• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码
    张振杰, 2026. 基于地学大数据和人工智能的多层次矿产预测数据构建. 地球科学. doi: 10.3799/dqkx.2026.010
    引用本文: 张振杰, 2026. 基于地学大数据和人工智能的多层次矿产预测数据构建. 地球科学. doi: 10.3799/dqkx.2026.010
    Zhang Zhenjie, 2026. Construction of multilayered mineralization prediction data based on big geological data and artificial intelligence. Earth Science. doi: 10.3799/dqkx.2026.010
    Citation: Zhang Zhenjie, 2026. Construction of multilayered mineralization prediction data based on big geological data and artificial intelligence. Earth Science. doi: 10.3799/dqkx.2026.010

    基于地学大数据和人工智能的多层次矿产预测数据构建

    doi: 10.3799/dqkx.2026.010
    基金项目: 

    国家重点研发计划项目(2023YFC2906402),教育部基础学科和交叉学科突破计划(JYB2025XDXM803),国家自然科学基金项目(42472358、42430111和42050103),中央高校基本科研业务费(2652023001)

    详细信息
      作者简介:

      张振杰(1988—),男,副教授,博士生导师,主要从事地学大数据和智能矿产预测方面的研究。 E-mail: zjzhang@cugb.edu.cn, ORCID: http://orcid.org/0000-0003-1079-8784

    • 中图分类号: P628

    Construction of multilayered mineralization prediction data based on big geological data and artificial intelligence

    • 摘要: 随着大数据和人工智能技术的迅猛发展,矿产预测正在经历一场由数据稀疏型向数据密集型的技术变革,成为矿产勘查和找矿突破的重要“科技引擎”。尽管地质信息化的进程中已经积累了大量的地质矿产、地球物理、地球化学和遥感等多源异构工程探测数据,以及丰富的地质报告和文献资源,但如何高效整合并深度挖掘这些数据,以进一步优化矿产预测指标体系、构建高质量矿产预测数据集、提升预测精度,仍是当前研究亟待解决的关键问题。针对这些挑战,本文提出利用大模型和知识图谱技术,整合地球系统、成矿系统、勘查系统与预测评价系统的多层次、多维度知识信息,构建多系统耦合的矿产预测知识图谱,实现矿产预测指标体系的智能化构建。同时,基于大数据和人工智能技术,形成以地学探测数据智能挖掘、科学数据智能抽取和时空分析、以及数据智能反演和模拟为核心的多层次矿产预测数据构建体系。这一方法体系通过推动预测数据与预测指标的深度耦合,有效提升预测结果的准确性和可靠性,为矿产勘查和找矿突破提供强有力的技术支持。

       

