• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    吴昊, 宋博文, 季军良, 张克信, 王嘉轩, 柯学, 2026. 柴达木盆地早渐新世湖相沉积碳氧同位素组成及其古气候意义. 地球科学. doi: 10.3799/dqkx.2026.008
    引用本文: 吴昊, 宋博文, 季军良, 张克信, 王嘉轩, 柯学, 2026. 柴达木盆地早渐新世湖相沉积碳氧同位素组成及其古气候意义. 地球科学. doi: 10.3799/dqkx.2026.008
    Wu Hao, Song Bowen, Ji Junliang, Zhang Kexin, Wang Jiaxuan, Ke Xue, 2026. Carbon and Oxygen Isotopic Composition of Early Oligocene Lacustrine Sediments in the Qaidam Basin and Their Paleoclimate Significance. Earth Science. doi: 10.3799/dqkx.2026.008
    Citation: Wu Hao, Song Bowen, Ji Junliang, Zhang Kexin, Wang Jiaxuan, Ke Xue, 2026. Carbon and Oxygen Isotopic Composition of Early Oligocene Lacustrine Sediments in the Qaidam Basin and Their Paleoclimate Significance. Earth Science. doi: 10.3799/dqkx.2026.008

    柴达木盆地早渐新世湖相沉积碳氧同位素组成及其古气候意义

    doi: 10.3799/dqkx.2026.008
    基金项目: 

    国家自然科学基金项目(42572126,42072141,41702118)和中国地质调查局地质调查项目(DD20221645)联合资助.

    详细信息
      作者简介:

      吴昊(2003—),男,硕士研究生,地质资源与地质工程专业。ORCID: 0009-0007-3000-794X. E-mail: 1424712948@qq.com

      通讯作者:

      宋博文(1985—),男,副教授,硕士生导师,从事古生物学与地层学、沉积学研究。E-mail: bwsong1985@cug.edu.cn

    • 中图分类号: P597.2

    Carbon and Oxygen Isotopic Composition of Early Oligocene Lacustrine Sediments in the Qaidam Basin and Their Paleoclimate Significance

    • 摘要: 青藏高原新生代以来的隆升显著改变了亚洲的构造地貌格局,而且深刻影响了东亚及全球的新生代季风环流和气候演变过程。位于青藏高原北部的柴达木盆地是研究新生代气候环境演化历史的重要窗口。湖相沉积作为连续的、高分辨率的环境记录载体,对区域环境响应十分灵敏,而其中赋存的自生碳酸盐是古湖泊地质历史时期古气候重建研究的重要载体。本文以柴达木盆地北部大红沟剖面上干柴沟组中的湖相泥灰岩为研究对象,利用X射线衍射、扫描电镜及能谱分析确定其矿物组成为石英、方解石、伊利石、斜长石、绿泥石、钾长石等。通过泥灰岩碳氧同位素组成相关性分析(r2=0.04)以及与区域及全球现代湖泊沉积自生碳酸盐碳氧同位素组成对比,揭示出柴达木古湖在早渐新世(~30.8 Ma)仍然为一开放型淡水湖泊。在此基础上,基于泥灰岩氧同位素组成重建了柴达木古湖早渐新世(~30.8 Ma)时期夏季大气降水的氧同位素值(~-6.2±0.7‰)。该值较柴达木盆地现代夏季大气降水及河水δ18O(water-SMOW)值高~2.2‰,指示自早渐新世(~30.8 Ma)以来柴达木盆地夏季发生了显著降温,幅度达~6.5 ℃。这一降温过程受全球变冷及青藏高原隆升共同驱动,其中全球变冷起到了主导作用。

       

