main Controlling Factors in Chepaizi Uplift, the Junggar Basin. Science Technology and Engineering, 25(6): 2311-2323 (in Chinese with English abstract). Wang, X. J., Song, Y., Zheng, M. L., et al., 2022. Tectonic Evolution of and Hydrocarbon Accumulation in the Western Junggar Basin. Earth Science Frontiers, 29(6): 188-205 (in Chinese with English abstract). Wang, Z. Y., Gao, Z. Q., Fan, T. L., et al., 2020. Structural Characterization and Hydrocarbon Prediction for the SB5M Strike-Slip Fault Zone in the Shuntuo Low Uplift, Tarim Basin. Marine and Petroleum Geology, 117: 104418. https://doi.org/10.1016/j.marpetgeo.2020.104418 Wu, H., Zhuo, Q. G., Liu, S. B., et al., 2024. Ultra-Deep Tectonic Evolution and Hydrocarbon Accumulation Process in the Lower Play of Sikeshu Sag, Southern Junggar Basin, Western China. Acta Geologica Sinica, 98(7): 2216-2232 (in Chinese with English abstract). Xie, C. M., Shi, Z., Duan, M. L., et al., 2025. Research Progress and Existing Issues on the Paleozoic Strata in the Qiangtang Terrane of the Qinghai-Xizang Plateau. Journal of Northwest University (Natural Science Edition), 55(3): 501-522 (in Chinese with English abstract). Xu, Y. D., 2018. Hydrocarbon Migration Pathways and Migration and Accumulation Modes in Carboniferous Volcanic Reservoirs of Chepaizi Area. Journal of Xi'an Shiyou University (Natural Science Edition), 33(6): 34-41 (in Chinese with English abstract). Yi, Z. Y., Huang, B. C., Xiao, W. J., et al., 2015. Paleomagnetic Study of Late Paleozoic Rocks in the Tacheng Basin of West Junggar (NW China): Implications for the Tectonic Evolution of the Western Altaids. Gondwana Research, 27(2): 862-877. https://doi.org/10.1016/j.gr.2013.11.006 Yin, J. Y., Yuan, C., Wang, Y. J., et al., 2011. Magmatic Records on the Late Paleozoic Tectonic Evolution of Western Junggar, Xinjiang. Geotectonica et Metallogenia, 35(2): 278-291 (in Chinese with English abstract). Zeng, Z. P., Liu, X. F., 2020. Geological Characteristics and Its Geological Significance of the Unconformity on the Top of Carboniferous in Chepaizi Area, Western Junggar Basin. Xinjiang Geology, 38(1): 61-65 (in Chinese with English abstract). Zhou, J. X., Xu, C. Q., Huang, Z., et al., 2025. Enhanced Formation Conditions of the Large-Scale Volcanic Reservoir in the BZ8-3S Large Volcanic Structure in Bozhong Sag, Bohai Bay Basin. Earth Science, 50(2): 388-404 (in Chinese with English abstract). 