    • An, W. T., Chen, J. P., Zhu, P. F., 2021. A Two-Way Forecasting Method Based on Numerical Simulation of Mineralization Process for the Prediction of Concealed Ore Deposits. Earth Science Frontiers, 28(3): 97-111. (in Chinese with English abstract) Chapman, J. B., Ducea, M. N., DeCelles, P. G., et al., 2015. Tracking changes in crustal thickness during orogenic evolution with Sr/Y: An example from the North American Cordillera. Geology, 43(10): 919-922. doi: 10.1130/G36996.1 Chen, J. P., Chen, Y., Wang, Q. M., 2008. Study on Synthetic Informational Mineral Resource Prediction Using GIS: A Case Study in Chifeng Region, Inner Mongolia, China. Earth Science Frontiers, 15(4):18-26. (in Chinese with English abstract) Cheng, Q. M., 2006. Nonlinear Theory of Mineralization Prediction: Singularity–Generalized Self-Similarity–Fractal Spectrum (3S) Models and Methods.Earth Science, 31(3):337–348.(in Chinese with English abstract) Cheng, Q. M., 2025. A New Paradigm for Mineral Resource Prediction Based on Human Intelligence-Artificial Intelligence Integration. Earth Science Frontiers, 32(4): 1-19. (in Chinese with English abstract) Dai, J. J., Qu, X. M., Song, Y., 2018. Porphyry copper deposit prognosis in the middle region of the Bangonghu–Nujiang Metallogenic Belt, Tibet, using ASTER remote sensing data. Resource Geology, 68(1): 65-82. doi: 10.1111/rge.12154 Diaz-Rodriguez, J., Müller, R. D., Chandra, R., 2021. Predicting the emplacement of Cordilleran porphyry copper systems using a Spatio-temporal machine learning Model. Ore Geology Reviews, 137: 104300. doi: 10.1016/j.oregeorev.2021.104300 Ding, H. F., Jing, L., Xi, M. J., et al., 2023. Research on Scale Improvement of Geochemical Exploration Based on Remote Sensing Image Fusion. Remote Sensing, 15(8): 1993. doi: 10.3390/rs15081993 Dong, X. F., Gan, F. P., Li, N., et al., 2020. Fine Mineral Identification of GF-5 Hyperspectral Image. Journal of Remote Sensing, 24(4): 454-464. doi: 10.11834/jrs.20209194. (in Chinese) Feng, T. T., Cai, S. R., Zhang, Z. J., 2025. Mining Elements of Carbonatite-Type Rare Earth Deposits Based on Knowledge Map. Earth Science Frontiers, 32(4): 262-279. (in Chinese with English abstract) Gan, Y., Peng, S. P., Mao, J. W., et al., 2022. High-Quality Development Strategy for the Supply Chain of Critical Minerals and Its Material Industry in China. Engineering Science in China, 24(3): 1-9. (in Chinese with English abstract) Ge, Y. Z., Zhang, Z. J., Cheng, Q. M., et al., 2022. Geological mapping of basalt using stream sediment geochemical data: Case study of covered areas in Jining, Inner Mongolia, China. Journal of Geochemical Exploration, 232: 106888. doi: 10.1016/j.gexplo.2021.106888 Hoggard, M. J., Czarnota, K., Richards, F. D., et al., 2020. Global distribution of sediment-hosted metals controlled by craton edge stability. Nature Geoscience, 13(7): 504-510. doi: 10.1038/s41561-020-0593-2 Hou, Z. Q., Wang, R., Zhang, H. J., et al., 2023. Formation of giant copper deposits in Tibet driven by tearing of the subducted Indian plate. Earth-Science Reviews, 243: 104482. doi: 10.1016/j.earscirev.2023.104482 Hu, X. Y., Li, X. H., Yuan, F., et al., 2020. Numerical modeling of ore-forming processes within the Chating Cu-Au porphyry-type deposit, China: Implications for the longevity of hydrothermal systems and potential uses in mineral exploration. Ore Geology Reviews, 116: 103230. doi: 10.1016/j.oregeorev.2019.103230 Ma, X. G., 2022. Knowledge graph construction and application in geosciences: A review. Computers & Geosciences, 161: 105082. doi: 10.1016/j.cageo.2022.105082 Martin, E. L., Barrote, V. R., Cawood, P. A., 2022. A resource for automated search and collation of geochemical datasets from journal supplements. Scientific Data, 9: 724. doi: 10.1038/s41597-022-01730-7 Niu, Y. L., 2021. Lithosphere thickness controls the extent of mantle melting, depth of melt extraction and basalt compositions in all tectonic settings on Earth–A review and new perspectives. Earth-Science Reviews, 217: 103614. doi: 10.1016/j.earscirev.2021.103614 Richards, J. P., 2003. Tectono-Magmatic Precursors for Porphyry Cu-(Mo-Au) Deposit Formation. Economic Geology, 98(8): 1515-1533. doi: 10.2113/gsecongeo.98.8.1515 Shi, L. Y., Zuo, R. G., 2025. Mineral Prospecting Large Model. Earth Science. doi:10.3799/dqkx.2025.3190. (in Chinese with English abstract) Wang, C. B., Wang, M. G., Wang, B, et al., 2024. Knowledge Graph-Infused Quantitative Mineral Resource Forecasting. Earth Science Frontiers, 31(4): 26-36. (in Chinese with English abstract) Wang, X. Q., 2013. Landmark Events of Exploration Geochemistry in the Past 80 Years. Geology in China, 40(1): 322-330. (in Chinese with English