    • An, Z. S., Kutzbach, J. E., Prell, W. L., et al., 2001. Evolution of Asian Monsoons and Phased Uplift of the Himalaya-Tibetan Plateau since Late Miocene Times. Nature, 411: 62-66. https://doi.org/10.1038/35075035 Bougeois, L., Dupont-Nivet, G., de Rafélis, M., et al., 2018. Asian Monsoons and Aridification Response to Paleogene Sea Retreat and Neogene Westerly Shielding Indicated by Seasonality in Paratethys Oysters. Earth and Planetary Science Letters, 485: 99-110. https://doi.org/ 10.1016/j.epsl.2017.12.036 Bureau of Geology and Mineral Resources of Qinghai Province, 1991. Regional Geology of Qinghai Province. Geological Publishing House, Beijing (in Chinese). Caves, J. K., Winnick, M. J., Graham, S. A., et al., 2015. Role of the Westerlies in Central Asia Climate Over the Cenozoic. Earth and Planetary Science Letters, 428: 33-43. https://doi.org/10.1016/j.epsl.2015.07.023 Chang, H., Li, L. Y., Qiang, X. K., et al., 2015. Magnetostratigraphy of Cenozoic Deposits in the Western Qaidam Basin and Its Implication for the Surface Uplift of the Northeastern Margin of the Tibetan Plateau. Earth and Planetary Science Letters, 430: 271-283. https://doi.org/10.1016/j.epsl.2015.08.029 Chen, F. H., Chen, J. H., Huang, W., et al., 2019. Westerlies Asia and Monsoonal Asia: Spatiotemporal Differences in Climate Change and Possible Mechanisms on Decadal to Sub-Orbital Timescales. Earth-Science Reviews, 192: 337-354. https://doi.org/10.1016/ j.earscirev.2019.03.005 Cheng, F., Jolivet, M., Guo, Z. J., et al., 2021. Cenozoic Evolution of the Qaidam Basin and Implications for the Growth of The Northern Tibetan Plateau: A review. Earth-Science Reviews, 220 (B1): 103730. https://doi.org/ 10.1016/j.earscirev.2021.103730 Craig, H., 1961. Isotopic Variations in Meteoric Waters. Science, 133(3465): 1702-1703. DOI: 10.1126/science.133.3465.1702 Craig, H., Gordon, L., 1965. Deuterium and Oxygen 18 Variations in the Ocean and Marine Atmosphere. Symposium on Marine Geochemistry. In :Tongiorgi, Eds. Stable Isotopes in Oceanographic Studies and Palaeotemperatures. Pisa:Consiglio Nazionale delle Ricerche Laboratorio di Geologia Nucle-are, 1965: 161-182. Dettman, D. L., Fang, X. M., Garzione, C.N., et al., 2003. Uplift-driven climate change at 12 Ma: a long δ18O record from the NE margin of the Tibetan plateau. Earth and Planetary Science Letters, 214 (1-2), 267-277. Ding, L., Kapp, P., Cai, F. L., et al., 2022. Timing and Mechanisms of Tibetan Plateau Uplift. Nature Reviews Earth & Environment, 3(10): 652-667. https://doi.org/10.1038/s43017-022-00318-4 Dupont-Nivet, G., Krijgsman, W., Langereis, C. G., et al., 2007. Tibetan Plateau Aridification Linked to Global Cooling at the Eocene-Oligocene Transition. Nature, 445: 635-638. https://doi.org/10.1038/nature05516 Fan, M. J., Hough, B. G., Passey, B. H., 2014. Middle to Late Cenozoic Cooling and High Topography in the Central Rocky Mountains: Constraints from Clumped Isotope Geochemistry. Earth and Planetary Science Letters, 408: 35-47. https://doi.org/10.1016/ j.epsl. 2014.09.050 Fang, X. M., Dupont-Nivet, G.,Wang, C. S. et al., 2020. Revised Chronology of Central Tibet Uplift (Lunpola Basin). Science Advances, 6(50): eaba7298. DOI:10.1126/sciadv.aba7298 Fang, X. M., Galy A, Yang, Y. B., et al., 2019. Paleogene Global Cooling–induced Temperature Feedback on Chemical Weathering, as Recorded in the Northern Tibetan Plateau. Geology, 47(10): 992-996. https://doi.org/10.1130/G46422.1 