|
Abedi, M., Norouzi, G. H., 2012. Integration of Various Geophysical Data with Geological and Geochemical Data to Determine Additional Drilling for Copper Exploration. Journal of Applied Geophysics, 83: 35-45. https://doi. org/10.1016/j.jappgeo.2012.05.003 |
|
Chan, S., Elsheikh, A.H., 2019. Parametric Generation of Conditional Geological Realizations Using Generative Neural Networks. Computational Geosciences, 23(5): 925-952. https://doi.org/10.1007/s10596-019-09850-7 |
|
Chen, Q.Y., Cui, Z.S., Liu, G., et al., 2022. Deep Convolutional Generative Adversarial Networks for Modeling Complex Hydrological Structures in Monte-Carlo Simulation. Journal of Hydrology, 610: 127970. https://doi.org/ 10.1016/j.jhydrol.2022.127970 |
|
Cui, Z.S., Chen, Q.Y., Luo, J., et al., 2024. Characterizing Subsurface Structures from Hard and Soft Data with Multiple-Condition Fusion Neural Network. Water Resources Research, 60(11): e2024WR038170. https:// doi.org/10.1029/2024WR038170 |
|
Cui, Z.S., Chen, Q.Y., Liu, G., et al., 2024. Sa-RelayGANS: A Novel Framework for the Characterization of Complex Hydrological Structures Based on GANS and Self-Attention Mechanism. Water Resources Research, 60(1): e2023WR035932. https://doi.org/10.1029/2023WR 035932 |
|
Fan, W.Y., Liu, G., Chen, Q.Y., et al., 2023. Geological Model Automatic Reconstruction Based on Conditioning Wasserstein Generative Adversarial Network with Gradient Penalty. Earth Science Informatics, 16(3): 2825-2843. https://doi.org/ 10.1007/s12145-023-01012-9 |
|
23-10119-0 |
|
Gravey, M., Mariethoz, G., 2020. QuickSampling v1.0: A Robust and Simplified Pixel-Based Multiple-Point Simulation Approach. Geoscientific Model Development, 13(6): 2611-2630. https://doi.org/10.5194/gmd-13-2611- 2020 |
|
Heusel, M., Ramsauer, H., Unterthiner, T., et al., 2017. Gans Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. Advances in neural information processing systems 30. |
|
Hou, W.S., Liu, H.G., Zheng, T.C., et al., 2022. Extended GOSIM: MPS‐Driven Simulation of 3D Geological Structure Using 2D Cross-Sections. Earth and Space Science, 9(6): e2021EA001801. https://doi.org/10.1029/ 2021EA001801 |
|
Hu, F., Wu, C.L., Shang, J.W., et al., 2023. Multi-Condition Controlled Sedimentary Facies Modeling Based on Generative Adversarial Network. Computers & Geosciences, 171: 105290. https://doi.org/10.1016/j.cageo. 2022.105290 |
|
Hu, X., Song, S.H., Hou, J.G., et al., 2024. Stochastic Modeling of Thin Mud Drapes Inside Point Bar Reservoirs with ALLUVSIM-GANSim. Water Resources Research, 60(6): e2023WR035989. https://doi.org/10.1029/2023WR035989 |
|
Hua, W.H., Zeng, X.L., Guo, D.Y., et al., 2024. 3D Geological Modeling Method for Complex Faulted Structures Based on Structural Restoration Theory. Earth Science, 49(4): 1411-1420 (in Chinese with English abstract). |
|
Karras, T., Aila, T., Laine, S., et al., 2018. Progressive Growing of GANs for Improved Quality, Stability, and Variation. 6th International Conference on Learning Representations, ICLR 2018. |
|
Liu, G., Fang, H.F., Chen, Q.Y., et al., 2022. A Feature-Enhanced MPS Approach to Reconstruct 3D Deposit Models Using 2D Geological Cross Sections: A Case Study in the Luodang Cu Deposit, Southwestern China. Natural Resources Research, 31(6): 3101-3120. https://doi.org/10.1007/s11053-022-10113-z |
|
Marano, G. C., Rosso, M. M., Aloisio, A., et al., 2024. Generative Adversarial Networks Review in Earthquake-related Engineering Fields. Bulletin of Earthquake Engineering, 22(7): 3511–3562. https://doi.org/10.1007/s10518-023-01645-7 |
|
Mariethoz, G., Renard, P., Straubhaar, J., 2010. The Direct Sampling Method to Perform Multiple-Point Geostatistical Simulations. Water Resources Research, 46(11). https:// doi.org/10.1029/2008WR007621 |
|
Mohaghegh, S.D., 2013. Reservoir Modeling of Shale Formations. Journal of Natural Gas Science and Engineering, 12: 22-33. https://doi.org/10.1016/j.jngse. 2013.01.003 |
|
Mosser, L., Dubrule, O., Blunt, M.J., 2020. Stochastic Seismic Waveform Inversion Using Generative Adversarial Networks as a Geological Prior. Mathematical Geosciences, 52(1): 53-79. https://doi.org/10.1007/s11004-019-09832-6 |
|
Mustapha, H., Dimitrakopoulos, R., 2011. HOSIM: A High-Order Stochastic Simulation Algorithm for Generating Three-Dimensional Complex Geological Patterns. Computers & Geosciences, 37(9): 1242-1253. https://doi.org/10.1016/j.cageo.2010.09.007 |
|
21-09934-0 |
|
Song, S.H., Shi, Y.Q., Hou, J.G., 2022. Research Progress on Reservoir Geological Modeling Methods Based on Generative Adversarial Networks. Petroleum Science Bulletin, 7(1): 34-49 (in Chinese with English abstract). |
|
Strebelle, S., 2002. Conditional Simulation of Complex Geological Structures Using Multiple-Point Statistics. Mathematical Geology, 34: 1-21. https://doi.org/10.1023/ A:1014009426274 |
|
Tang, J.F., Tang, M.M., Lu, S.F., et al., 2024. 3D Reservoir Modeling of an Estuarine Bay Based on Coupled Sedimentary Dynamics Simulation and Multiple-Point Geostatistics. Earth Science, 49(1): 174-188 (in Chinese with English abstract). |
|
Wang, G.C., Xu, Y.X., Chen, X.J., et al., 2015. 3D Geological Survey and Modeling Method for Complex Orogenic Belts Based on a Surface Geological Section Network. Earth Science, 40(3): 397-406. (in Chinese with English abstract). |
|
Wang, L.F., Liu, X.L., Xu, K., et al., 2024. 3D Geological Modeling Using Bayesian-MCMC with Data and Knowledge Fusion. Earth Science, 49(8): 3056-3070 (in Chinese with English abstract). |
|
Zhang, T., Yang, Z.H., Li, D.Y., 2022. Stochastic Simulation of Deltas Based on a Concurrent Multi-Stage VAE-GAN Model. Journal of Hydrology, 607: 127493. https://doi.org/ 10.1016/j.jhydrol.2022.127493 |
|
Zhang, T.F., Tilke, P., Dupont, E., et al., 2019. Generating Geologically Realistic 3D Reservoir Facies Models Using Deep Learning of Sedimentary Architecture with Generative Adversarial Networks. Petroleum Science, 16(3): 541-549. https://doi.org/10.2523/IPTC-19454-MS |
|
Zhou, T., Li, Q., Lu, H.L., et al., 2023. Gan Review: Models and Medical Image Fusion Applications. Information Fusion, 91: 134–148. https://doi.org/10.1016/j.inffus.2022.10.017 |
|
花卫华, 曾新灵, 郭丹阳, 等, 2024. 基于构造恢复理论的含复杂断层三维地质建模方法. 地球科学, 49(4): 1411-1420. |
|
宋随宏, 史燕青, 侯加根, 2022. 基于生成对抗网络的储层地质建模方法研究进展.石油科学通报, 7(1): 34-49. |
|
唐佳凡, 唐明明, 卢双舫, 等, 2024. 基于耦合沉积动力学模拟与多点地质统计学方法的河口湾储层三维建模. 地球科学, 49(1): 174-188. |
|
王国灿, 徐义贤, 陈旭军,等, 2015. 基于地表地质调查剖面网络基础上的复杂造山带三维地质调查与建模方法. 地球科学, 40(3): 397-406. |
|
王丽芳, 刘肖莉, 徐坤, 等, 2024. 数据和知识融合的Bayesian-MCMC三维地质建模. 地球科学, 49(8): 3056-3070. |