• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    刘小波, 何联义, 黄怀瑾, 向红波, 蔡之华, 李长河, 2026. 基于多尺度特征融合和深度可分离卷积的生成对抗网络地质建模方法. 地球科学. doi: 10.3799/dqkx.2026.009
    引用本文: 刘小波, 何联义, 黄怀瑾, 向红波, 蔡之华, 李长河, 2026. 基于多尺度特征融合和深度可分离卷积的生成对抗网络地质建模方法. 地球科学. doi: 10.3799/dqkx.2026.009
    Liu Xiaobo, He Lianyi, Huang Huaijin, Xiang Hongbo, Cai Zhihua, Li Changhe, 2026. Geological Modeling Method of Generative Adversarial Networks Based on Multi-Scale Feature Fusion and Depthwise Separable Convolutions. Earth Science. doi: 10.3799/dqkx.2026.009
    Citation: Liu Xiaobo, He Lianyi, Huang Huaijin, Xiang Hongbo, Cai Zhihua, Li Changhe, 2026. Geological Modeling Method of Generative Adversarial Networks Based on Multi-Scale Feature Fusion and Depthwise Separable Convolutions. Earth Science. doi: 10.3799/dqkx.2026.009

    基于多尺度特征融合和深度可分离卷积的生成对抗网络地质建模方法

    doi: 10.3799/dqkx.2026.009
    基金项目: 

    国家自然科学基金项目(No.61973285, 62076226)

    湖北省自然科学基金项目(2022CFB438).

    详细信息
      作者简介:

      刘小波(1981—),男,教授,主要从事机器学习、智能建模、遥感图像处理方面的研究工作. ORCID:0000-0001-8298-7715. E-mail: xbliu@cug.edu.cn

      通讯作者:

      刘小波,E-mail: xbliu@cug.edu.cn

    • 中图分类号: P628

    Geological Modeling Method of Generative Adversarial Networks Based on Multi-Scale Feature Fusion and Depthwise Separable Convolutions

    • 摘要: 复杂地质结构建模在资源勘查、地下工程设计与地质灾害预测等领域具有重要意义. 生成对抗网络(GAN)在地质建模中展现出较强的非线性建模能力和模式迁移能力,但在处理复杂地质约束及精细结构重建时,其在建模精度、结构连通性及建模效率方面仍面临一些挑战. 针对上述问题,本文提出一种基于多尺度特征融合和深度可分离卷积的生成对抗网络地质建模方法,通过设计多尺度特征融合模块强化地质结构的细节表达与整体一致性,并引入深度可分离卷积以降低模型参数量和计算成本,提升建模效率. 同时,结合条件特征融合与渐进式分辨率生成策略,增强模型对条件数据的感知能力. 为验证方法有效性,选取二维河流相、多属性冰楔和三维褶皱构造等典型数据,从空间变异性、连通性、属性一致性与条件点重建准确率等方面进行系统评估,并与多点统计方法(QS)和改进型生成对抗网络(CWGAN-GP)进行对比分析. 结果表明,在64×64和64×64×64的分辨率下,二维和三维四个数据集生成的模型MS-SWD指标分别为0.016、0.025、0.0079、0.0087,均显著低于对比方法;同时所生成模型的平均连通区域大小最接近参考模型(二维河流数据为300.59像素,三维褶皱数据为17814.17像素);在整体准确度方面,本文方法的准确率和MSE指标均优于对比方法(分别为73.24%、69.48%和0.024、0.047),并通过效率分析和消融实验证明了该方法在效率和参数量方面的优势. 实验表明所提方法在保证合理与高保真性的同时,显着提升了建模效率,适用于复杂非平稳地质体的高效建模任务,具有广阔的工程应用前景.