Fang, X. M., Guo, Z. T., Jiang, D. B., et al., 2022. No Monsoon-Dominated Climate in Northern Subtropical Asia before 35Ma. Global and Planetary Change, 218: 103970. https://doi.org/10.1016/j.gloplacha.2022.103970 Fang, X. M., Zhang, W. L., Meng, Q. Q., et al., 2007. High-resolution Magnetostratigraphy of the Neogene Huaitoutala Section in the Eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and Its Implication on Tectonic Uplift of the NE Tibetan Plateau. Earth and Planetary Science Letters, 258(1-2): 293-306. https://doi.org/10.1016/j.epsl.2007.03.042 Fu, Z. M., Li, S. H., Wang, W. Y., et al., 2025. Advances in the chronostratigraphy of the Cenozoic succession in the Qaidam Basin. Journal of Stratigraphy. https://doi.org/10.19839/j.cnki.dcxzz.2025.0033 Ge, M. J., Wu, L., Wu, S.T., et al., 2025. Late Oligocene Formation of the Qaidam Basin Revealed by Calcite U-Pb Dating: Insights into the Northward Growth of Tibetan Plateau. Earth and Planetary Science Letters, 653: 119208. https://doi.org/10.1016/j.epsl.2025.119208 Guo, P., Liu, C. Y., Huang, L., et al., 2018. Palaeohydrological Evolution of the Late Cenozoic Saline lake in the Qaidam Basin, NE Tibetan Plateau: Tectonic vs. Climatic Control. Global and Planetary Change, 165: 44-61. https://doi.org/10.1016/j.gloplacha.2018.03.012 Guo, Z. T., Ruddiman, W. F.,Hao, Q. Z., et al., 2002. Onset of Asian Desertification by 22 Myr ago Inferred from Loess Deposits in China. Nature, 416(6877): 159-163. https://doi.org/10.1038/416159A Halim, N., Chen, Y., Cogné, J. P., 2003. A First Palaeomagnetic Study of Jurassic Formations from the Qaidam Basin, Northeastern Tibet, China—Tectonic Tmplications. Geophysical Journal International, 153(1): 20-26. https://doi.org/10.1046/j.1365-246X.2003.01860.x Han, F., Yang, T. L., Zhang, K. X., et al., 2020. Early Oligocene Podocarpium (Leguminosae) from Qaidam Basin and Its Paleoecological and Biogeographical Implications. Review of Palaeobotany and Palynology, 282: 104309. https://doi.org/10.1016/j.revpalbo. 2020.104309. Han, W. X., Fang, X. M., Ye, C. C., et al., 2014. Tibet Forcing Quaternary Stepwise Enhancement of Westerly Jet and Central Asian Aridification: Carbonate Isotope Records from Deep Drilling in the Qaidam Salt Playa, NE Tibet. Global and Planetary Change, 116: 68-75. https://doi.org/10.1016/j.gloplacha.2014.02.006 Hansen, J., Sato, M., Kharecha, P., et al., 2008. Target atmospheric CO2: Where should humanity aim? The Open Atmospheric Science Journal, 2: 217-231. https://doi.org/10.48550/arXiv.0804.1126 Horton, T. W., Defliese, W. F., Tripati, A. K., et al., 2016. Evaporation Induced 18O and 13C Enrichment in Lake Systems: A Global Perspective on Hydrologic Balance Effects. Quaternary Science Reviews, 131: 365-379. https://doi.org/10.1016/j. quascirev.2015.06. 030 Hou, Y. F., Song, B. W., Li, X. C., et al., 2024. First Record of Cyclocarya from the Early Oligocene Qaidam Basin, North Tibet: Implications for the Paleogeography and Paleoecology. Journal of Earth Science, 35: 201-211. https://doi.org/10.1007/s12583-021-1580-2 Hren, M. T., Sheldon, N. D., 2012. Temporal Variations in Lake Water Temperature: Paleoenvironmental Implications of Lake Carbonate δ18O and Temperature Records. Earth and Planetary Science Letters, 337-338: 77-84. https://doi.org/10.1016/j.epsl.2012.05.019 Hren, M. T., Sheldon, N. D., Grimes, S.T., et al., 2013. Terrestrial Cooling in Northern Europe during the Eocene–Oligocene Transition. Proceedings of the National Academy