|
Akoto, O., Yakubu, S., Ofori, L.A., Bortey-sam, N., Boadi, N.O., Horgah, J., Sackey, L.N.A., 2023. Multivariate studies and heavy metal pollution in soil from gold mining area. Heliyon 9, e12661. https://doi.org/10.1016/j.heliyon.2022.e12661 |
|
Bai, S.H., Tahmasbian, I., Zhou, J., Nevenimo, T., Hannet, G., Walton, D., Randall, B., Gama, T., Wallace, H.M., 2018. A non-destructive determination of peroxide values, total nitrogen and mineral nutrients in an edible tree nut using hyperspectral imaging. Computers and Electronics in Agriculture 151, 492–500. https://doi.org/10.1016/j.compag.2018.06.029 |
|
Briffa, J., Sinagra, E., Blundell, R., 2020. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6, e04691. https://doi.org/10.1016/j.heliyon.2020.e04691 |
|
Chen, W., Li, Z., Wang, H., He, W., Chen, Z., Li, J., 2025. HTransNet: A Hierarchical Transformer Network with Dual Attention for Large-Scale Mining Scene Classification Using Multi-Category High- Resolution Remote Sensing Dataset. Journal of Earth Science. doi: 10.1007/s12583-025-0335-x |
|
Chen, Y., Jiang, X., Wang, Y., Zhuang, D., 2018. Spatial characteristics of heavy metal pollution and the potential ecological risk of a typical mining area: A case study in China. Process Safety and Environmental Protection 113, 204–219. https://doi.org/10.1016/j.psep.2017.10.008 |
|
Chen, Z., Chen, Y., Shi, T., Chen, X., Pan, X., Lei, J., Wu, T., Li, Y., Liu, Q., Liu, X., 2023. Estimation of Soil Organic Carbon in Tropical Rainforest Regions by Combining Uav Hyperspectral and Lidar Data. https://doi.org/10.2139/ssrn.4547030 |
|
Cheng, H., Shen, R., Chen, Y., Wan, Q., Shi, T., Wang, J., Wan, Y., Hong, Y., Li, X., 2019. Estimating heavy metal concentrations in suburban soils with reflectance spectroscopy. Geoderma 336, 59–67. https://doi.org/10.1016/j.geoderma.2018.08.010 |
|
Fathabad, A.E., Shariatifar, N., Moazzen, M., Nazmara, S., Fakhri, Y., Alimohammadi, M., Azari, A., Mousavi Khaneghah, A., 2018. Determination of heavy metal content of processed fruit products from Tehran’s market using ICP- OES: A risk assessment study. Food and Chemical Toxicology 115, 436–446. https://doi.org/10.1016/j.fct.2018.03.044 |
|
Habashi, J., Mohammady Oskouei, M., Jamshid Moghadam, H., Beiranvand Pour, A., 2024. Optimizing alteration mineral detection: A fusion of multispectral and hyperspectral remote sensing techniques in the Sar-e-Chah-e Shur, Iran. Remote Sensing Applications: Society and Environment 35, 101249. https://doi.org/10.1016/j.rsase.2024.101249 |
|
Hu, J., Peng, D., Chen, J.M., Huete, A.R., Yu, L., Lou, Z., Cheng, E., Yang, X., Zhang, B., 2025. High-precision inversion of vegetation parameters in the AI era: Integrating hyperspectral remote sensing and deep learning. The Innovation 6, 100868. https://doi.org/10.1016/j.xinn.2025.100868 |
|
Jaffari, Z.H., Abbas, A., Kim, C.-M., Shin, J., Kwak, J., Son, C., Lee, Y.-G., Kim, S., Chon, K., Cho, K.H., 2024. Transformer-based deep learning models for adsorption capacity prediction of heavy metal ions toward biochar-based adsorbents. Journal of Hazardous Materials 462, 132773. https://doi.org/10.1016/j.jhazmat.2023.132773 |
|
Kyabutwa, P.L., Alyamni, N., Abot, J.L., Zestos, A.G., 2025. Recent Trends in Electrochemical Methods for Real-Time Detection of Heavy Metals in Water and Soil: A Review. Current Opinion in Electrochemistry 101749. https://doi.org/10.1016/j.coelec.2025.101749 |
|