       

    • Abedi, M., Norouzi, G. H., 2012. Integration of Various Geophysical Data with Geological and Geochemical Data to Determine Additional Drilling for Copper Exploration. Journal of Applied Geophysics, 83: 35-45. https://doi. org/10.1016/j.jappgeo.2012.05.003
      Chan, S., Elsheikh, A.H., 2019. Parametric Generation of Conditional Geological Realizations Using Generative Neural Networks. Computational Geosciences, 23(5): 925-952. https://doi.org/10.1007/s10596-019-09850-7
      Chen, Q.Y., Cui, Z.S., Liu, G., et al., 2022. Deep Convolutional Generative Adversarial Networks for Modeling Complex Hydrological Structures in Monte-Carlo Simulation. Journal of Hydrology, 610: 127970. https://doi.org/ 10.1016/j.jhydrol.2022.127970
      Cui, Z.S., Chen, Q.Y., Luo, J., et al., 2024. Characterizing Subsurface Structures from Hard and Soft Data with Multiple-Condition Fusion Neural Network. Water Resources Research, 60(11): e2024WR038170. https:// doi.org/10.1029/2024WR038170
      Cui, Z.S., Chen, Q.Y., Liu, G., et al., 2024. Sa-RelayGANS: A Novel Framework for the Characterization of Complex Hydrological Structures Based on GANS and Self-Attention Mechanism. Water Resources Research, 60(1): e2023WR035932. https://doi.org/10.1029/2023WR 035932
      Fan, W.Y., Liu, G., Chen, Q.Y., et al., 2023. Geological Model Automatic Reconstruction Based on Conditioning Wasserstein Generative Adversarial Network with Gradient Penalty. Earth Science Informatics, 16(3): 2825-2843. https://doi.org/ 10.1007/s12145-023-01012-9
      23-10119-0
      Gravey, M., Mariethoz, G., 2020. QuickSampling v1.0: A Robust and Simplified Pixel-Based Multiple-Point Simulation Approach. Geoscientific Model Development, 13(6): 2611-2630. https://doi.org/10.5194/gmd-13-2611- 2020
      Heusel, M., Ramsauer, H., Unterthiner, T., et al., 2017. Gans Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. Advances in neural information processing systems 30.
      Hou, W.S., Liu, H.G., Zheng, T.C., et al., 2022. Extended GOSIM: MPS‐Driven Simulation of 3D Geological Structure Using 2D Cross-Sections. Earth and Space Science, 9(6): e2021EA001801. https://doi.org/10.1029/ 2021EA001801
      Hu, F., Wu, C.L., Shang, J.W., et al., 2023. Multi-Condition Controlled Sedimentary Facies Modeling Based on Generative Adversarial Network. Computers & Geosciences, 171: 105290. https://doi.org/10.1016/j.cageo. 2022.105290
      Hu, X., Song, S.H., Hou, J.G., et al., 2024. Stochastic Modeling of Thin Mud Drapes Inside Point Bar Reservoirs with ALLUVSIM-GANSim. Water Resources Research, 60(6): e2023WR035989. https://doi.org/10.1029/2023WR035989
      Hua, W.H., Zeng, X.L., Guo, D.Y., et al., 2024. 3D Geological Modeling Method for Complex Faulted Structures Based on Structural Restoration Theory. Earth Science, 49(4): 1411-1420 (in Chinese with English abstract).
      Karras, T., Aila, T., Laine, S., et al., 2018. Progressive Growing of GANs for Improved Quality, Stability, and Variation. 6th International Conference on Learning Representations, ICLR 2018.
      Liu, G., Fang, H.F., Chen, Q.Y., et al., 2022. A Feature-Enhanced MPS Approach to Reconstruct 3D Deposit Models Using 2D Geological Cross Sections: A Case Study in the Luodang Cu Deposit, Southwestern China. Natural Resources Research, 31(6): 3101-3120. https://doi.org/10.1007/s11053-022-10113-z