of Sciences, 110(19): 7562-7567. https://doi.org/10.1073/pnas.1210930110 Huntington, K. W., Saylor, J., Quade, J., et al., 2015. High Late Miocene-Pliocene Elevation of the Zhada Basin, Southwestern Tibetan Plateau, from Carbonate Clumped Isotope Thermometry. GSA Bulletin, 127(1-2): 181-199. https://doi.org/10.1130/B31000.1 Ji, J. L., Zhang, K. X., Clift, P. D., et al., 2017. High-resolution Magnetostratigraphic Study of the Paleogene-Neogene Strata in the Northern Qaidam Basin: Implications for the Growth of the Northeastern Tibetan Plateau. Gondwana Research, 46: 141-155. https://doi.org/ 10.1016/j.gr.2017.02.015 Jin, Z. D., 2011. Composition, Origin and Environmental Interpretation of Minerals in Lake Sediments and Recent Progress. Journal of Earth Sciences and Environment, 33(1): 34-44, 77 (in Chinese with English abstract). Keith, M. L., Weber, J. N., 1964. Carbon and Oxygen Isotopic Composition of Selected Limestones and Fossils. Geochimica et Cosmochimica Acta, 28(10-11): 1787-1816. https://doi.org/10.1016/0016-7037(64)90022-5 Kent-Corson, M. L., Ritts, B. D., Zhuang, G. S., et al., 2009. Stable Isotopic Constraints on the Tectonic, Topographic, and Climatic Evolution of the Northern Margin of the Tibetan Plateau. Earth and Planetary Science Letters, 282(1-4): 158-166. https://doi.org/10. 1016/j.epsl.2009.03.011 Kim, S. T., O'Neil, J. R., 1997. Equilibrium and Nonequilibrium Oxygen Isotope Effects in Synthetic Carbonates. Geochimica et Cosmochimica Acta, 61(16): 3461-3475. https://doi.org/10.1016/S0016-7037(97)00169-5 Lan, J. H., Xu, H., Liu, B., et al., 2013. Paleoclimate Implications of Carbonate, Organic Matter, and Their Stable Isotopes in Lacustrine Sediments: A Review. Chinese Journal of Ecology, 32(5): 1326-1334 (in Chinese with English abstract). Lan, M. W., Song, Y. G., Cheng, L. Q., 2022. Review on Formation of Lacustrine Carbonate Minerals and Their Paleoclimate Significance. Journal of Earth Sciences and Environment, 44(2): 156-170 (in Chinese with English abstract). Lear, C. H., Elderfield, H., Wilson, P. A., 2000. Cenozoic Deep-Sea Temperatures and Global Ice Volumes from Mg/Ca in Benthic Foraminiferal Calcite. Science, 287(5451): 269-272. DOI: 10.1126/science.287.5451.26 Leng, M. J., Marshall, J. D., 2004. Palaeoclimate Interpretation of Stable Isotope Data from Lake Sediment Archives. Quaternary Science Reviews, 23(7-8): 811-831. https://doi.org/10.1016/j.quascirev.2003.06.012 Li, J. J., Fang, X. M., 1998. Study on the Uplift and Environmental Change of the Tibetan Plateau. Chinese Science Bulletin, 43(15): 1569-1574 (in Chinese). Li, J. J., Fang, X. M., Song C. H., et al., 2014. Late Miocene-Quaternary Rapid Stepwise Uplift of the NE Tibetan Plateau and Its Effects on Climatic and Environmental Changes. Quaternary Research, 81(3): 400-423. https://doi.org/10.1016/j.yqres.2014.01.002 Li, L., Garzione, C. N., 2017. Spatial Distribution and Controlling Factors of Stable Isotopes in Meteoric Waters on the Tibetan Plateau: Implications for Paleoelevation Reconstruction. Earth and Planetary Science, 460: 302-314. https://doi.org/10.1016/j.epsl.2016.11.046 Liu, C. L., 1998. Carbon and Oxygen Isotopic Compositions of Lacustrine Carbonates of the Shahejie Formation in the Dongying Depression and Their Paleolimnological Significance. Acta Sedimentologica Sinica, 16(3): 109-114 (in Chinese with English abstract). Liu, W. G., Zhang, P. J., Zhao, C., et al., 2018. Reevaluation of Carbonate Concentration and