陈林, 2018. 车排子凸起西翼石炭系火山沉积岩储层油气成藏特征. 东北石油大学学报, 42(3): 46-55. 陈鹏, 武小宁, 林煜, 等, 2025. 准噶尔盆地车排子凸起石炭系构造特征与油气富集规律. 岩性油气藏, 37(1): 68-77. 陈石, 郭召杰, 漆家福, 等, 2016. 准噶尔盆地西北缘三期走滑构造及其油气意义. 石油与天然气地质, 37(3): 322-331. 董大伟, 李理, 王晓蕾, 等, 2015. 准噶尔盆地西缘车排子凸起构造演化及断层形成机制. 吉林大学学报(地球科学版), 45(4): 1132-1141. 豆方鹏, 李江海, 彭谋, 2024. 准噶尔盆地西北缘断裂带构造变形机制——基于物理实验模拟研究. 地质通报, 43(4): 527-535. 樊春, 苏哲, 周莉, 2014. 准噶尔盆地西北缘达尔布特断裂的运动学特征. 地质科学, 49(4): 1045-1058. 冯建伟, 戴俊生, 葛盛权, 2008. 准噶尔盆地乌夏断裂带构造演化及油气聚集. 中国石油大学学报(自然科学版), 32(3): 23-29. 冯乾文, 李锦轶, 刘建峰, 等, 2012. 新疆西准噶尔红山岩体及其中闪长质岩墙的时代——来自锆石LA-ICP-MS定年的证据. 岩石学报, 28(9): 2935-2949. 付永红, 能源, 邢向杰, 等, 2025. 准噶尔盆地西北缘大侏罗沟走滑断裂带分层、分段变形特征及形成演化过程. 大地构造与成矿学, 1-18. 辜平阳, 李永军, 张兵, 等, 2009. 西准达尔布特蛇绿岩中辉长岩LA-ICP-MS锆石U-Pb测年. 岩石学报, 25(6): 1364-1372. 何登发, 张磊, 吴松涛, 等, 2018. 准噶尔盆地构造演化阶段及其特征. 石油与天然气地质, 39(5): 845-861. 贺新星, 肖龙, 王国灿, 等, 2015. 西准噶尔晚古生代中基性岩墙群岩石学成因及地质意义. 地球科学, 40(5): 777-796. doi: 10.3799/dqkx.2015.064 胡杨, 夏斌, 王燕琨, 等, 2014. 滨里海盆地东缘构造演化及油气成藏模式分析. 沉积与特提斯地质, 34(3): 78-81. 李理, 王国灿, 晏文博, 等, 2015. 西准噶尔克拉玛依后山地区不同方向劈理特征及其动力学背景. 地球科学, 40(3): 521-534. doi: 10.3799/dqkx.2015.041 梁媛媛, 2020. 准噶尔盆地西北缘走滑构造特征及其控藏作用研究(硕士学位论文). 北京: 中国石油大学, 16-23. 马超, 吴孔友, 裴仰文, 等, 2019. 准噶尔盆地东部构造特征及演化定量分析. 地质力学学报, 25(3): 313-323. 任新成, 修金磊, 刘林, 等, 2023. 准噶尔东部晚古生代‒中生代构造样式、变形序列及棋盘格构造的形成过程与机制. 地质力学学报, 29(2): 155-173. 商丰凯, 2020. 叠合盆地凸起区多期复杂断裂特征及形成机制——以准噶尔盆地车排子凸起为例. 断块油气田, 27(3): 278-283. 王建伟, 鲍军, 曹建军, 等, 2022. 准噶尔盆地腹部两类走滑断裂带及其构造变形样式. 地球科学, 47(9): 3389-3400. doi: 10.3799/dqkx.2022.032 王林, 徐佑德, 张曰静, 等, 2020. 准噶尔盆地车排子凸起石炭系储层主控因素及发育模式. 东北石油大学学报, 44(2): 79-90. 王千军, 任新成, 张曰静, 等, 2025. 准噶尔盆地车排子凸起石炭系火山岩储层特征及主控因素. 科学技术与工程, 25(6): 2311-2323. 王小军, 宋永, 郑孟林, 等, 2022. 准噶尔西部陆内盆地构造演化与油气聚集. 地学前缘, 29(6): 188-205. 吴海, 卓勤功, 柳少波, 等, 2024. 准噶尔盆地南缘四棵树凹陷超深层构造演化与油气成藏过程. 地质学报, 98(7): 2216-2232. 解超明, 史哲, 段梦龙, 等, 2025. 青藏高原羌塘古生界研究进展与存在问题. 西北大学学报(自然科学版), 55(3): 501-522. 徐佑德, 2018. 车排子地区石炭系火山岩油藏油气输导体系与运聚模式. 西安石油大学学报(自然科学版), 33(6): 34-41. 尹继元, 袁超, 王毓婧, 等, 2011. 新疆西准噶尔晚古生代大地构造演化的岩浆活动记录. 大地构造与成矿学, 35(2): 278-291. 曾治平, 刘显凤, 2020. 准西车排子地区石炭系顶不整合结构地质特征及其地质意义. 新疆地质, 38(1): 61-65. 周家雄, 徐春强, 黄志, 等, 2025. 渤海湾盆地渤中凹陷BZ8-3S大型构造规模型火山岩储层形成条件. 地球科学, 50(2): 388-404. doi: 10.3799/dqkx.2024.026 -




下载: