• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    蒙绍强, 石振明, 彭铭, 吴彬, 夏成志, 2026. 基于可解释机器学习的库岸滑坡位移预测研究. 地球科学. doi: 10.3799/dqkx.2026.007
    引用本文: 蒙绍强, 石振明, 彭铭, 吴彬, 夏成志, 2026. 基于可解释机器学习的库岸滑坡位移预测研究. 地球科学. doi: 10.3799/dqkx.2026.007
    Meng Shaoqiang, Shi Zhenming, Peng Ming, Wu Bin, Xia Chengzhi, 2026. Reservoir landslide displacement prediction based on explainable machine learning model. Earth Science. doi: 10.3799/dqkx.2026.007
    Citation: Meng Shaoqiang, Shi Zhenming, Peng Ming, Wu Bin, Xia Chengzhi, 2026. Reservoir landslide displacement prediction based on explainable machine learning model. Earth Science. doi: 10.3799/dqkx.2026.007

    基于可解释机器学习的库岸滑坡位移预测研究

    doi: 10.3799/dqkx.2026.007
    基金项目: 

    国家自然科学基金项目(425B2049,42071010, 42061160480, U23A2044),国家重点研发计划项目(No. 2023YFC3008300&2023YFC3008305).

    详细信息
      作者简介:

      蒙绍强 (1996—),男,博士生,主要研究方向为智能应用。E-mail: 2211051@tongji.edu.cn.

      通讯作者:

      石振明 (1968—),男,教授,博士,主要从事地质灾害与防治技术研究。 E⁃mail: 94026@tongji.edu.cn

      彭铭(1981—),男,教授,博士,主要从事地质灾害与风险评估研究。 E⁃mail: pengming@tongji.edu.cn

    • 中图分类号: P642

    Reservoir landslide displacement prediction based on explainable machine learning model

    • 摘要: 库岸滑坡位移是评估边坡稳定性和实现精准预警的关键指标,但受水库水位周期性涨落的影响,其位移过程常呈现阶梯式变化,给建模预测带来较大挑战。为此,本文提出一种融合信号分解、深度学习与模型可解释性的滑坡位移预测方法。首先,采用改进的完全集合经验模态分解自适应噪声法(ICEEMDAN)对位移信号进行分解,有效剥离高频周期项与低频趋势项,缓解模态混叠问题并保留多尺度特征;其次,引入双向门控循环单元(BiGRU)模型,分别对各分量进行建模与逐点预测,提升了对滑坡位移的前后依赖关系及突变响应的刻画能力;最后,借助 SHAP(SHapley Additive exPlanations)方法解释模型预测结果,揭示了历史与当前水库水位、降雨量及近期位移趋势等关键特征在不同监测点的影响差异。案例研究表明,该方法在 RMSE、MAE、MAPE 和 R2 等评价指标上较传统分解方法(EMD、EEMD、CEEMDAN)提升超过20%,BiGRU 在 YY209 监测点实现了 R2 = 0.992、MAE = 3.617 mm 的预测精度,SHAP 分析结果进一步增强了模型的物理可解释性。本研究提出的预测框架兼具精度与透明度,为库岸滑坡风险监测与预警提供了新的技术支撑。

       

    • Al-Najjar Hah, Pradhan B, Beydoun G, et al. 2023. A novel method using explainable artificial intelligence (XAI)-based Shapley Additive Explanations for spatial landslide prediction using Time-Series SAR dataset. Gondwana Research [J], 123: 107-124.
      Chen C, Fan L, et al. 2023. An Attribution Deep Learning Interpretation Model for Landslide Susceptibility Mapping in the Three Gorges Reservoir Area. IEEE Transactions on Geoscience and Remote Sensing [J], 61: 1-15.
      Chen H, Zou J, Wang X, et al. 2023. Inducing factors and deformation mechanism of the Zhangjiacitang landslide in the Three Gorges Reservoir Area. Sci Rep [J], 13: 12926-12940.
      Dou J, Tang H, Dong A, et al. 2025. 融合多尺度特征与注意力机制的地震地表裂缝智能识别与特征分析——以2025年西藏定日Ms6.8地震为例. Earth Science-Journal of China University of Geosciences [J], 0: 1-15.
      Dou J, Xiang Z, Xu Q, et al. 2023. Application and Development Trend of Machine Learning in Landslide Intelligent Disaster Prevention and Mitigation. Earth Science-Journal of China University of Geosciences [J], 48: 1657-1675.
      Ge Q, Li J, Lacasse S, et al. 2024. Data-augmented landslide displacement prediction using generative adversarial network. Journal of Rock Mechanics and Geotechnical Engineering [J], 16: 4017-4033.
      Gong W, Zhang S, Juang C H, et al. 2024. Displacement prediction of landslides at slope-scale: Review of physics-based and data-driven approaches. Earth-Science Reviews [J], 258: 104948-104976.
      Jiang Z, Zhao C, Liu X, et al. 2025. The Regional Differentiation on the Spatial Distribution and Influencing Factors of Potential Landslides Across the Entire Loess Plateau, China, Based on InSAR and Subregion XGBoost-SHAP Model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [J], 18: 2024-2041.
      Kafle L, Xu WJ, Zeng SY, et al. 2022. A numerical investigation of slope stability influenced by the combined effects of reservoir water level fluctuations and precipitation: A case study of the Bianjiazhai landslide in China. Engineering Geology [J], 297: 106508-106521.
      Li B, Wang G, Chen L, et al. 2024a. Analysis of landslide deformation mechanisms and coupling effects under rainfall and reservoir water level effects. Engineering Geology [J], 343: 107803-107819.
      Li G, Hu B, Li H, et al. 2021. Early Identifying and monitoring landslides in Guizhou province with InSAR and optical remote sensing. Journal of Sensors [J], 2021: 1-19.
      Li T, Zhang L, Gong W, et al. 2024b. Initiation mechanism of landslides in cold regions: Role of freeze-thaw cycles. International Journal of Rock Mechanics and Mining Sciences [J], 183: 105906-105916.
      Li Y, Fu B, Yin Y, et al. 2024c. Review on the artificial intelligence-based methods in landslide detection and susceptibility assessment: Current progress and future directions. Intelligent Geoengineering [J], 1: 1-18.
      Liu G, Meng H, Song G, et al. 2024. Numerical simulation of wedge failure of rock slopes using three-dimensional discontinuous deformation analysis. Environmental Earth Sciences [J], 83: 308-339.
      Ma J, Xia D, Wang Y, et al. 2022. A comprehensive comparison among metaheuristics (MHs) for geohazard modeling using machine learning: Insights from a case study of landslide displacement prediction. Engineering Applications of Artificial Intelligence [J], 114: 105150-105169.
      Ma X, Xu Y, Yang J, et al. 2023. A Study of Prediction of Ground Settlement of Shield Tunnel Based on EEMD-BO-GRU Algorithm. Journal of Physics: Conference Series [J], 2450: 12080-12090.
      Ma Z, Mei G 2021. Deep learning for geological hazards analysis: Data, models, applications, and opportunities. Earth-Science Reviews [J], 223.
      Meng S, Shi Z, Li G, et al. 2025. Machine learning-based data mining of reservoir landslide triggering mechanisms and failure time prediction for displacement sudden state. International Journal of Rock Mechanics and Mining Sciences [J], 194: 106234-106251.
      Meng S, Shi Z, Li G, et al. 2024a. A novel deep learning framework for landslide susceptibility assessment using improved deep belief networks with the intelligent optimization algorithm. Computers and Geotechnics [J], 167: 106106-106122.
      Meng S, Shi Z, Peng M, et al. 2024b. Landslide displacement prediction with step-like curve based on convolutional neural network coupled with bi-directional gated recurrent unit optimized by attention mechanism. Engineering Applications of Artificial Intelligence [J], 133: 108078-108099.
      Song K, Yang H, Liang D, et al. 2024. Step-like displacement prediction and failure mechanism analysis of slow-moving reservoir landslide. Journal of Hydrology [J], 628.
      Tehrani F S, Calvello M, Liu Z, et al. 2022. Machine learning and landslide studies: recent advances and applications. Natural Hazards [J], 114: 1197-1245.
      Wang L, Wu C, Yang Z, et al. 2023. Deep learning methods for time-dependent reliability analysis of reservoir slopes in spatially variable soils. Computers and Geotechnics [J], 159: 105413-105424.
      Xiang X, Xiao J, Wen H, et al. 2024. Prediction of landslide step-like displacement using factor preprocessing-based hybrid optimized SVR model in the Three Gorges Reservoir, China. Gondwana Research [J], 126: 289-304.
      Zhang J, Tang H, LI C, et al. 2024. Deformation stage division and early warning of landslides based on the statistical characteristics of landslide kinematic features. Landslides [J], 21: 717-735.
      张世殊,李青春,黎 昊, 等. 2025. 融合多源遥感数据和改进后Mask R-CNN深度学习模型的复杂高原地形区冰湖智能识别. 地球科学 [J], 50: 3132-3144.
      陈铭熙, 陶培捷, 周创兵, 等. 2024. Verhulst反函数预测模型的改进及滑坡时间概率预测. 地球科学 [J], 49: 1692-1705.
      邓李政, 袁宏永, 张鸣之, 等. 2023. 滑坡变形监测预警技术研究进展. 清华大学学报:自然科学版 [J], 63(6): 849-864.
      冯谕, 曾怀恩, 邓华锋, 等. 2025. 基于蠕滑趋势影响和特征优化算法的阶跃型滑坡位移预测模型. 岩石力学与工程学报 [J], 44: 705-720.
      郭子正, 杨玉飞, 何俊, 等. 2024. 考虑注意力机制的新型深度学习模型预测滑坡位移. 地球科学 [J], 49(5):: 1665-1678.
      贺旭荣, 殷跃平, 赵立明, 等. 2024. 基于大型物理模型试验的高位岩质滑坡碎屑流解体破碎效应. 地球科学 [J], 49(7): 2650-2661.
      蒋水华, 熊威, 朱光源, 等. 2024. 暴雨及水位骤降条件下渗流参数空间变异的水库滑坡概率分析. 地球科学 [J], 49(5): 1679-1691.
      李东阳, 年廷凯, 吴昊, 等. 2023. 滑坡–堵江–涌浪灾害链模拟的DEM–CFD耦合分析方法及其应用. 工程科学与技术 [J], 55: 141-149.
      刘艺梁, 陈健翔, 高晨曦, 等. 2022. 基于滑面分区段力学模型的高速滑坡运动过程能量转化研究. 地质科技通报 [J], 41: 139-147.
      刘勇, 李星瑞, 詹伟文, 等. 2023. 动水驱动型滑坡的状态仿射迁移学习方法. 地球科学 [J], 48: 1793-1806.
      肖诗荣, 魏瑞琦, 李莹, 等. 2023. 意大利瓦依昂滑坡研究综述. 人民长江 [J], 54: 130-140.
      邢保印, 张炜怡, 章广成, 等. 2023. 基于变形速率分解的阶跃型滑坡预测——以呷爬滑坡为例. 岩石力学与工程学报 [J], 42: 685-697.
      许强, 朱星, 李为乐, 等. 2022. "天-空-地"协同滑坡监测技术进展. 测绘学报 [J]: 051-62.
      张泰丽, 吴廷尧, 王鲁琦, et al. 2023. 基于BoxJenkins随机模型的滑坡稳定性预测模型. 地球科学 [J], 48: 1989-1999.
    • 加载中
    计量
    • 文章访问数:  12
    • HTML全文浏览量:  0
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-06-30
    • 网络出版日期:  2026-01-28

    目录

      /

      返回文章
      返回