Oxygen Isotope Records from Lake Qinghai, the Northeastern Tibetan Plateau. Quaternary International, 482: 122-130. https://doi.org/10.1016/j.quaint.2018.03.038 Liu, Y. D., Yang, Y. B., Yang, R. S., et al., 2023. Deciphering Source-to-sink History from a Solute Perspective: A Sr Isotope Approach in the Qaidam Basin, NE Tibet. Gondwana Research, 118: 76-91. https://doi.org/10.1016/j.gr.2023.02.012 Lu, H. J., Xiong, S. F., 2009. Magnetostratigraphy of the Dahonggou Section, Northern Qaidam Basin and Its Bearing on Cenozoic Tectonic Evolution of the Qilian Shan and Altyn Tagh Fault. Earth and Planetary Science Letters, 288(3-4): 539-550. https://doi.org/ 10.1016/ j.epsl.2009.10.016. Lu, H.Y., Zhang, H.Z., Wang, Y.C., et al., 2018. Cenozoic depositional sequence in the Weihe Basin (Central China). A long-term record of Asian monsoon precipitation from the greenhouse to icehouse Earth. Quaternary Sciences, 2018, 38(5):1057-1067 (in Chinese with English abstract). Lu, H. J., Malusà, M. G., Zhang, Z. Y., et al., 2022. Syntectonic Sediment Recycling Controls Eolian Deposition in Eastern Asia Since ∼8 Ma. Geophysical Research Letters, 49(3): e2021GL096789. DOI:10.1029/2021GL096789 Ma, X. Y., 2017. High-resolution Climatic and Environmental Change since the LGM Recorded by Lake Hala, Northeastern Tibetan Plateau(Dissertation). Lanzhou University, Lanzhou (in Chinese with English abstract). Miao, Y. F., Fang X. M., Sun, J. M., et al., 2022. A New Biologic Paleoaltimetry Indicating Late Miocene Rapid Uplift of Northern Tibet Plateau. Science, 378(6624): 1074-1079. https://doi.org/10.1126/science.abo2475 Mischke, S., Kramer, M., Zhang, C. J., et al., 2008. Reduced Early Holocene Moisture Availability in the Bayan Har Mountains, Northeastern Tibetan Plateau, Inferred from A Multi-Proxy Lake Record. Palaeogeography, Palaeoclimatology, Palaeoecology, 267(1-2): 59-76. https://doi.org/10.1016/j.palaeo.2008.06.002 Molnar, P., Tapponnier, P., 1975. Cenozoic Tectonics of Asia: Effects of A Continental Collision. Science, 189: 419-426. https://www.science.org/doi/10.1126/science.189.4201.419 Müller, G., Irion, G., Förstner, U., 1972. Formation and Diagenesis of Inorganic Ca-Mg Carbonates in the Lacustrine Environment. Naturwissenschaften, 59(4): 158-164. https://doi.org/10.1007/BF00637354 Nie, J. S., Ren, X. P., Saylor, J . E., et al., 2020. Magnetic Polarity Stratigraphy, Provenance, and Paleoclimate Analysis of Cenozoic Strata in the Qaidam Basin, NE Tibetan Plateau. Geological Society of America Bulletin, 132(1-2): 310-320. https://doi.org/10.1130/ B35175.1 Raymo, M., Ruddiman, W. F., 1992. Tectonic Forcing of Late Cenozoic Climate. Nature, 359(6391): 117-122. https://doi.org/10.1038/359 117a0 Rozanski, K., Araguas-Araguas, L., Gonfantini, R., 1993. Isotopic Patterns in Modern Global Precipitation. In: Swart, P. K., Lohmann, K. C., McKenzie, J. A., Eds. Climate Change in Continental Isotopic Records. American Geophysical Union, Washington, D.C., 1993: 36. https://doi.org/10.1029/GM078p0001 Shen, J., 2009. Progress and Prospect of Palaeolimnology Research in China. Journal of Lake Sciences, 21(3): 307-313 (in Chinese with English abstract). Shi, Y. F., Li, J. J., Li, B. Y., et al., 1999. Uplift of the Qinghai-Tibet Plateau and East Asia Environmental Change during Late Cenozoic. Acta Geographica Sinica, 54(1): 10-21 (in Chinese with English abstract). Song, B. W., Zhang, K. X., Lu, J. F., et al., 2013. The Middle Eocene to Early Miocene Integrated