Liu, J.; Lan, J.; Zeng, Y.; Luo, W.; Zhuang, Z.; Zou, J. Explainability Feature Bands Adaptive Selection for Hyperspectral Image Classification. Remote Sens. 2025, 17, 1620. https://doi.org/10.3390/rs17091620 |
|
Modzelewska, A., Fassnacht, F.E., Stereńczak, K., 2020. Tree species identification within an extensive forest area with diverse management regimes using airborne hyperspectral data. International Journal of Applied Earth Observation and Geoinformation 84, 101960. https://doi.org/10.1016/j.jag.2019.101960 |
|
Mohammed, H., Sadeek, S., Mahmoud, A.R., Zaky, D., 2016. Comparison of AAS, EDXRF, ICP-MS and INAA performance for determination of selected heavy metals in HFO ashes. Microchemical Journal 128, 1–6. https://doi.org/10.1016/j.microc.2016.04.002 |
|
Rawat, H., Singh, R., Dane, G., Gandhi, Y., Kumar, V., Mishra, S.K., Charde, V., Sharma, P., Narasimhaji, Ch.V., Singh, A., Acharya, R., 2024. Exploring the geographical variability of Asphaltum punjabianum (Shilajit) from India in elements and phytochemicals variations using GC–MS/MS, LC, ICP OES, and in-silico studies. Results in Chemistry 10, 101691. https://doi.org/10.1016/j.rechem.2024.101691 |
|
Shi, Y., Shen, X., Hu, M., Yang, A., Zhou, K., Yu, F., Tao, Y., Cao, L., 2025. . Computers and Electronics in Agriculture 239, 110898. https://doi.org/10.1016/j.compag.2025.110898 |
|
Tan, K., Wang, H., Chen, L., Du, Q., Du, P., Pan, C., 2020. Estimation of the spatial distribution of heavy metal in agricultural soils using airborne hyperspectral imaging and random forest. Journal of Hazardous Materials 382, 120987. https://doi.org/10.1016/j.jhazmat.2019.120987 |
|
Tao, C., Wang, Y., Cui, W., Zou, B., Zou, Z., Tu, Y., 2019. A transferable spectroscopic diagnosis model for predicting arsenic contamination in soil. Science of The Total Environment 669, 964–972. https://doi.org/10.1016/j.scitotenv.2019.03.186 |
|
Urbanowicz, R. J., et al. (2018). ReliefF-based feature selection: An updated review. Journal of Biomedical Informatics, 85, 189–203. |
|
Wang, Y., Yang, Y., Li, Q., Zhang, Y., Chen, X., 2022a. Early Warning of Heavy Metal Pollution after Tailing Pond Failure Accident. J. Earth Sci. 33, 1047–1055. https://doi.org/10.1007/s12583-020-1103-6 |
|
Zhou, W., Yang, H., Xie, L., Li, H., Huang, L., Zhao, Y., Yue, T., 2021. Hyperspectral inversion of soil heavy metals in Three-River Source Region based on random forest model. CATENA 202, 105222. https://doi.org/10.1016/j.catena.2021.105222 |
|
戴磊,王贵玲,何雨江.基于分形理论研究土壤结构及其水分特征关系[J].地球科学,2021,46(09):3410-3420. |
|
殷思达.电感耦合等离子体质谱法与原子吸收光谱法在土壤重金属检测中的对比分析[J].中国资源综合利用,2022,40(08):86-88. |
|
杨汉水, 马琳, 王瑞禛, 陈伟涛, 王力哲, 2025. 基于无人机高光谱遥感的黑土土壤有机碳含量反演方法研究. 地球科学, 50(8): 3144-3152. |
|
成永生,周瑶.土壤重金属高光谱遥感定量监测研究进展与趋势[J].中国有色金属学报,2021,31(11):3450-3467. |
|
陈彪,彭欣月,周素红,等.基于多源数据融合的农村建筑智能识别与三维建模方法研究[J].热带地理,2023,43(02):190-201. |
|
刘佳,汪大明,刘德长,等.协同利用高光谱与多光谱遥感技术提取油气异常信息[J].地球科学(中国地质大学学报),2015,40(08):1371-1380. |
|
刘正盛.激光雷达(LiDAR)技术在植被覆盖度高的山区地质灾害识别与应用[J].地下水,2025,47(02):171-173+186. |
|
陈哲锋.LiDAR技术在高植被覆盖区地质灾害调查中最优点云密度的研究与应用[J/OL].工程勘察,1-9[2025-10-22]. |
|
陈刚,郝社锋,蒋波,等.基于机载LiDAR技术植被茂密区小型滑坡识别与评价[J].自然资源遥感,2024,36(03):196-205. |
|
曹锐,湛龙,郭金才,等.湖北秭归月亮包石英脉型金矿床地质特征研究[J].黄金,2007,(02):16-19. |
|
王春洋,李天保,张嘉琦.谈土壤环境监测技术规范中的土壤环境质量评价若干问题[J].环境与发展,2018,30(03):155-156.DOI: 10.16647/j.cnki.cn15-1369/X.2018.03.091. |
|
李会玲,刘严松,沈杜衡,等.铅锌矿集区土壤重金属含量高光谱反演方法研究[J].矿业研究与开发,2025,45(02):204-212. |
|
陈博文,史硕,龚威,等.基于空谱特征优化选择的高光谱激光雷达地物分类[J].光学学报,2023,43(12):284-296. |
|
孟畅,红梅,李斐.高光谱敏感波段筛选与机器学习协同提升土壤重金属预测精度[J].生态环境学报,2025,34(06):950-960. |