      Marano, G. C., Rosso, M. M., Aloisio, A., et al., 2024. Generative Adversarial Networks Review in Earthquake-related Engineering Fields. Bulletin of Earthquake Engineering, 22(7): 3511–3562. https://doi.org/10.1007/s10518-023-01645-7
      Mariethoz, G., Renard, P., Straubhaar, J., 2010. The Direct Sampling Method to Perform Multiple-Point Geostatistical Simulations. Water Resources Research, 46(11). https:// doi.org/10.1029/2008WR007621
      Mohaghegh, S.D., 2013. Reservoir Modeling of Shale Formations. Journal of Natural Gas Science and Engineering, 12: 22-33. https://doi.org/10.1016/j.jngse. 2013.01.003
      Mosser, L., Dubrule, O., Blunt, M.J., 2020. Stochastic Seismic Waveform Inversion Using Generative Adversarial Networks as a Geological Prior. Mathematical Geosciences, 52(1): 53-79. https://doi.org/10.1007/s11004-019-09832-6
      Mustapha, H., Dimitrakopoulos, R., 2011. HOSIM: A High-Order Stochastic Simulation Algorithm for Generating Three-Dimensional Complex Geological Patterns. Computers & Geosciences, 37(9): 1242-1253. https://doi.org/10.1016/j.cageo.2010.09.007
      21-09934-0
      Song, S.H., Shi, Y.Q., Hou, J.G., 2022. Research Progress on Reservoir Geological Modeling Methods Based on Generative Adversarial Networks. Petroleum Science Bulletin, 7(1): 34-49 (in Chinese with English abstract).
      Strebelle, S., 2002. Conditional Simulation of Complex Geological Structures Using Multiple-Point Statistics. Mathematical Geology, 34: 1-21. https://doi.org/10.1023/ A:1014009426274
      Tang, J.F., Tang, M.M., Lu, S.F., et al., 2024. 3D Reservoir Modeling of an Estuarine Bay Based on Coupled Sedimentary Dynamics Simulation and Multiple-Point Geostatistics. Earth Science, 49(1): 174-188 (in Chinese with English abstract).
      Wang, G.C., Xu, Y.X., Chen, X.J., et al., 2015. 3D Geological Survey and Modeling Method for Complex Orogenic Belts Based on a Surface Geological Section Network. Earth Science, 40(3): 397-406. (in Chinese with English abstract).
      Wang, L.F., Liu, X.L., Xu, K., et al., 2024. 3D Geological Modeling Using Bayesian-MCMC with Data and Knowledge Fusion. Earth Science, 49(8): 3056-3070 (in Chinese with English abstract).
      Zhang, T., Yang, Z.H., Li, D.Y., 2022. Stochastic Simulation of Deltas Based on a Concurrent Multi-Stage VAE-GAN Model. Journal of Hydrology, 607: 127493. https://doi.org/ 10.1016/j.jhydrol.2022.127493
      Zhang, T.F., Tilke, P., Dupont, E., et al., 2019. Generating Geologically Realistic 3D Reservoir Facies Models Using Deep Learning of Sedimentary Architecture with Generative Adversarial Networks. Petroleum Science, 16(3): 541-549. https://doi.org/10.2523/IPTC-19454-MS
      Zhou, T., Li, Q., Lu, H.L., et al., 2023. Gan Review: Models and Medical Image Fusion Applications. Information Fusion, 91: 134–148. https://doi.org/10.1016/j.inffus.2022.10.017
      花卫华, 曾新灵, 郭丹阳, 等, 2024. 基于构造恢复理论的含复杂断层三维地质建模方法. 地球科学, 49(4): 1411-1420.
      宋随宏, 史燕青, 侯加根, 2022. 基于生成对抗网络的储层地质建模方法研究进展.石油科学通报, 7(1): 34-49.
      唐佳凡, 唐明明, 卢双舫, 等, 2024. 基于耦合沉积动力学模拟与多点地质统计学方法的河口湾储层三维建模. 地球科学, 49(1): 174-188.
      王国灿, 徐义贤, 陈旭军,等, 2015. 基于地表地质调查剖面网络基础上的复杂造山带三维地质调查与建模方法. 地球科学, 40(3): 397-406.
      王丽芳, 刘肖莉, 徐坤, 等, 2024. 数据和知识融合的Bayesian-MCMC三维地质建模. 地球科学, 49(8): 3056-3070.
    • 加载中
    计量
    • 文章访问数:  13
    • HTML全文浏览量:  0
    • PDF下载量:  1
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-08-09
    • 网络出版日期:  2026-01-28

    目录

      /

      返回文章
      返回