Sedimentary Record in the Qaidam Basin and Its Implications for Paleoclimate and Early Tibetan Plateau Uplift. Canadian Journal of Earth Sciences, 50(2): 183-196. https://doi.org/10.1139/cjes-2012-0048 Song, B. W., Zhang, K. X., Zhang, L., et al., 2018. Qaidam Basin Paleosols Reflect Climate and Weathering Intensity on the Northeastern Tibetan Plateau during the Early Eocene Climatic Optimum. Palaeogeography, Palaeoclimatology, Palaeoecology, 512: 6-22. https://doi.org/10.1016/j.palaeo.2018.03.027 Song, B. W., Spicer, R. A., Zhang, K. X., et al., 2020. Qaidam Basin Leaf Fossils Show Northeastern Tibet Was High, Wet and Cool in the Early Oligocene. Earth and Planetary Science Letters, 537: 116175. https://doi.org/10.1016/j.epsl.2020.116175 Song, B. W., Zhang, K. X., Li S., et al., 2025. The geochronology of the Paleocene continental beds in the Tibetan Plateau: Insights from microfossils. Acta Geologica Sinica. https://doi.org/10.19762/j.cnki.dizhixuebao.2024581 Song, H.Y., Yi, H.S., Fan, A.C., et al., 2010. Petrology and sedimentary environments of lacustrine carbonate rocks in the Xichagou section, western Qaidam Basin. Geology in China, 37(1): 117-126(in Chinese with English abstract). Sun, Y.Y., Liu, J., Liang, Y., et al., 2020. Cenozoic moisture fluctuations on the northeastern Tibetan Plateau and association with global climatic conditions. Journal of Asian Earth Sciences, 200: 104490. Talbot, M. R., 1990. A Review of the Palaeohydrological Interpretation of Carbon and Oxygen Isotopic Ratios in Primary Lacustrine Carbonates. Chemical Geology(Isotope Geoscience section), 80(4): 261-279. https://doi.org/10.1016/0168-9622(90)90009-2 Talbot, M. R., Kelts, K., 1990. Paleolimnological Signatures from Carbon and Oxygen Isotopic Ratios in Carbonates from Organic Carbon-rich Lacustrine Sediments. AAPG Memoir, 50: 61-76. https://doi.org/10.1306/M50523C6 Wang, P. X., Liu, C. L., 1991. Research Methods for Ancient Lacustrine Studies in Oil-Bearing Basins. China Ocean Press, Beijing (in Chinese). Wang, W.T., Zheng, W.J., Zhang, P.Z., et al., 2017. Weitao,Zheng Wenjun,Zhang Peizhen. 2017. Expansion of the Tibetan plateau during the Neogene. Nature Communications, 8: 15887. Wang, W. T., Zhang, P. Z., Garzione, C. N., et al., 2022. Pulsed Rise and Growth of the Tibetan Plateau to Its Northern Margin since ca.30 Ma. The Proceedings of the National Academy of Sciences, 119(8): e2120364119. https://doi.org/10.1073/pnas.2120364119 Westerhold, T., Marwan, N., Drury, A. J., et al., 2020. An Astronomically Dated Record of Earth’s Climate and Its Predictability Over the Last 66 Million Years. Science, 369(6509): 1383-1387. DOI: 10.1126/science.aba6853 Wu, M.H., Zhuang, G.S., Hou, M.Q., Liu, Z.H., 2021. Expanded Lacustrine Sedimentation in the Qaidam Basin on the Northern Tibetan Plateau: Manifestation of Climatic Wetting during the Oligocene Icehouse. Earth and Planetary Science Letters, 565:116935. https://doi.org/10.1016/j.epsl.2021.116935 Wu, Z. H., Zhao, X., Ye, P. S., et al., 2007. Paleo-Elevation of the Tibetan Plateau Inferred from Carbon and Oxygen Isotopes of Lacustrine Deposits. Acta Geologica Sinica, 81(9): 1277-1288 (in Chinese with English abstract). Xing, Y., Song, B.W., Li, T., et al., 2023. Eocene to Miocene Charophytes from the Qaidam Basin on the Northern Tibetan Plateau and Its Calibration to the Geomagnetic Polarity Time Scale. Review of Palaeobotany and Palynology, 308: 104784. https://doi.org/10.1016/j.revpalbo.2022.104784 Xiong, Z. Y., Ding, L., Spicer, R. A., et al., 2020. The Early Eocene Rise of the Gonjo Basin, SE Tibet: From Low Desert to High Forest. Earth and Planetary Science Letters, 543: 116312. https://doi.org/10.1016/j.epsl.2020.116312 Yang, Y. B., Fang, X. M., Han, W. X., et al., 2022. Terrestrial Carbonate Oxygen Isotopes Constraints on the Interplay between Westerlies and Monsoonal Rains Modulating the Cenozoic Climate on the Northeastern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 608: 111289. https://doi.org/10.1016/j.palaeo.2022.111289 Yao, T. D., Masson-Delmotte, V., Gao, J., et al., 2013. A Review of Climatic Controls on δ18O in Precipitation Over the Tibetan Plateau: Observations and Simulations. Reviews of Geophysics, 51: 525-548. https://doi.org/10.1002/rog.20023 Ye, C. C., Yang, Y.B., Fang, X.M., et al., 2020. Paleolake salinity evolution in the Qaidam Basin (NE Tibetan Plateau) between~ 42 and 29 Ma: Links to global cooling and Paratethys sea incursions Sedimentary geology, 409: 105778. Yi, H. S., Lin, J. H., Zhou, K. K., et al., 2007. Carbon and Oxygen Isotope Characteristics and Palaeoenvironmental Implication of the Cenozoic Lacustrine Carbonate Rocks in Northern Qinghaim-Tibetan Plateau. Journal of Palaeogeography, 9(3): 303-312 (in Chinese with English abstract). Yin, A., Dang, Y. Q., Zhang, M., et al., 2008. Cenozoic Tectonic Evolution of the Qaidam Basin and Its Surrounding Regions (Part 3): Structural Geology, Sedimentation, and Regional Tectonic Reconstruction. GSA Bulletin, 120(7-8): 847-876. https://doi.org/10.1130/ B26232.1 Yu, X. J., Fu, S., Guan, S., et al., 2014. Paleomagnetism of Eocene and Miocene Sediments from the Qaidam Basin: Implication for No Integral Rotation since the Eocene and a Rigid Qaidam Block. Geochemistry, Geophysics, Geosystems, 15(6): 2109-2127. https://doi.org/10.1002/2014GC005230 Zachos, J. C., Stott, L. D., Lohmann, K. C., 1994. Evolution of Early Cenozoic Marine Temperatures. Paleoceanography, 9(2): 353-387. https://doi.org/10.1029/93pa03266 Zeng, D., Ding, L., Spicer, R. A., et al.,.2025. Direct Dating of Qaidam Basin Stratigraphy, Northern Tibet. Earth and Planetary Science Letters, 664: 119440. https://doi.org/10.1016/j.epsl.2025.119440 Zeng, F. M., Zhang, X.Y., Zhan, T., et al., 2024. Rapid warming and increasing moisture levels in the Qaidam basin. Theoretical and Applied Climatology 155 (8), 7121-7132. https://doi.org/10.1007/s00704-024-05058-7 Zhang, C. J., Zhang, W. Y., Zhang, L., et al., 2016. The Characteristics of Carbon and Oxygen Isotopes of Carbonates and Carbon Isotopes of Organic Matter of Bulk Sediments and Their Responses to Lake Environments in Western and Northeastern China. Bulletin of Mineralogy, Petrology and Geochemistry, 35(4): 609-617 (in Chinese with English abstract). Zhang, K. X., Wang, G. C., Ji J. L., et al., 2010. Paleogene-Neogene Stratigraphic Realm and Sedimentary Sequence of the Qinghai-Tibet Plateau and Their Response to Uplift of the Plateau. Science China Earth Science,53(9): 1271-1294. DOI:10.1007/s11430-010-4048-2 Zhang, P. Z., Zheng, D. W., Yin, G. M., et al., 2006. Discussion on Late Cenozoic Growth and Rise of Northeastern Margin of the Tibetan Plateau. Quaternary Sciences, 26(1): 5-13 (in Chinese with English abstract). Zhang, T., Han, W. X., Tian, Q., et al., 2024. Stable Isotope Revealed Hydroclimate Transition and Topography Growth in the Northern Tibetan Plateau at ∼10 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology, 649: 112341. https://doi.org/10.1016 /j.palaeo. 2024.112341 Zhang, W. Y., Zhang, C. J., An, J., et al., 2011. Content of Mg in the Calcite as A Lake Salinity Proxy in the Northwest Inland China: A Case of Primary Research in Lake Koucha. Marine Geology & Quaternary Geology, 31(1): 135-141 (in Chinese with English abstract). Zhang, X., Song, B. W., Yang, T. L., et al., 2025. Source-to-Sink Relationships between the Qaidam Basin and Its Surrounding Mountain Ranges: New Insights from Detrital Zircon U-Pb Ages in Modern River Sediments.. Journal of Earth Science, 36(3): 930-946. https://doi.org/10.1007/s12583-022-1666-5 Zhong, D. L., Ding, L., 1996. Discussion on Uplift Process and Mechanism of Qinghai-Tibet Plateau. Scientia Sinica Terrae, 26(4): 289-295 (in Chinese). Zhu, J. J., Chen, H., Gong, G. L., 2015. Hydrogen and Oxygen Isotopic Compositions of Precipitation and Its Water Vapor Sources in Eastern Qaidam Basin. Environmental Science, 36(8): 2784 -2790 (in Chinese with English abstract). Zhu, P. C., 2015. Groundwater Circulation Patterns of Yuqia-Mahai Basin in the Middle and Lower Reaches of Yugia River (Dissertation). Jilin University, Jilin (in Chinese with English abstract). Zhuang, G. S., Hourigan, J. K., Ritts, B. D., et al., 2011a. Cenozoic Multiple-phase Tectonic Evolution of the Northern Tibetan Plateau: Constraints from Sedimentary Records from Qaidam Basin, Hexi Corridor, and Subei Basin, Northwest China. American Journal of Science, 311(2): 116-152. https://doi.org/10.2475/02.2011.02 Zhuang, G. S., Hourigan, J. K., Koch, P. L., et al., 2011b. Isotopic Constraints on Intensified Aridity in Central Asia around 12Ma. Earth and Planetary Science Letters, 312(1-2): 152-163. https://doi.org/10.1016/j.epsl.2011.10.005 附中文参考文献: 傅志明, 李仕虎, 王维钰, 等, 2025. 柴达木盆地新生代地层年代学研究进展. 地层学杂志. https://doi.org/10.19839/j.cnki.dcxzz.2025.0033 金章东, 2011. 湖泊沉积物的矿物组成、成因、环境指示及研究进展. 地球科学与环境学报, 33(1): 34-44, 77. 兰敏文, 宋友桂, 程良清, 2022. 湖泊碳酸盐矿物的形成过程及古气候环境指示意义. 地球科学与环境学报, 44(2): 156-170. 蓝江湖, 徐海, 刘斌, 等, 2013. 湖泊沉积中碳酸盐、有机质及其同位素的古气候意义. 生态学杂志, 32(5): 1326-1334. 李吉均, 方小敏, 1998. 青藏高原隆起与环境变化研究. 科学通报, 43(15): 1569-1574. 刘传联, 1998. 东营凹陷沙河街组湖相碳酸盐岩碳氧同位素组分及其古湖泊学意义. 沉积学报, 16(3): 109-114. 鹿化煜, 张瀚之, 王逸超, 等, 2018. 渭河盆地新生代沉积序列与亚洲季风气候起源演化. 第四纪研究, 38(5): 1057-1067. 马雪洋, 2017. 青藏高原东北部哈拉湖沉积物记录的末次盛冰期以来的高分辨率气候环境变化(博士学位论文). 兰州: 兰州大学. 青海省地质矿产局, 1991. 青海省区域地质志. 北京: 地质出版社. 沈吉, 2009. 湖泊沉积研究的历史进展与展望. 湖泊科学, 21(3): 307-313. 施雅风, 李吉均, 李炳元, 等, 1999. 晚新生代青藏高原的隆升与东亚环境变化. 地理学报, 54(1): 12-22. 宋博文, 张克信, 李莎, 等, 2025. 青藏高原古近纪陆相地层年代学探讨:来自微体化石的启示. 地质学报. https://doi.org/10.19762/j.cnki.dizhixuebao.2024581 宋华颖, 伊海生, 范爱春, 等, 2010. 柴达木盆地西部西岔沟剖面湖相碳酸盐岩岩石学特征与沉积环境分析. 中国地质, 37(1): 117-126. 汪品先, 刘传联, 1993. 含油盆地古湖泊学研究方法. 北京: 海洋出版社. 吴珍汉, 赵逊, 叶培盛, 等, 2007. 根据湖相沉积碳氧同位素估算青藏高原古海拔高度. 地质学报, 81(9): 1277-1288. 伊海生, 林金辉, 周恳恳, 等, 2007. 青藏高原北部新生代湖相碳酸盐岩碳氧同位素特征及古环境意义. 古地理学报, 9(3): 303-312. 张成君, 张菀漪, 张丽, 等, 2016. 中国西部、东北地区湖泊沉积物中碳酸盐碳、氧和有机碳同位素组成及与环境的响应. 矿物岩石地球化学通报, 35(4): 609-617. 张培震, 郑德文, 尹功明, 等, 2006. 有关青藏高原东北缘晚新生代扩展与隆升的讨论. 第四纪研究, 26(1): 5-13. 张菀漪, 张成君, 安娟, 等, 2011. 青海寇查湖碳酸盐方解石中镁含量对湖泊水体盐度变化的响应. 海洋地质与第四纪地质, 31(1): 135-141. 钟大赉, 丁林, 1996. 青藏高原的隆起过程及其机制探讨. 中国科学(D辑: 地球科学), 26(4): 289-295. 朱建佳, 陈辉, 巩国丽, 2015. 柴达木盆地东部降水氢氧同位素特征与水汽来源. 环境科学, 36(8): 2784-2790. 朱谱成, 2015. 鱼卡河中下游鱼卡—马海盆地地下水循环模式研究(硕士学位论文). 长春: 吉林大学.
    • 加载中
    计量
    • 文章访问数:  9
    • HTML全文浏览量:  0
    • PDF下载量:  1
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-11-07
    • 网络出版日期:  2026-01-28

    目录

      /

      返回文章
      返回