abstract) Wang, Z. Y., Zuo, R. G., Jing, L. H., 2021. Fusion of Geochemical and Remote-Sensing Data for Lithological Mapping Using Random Forest Metric Learning. Mathematical Geosciences, 53(6): 1125-1145. doi: 10.1007/s11004-020-09897-8 Xiao, F, Chen, X. Y., Cheng, Q. M., 2024. Combining numerical modeling and machine learning to predict mineral prospectivity: A case study from the Fankou Pb–Zn deposit, southern China. Applied Geochemistry, 160: 105857. doi: 10.1016/j.apgeochem.2023.105857 Xiao, K. Y., Fan, M. J., Sun, L., et al., 2023. Theoretical Method of Integrated Geological Information Prediction of Metallogenic Series for Mineral Resource Potential Assessment. Acta Geoscientica Sinica, 44(5): 769-780. (in Chinese with English abstract) Yuan, F., Li, X. H., Hu, X. Y., et al., 2019. A New Approach for Researching Hydrothermal Deposit: Numerical Simulation. Chinese Journal of Geology, 54(3): 678-690. doi: 10.12017/dzkx.2019.040. (in Chinese with English abstract) Zhang, N. N., Zhou, K. F, 2017. Identification of hydrothermal alteration zones of the Baogutu porphyry copper deposits in northwest China using ASTER data. Journal of Applied Remote Sensing, 11(1): 015016. doi: 10.1117/1.JRS.11.015016 Zhang, Y. H., Wang, T., Jiao, S. T., et al., 2020. Review of Igneous Rock Databases and Their Application Prospect. Geological Journal of China Universities, 26(1): 11-26. (in Chinese with English abstract) Zhang, Z. J., Chen, G. X., Kusky, T., et al., 2023a. Lithospheric thickness records tectonic evolution by controlling metamorphic conditions. Science Advances, 9(50): eadi2134. doi: 10.1126/sciadv.adi2134 Zhang, Z. J., Chen, G. X., Yang, J., et al., 2021. Machine Learning for Mineral Prospectivity: A Case Study of Iron-Polymetallic Mineral Prospectivity in Southwestern Fujian. Earth Science Frontiers, 28(3): 221-235. (in Chinese with English abstract) Zhang, Z. J., Kusky, T., Yang, X. K., et al., 2023b. A paradigm shift in Precambrian research driven by big data. Precambrian Research, 399: 107235. doi: 10.1016/j.precamres.2023.107235 Zhang, Z. J., Yang, Z. X., Jian, F. Y., et al., 2025. Interpretability-Enhanced Mineral Prospectivity Models: A Synergistic Approach Using Large Language Models, Knowledge Graphs, and Machine Learning. Mathematical Geosciences: doi: 10.1007/s11004-025-10231-3 Zhao, M. L., Zhang, Z. J., Yang, J., et al., 2025. Knowledge graph construction and knowledge discovery for porphyry copper deposits. Ore Geology Reviews: 106875. doi: 10.1016/j.oregeorev.2025.106875 Zhao, P. D., 2019. Characteristics and Rational Utilization of Geological Big Data. Earth Science Frontiers, 26(4): 1-5. (in Chinese with English abstract) Zhou, C. H., Wang, H., Wang, C. S., et al., 2021. Geoscience Knowledge Graph Research in the Big Data Era. Science China Earth Sciences, 51(7): 1070-1079. (in Chinese with English abstract) Zhou, Y. Z., Zhang, Q. L., Huang, Y. J., et al., 2021. Constructing Knowledge Graph for the Porphyry Copper Deposit in the Qingzhou–Hangzhou Bay Area: Insight into Knowledge Graph Based Mineral Resource Prediction and Evaluation. Earth Science Frontiers, 28(3): 67-75. (in Chinese with English abstract) Zhou, Y. Z., Zuo, R. G., Liu, G., et al., 2021b. The Great-Leap-Forward Development of Mathematical Geoscience During 2010–2019: Big Data and Artificial Intelligence Algorithm Are Changing Mathematical Geoscience. Bulletin of Mineralogy, Petrology and Geochemistry, 40(3): 556-573. (in Chinese with English abstract) Zhu, Y. Q., Sun, K., Li, W. R., et al., 2023. Comparative Analysis and Enlightenment of Geoscience Knowledge Graphs: A Perspective of Construction Methods and Contents. Geological Journal of China Universities, 29(3):382–394. doi: 10.16108/j.issn1006-7493.2021111. (in Chinese with English abstract) Zou, Y. H., Liu, Y., Dai, T. G., et al., 2017. Finite difference modeling of metallogenic processes in the Hutouya Pb-Zn deposit, Qinghai, China: Implications for hydrothermal mineralization. Ore Geology Reviews, 91: 463-476. doi: 10.1016/j.oregeorev.2017.09.008 Zuo, R. G., Cheng, Q. M., Xu, Y., et al., 2024. Explainable Artificial Intelligence Models for Mineral Prospectivity Mapping. Science China Earth Sciences, 67(9): 2864-2875. (in Chinese with English abstract) 中文参考文献 安文通,陈建平,朱鹏飞,2021.基于成矿过程数值模拟的隐伏矿双向预测研究.地学前缘,28(3):97-111. 陈建平,陈勇,王全明,2008.基于 GIS 的多元信息成矿预测研究——以赤峰地区为例.地学前缘,15(4):18-26. 成秋明,2006.非线性成矿预测理论: 多重分形奇异性-广义自相似性-分形谱系模型与方法.地球科学,31(3):337-348. 成秋明,2025.面向人类智能与人工智能融合的矿产资源预测新范式.地学前缘,32(4):1-19. 董新丰,甘甫平,李娜,等,2020.高分五号高光谱影像矿物精细识别.遥感学报,24(4):454-464. 冯婷婷,蔡诗柔,张振杰,2025.基于知识图谱的碳酸岩型稀土矿成矿要素挖掘.地学前缘,32(4):262-279. 干勇,彭苏萍,毛景文,等,2022.我国关键矿产及其材料产业供应链高质量发展战略研究.中国工程科学,24(3):1-9. 师路易,左仁广,2025.矿产预测大模型.地球科学:doi: 10.3799/dqkx.2025.3190. 王成彬,王明果,王博,等,2024.融合知识图谱的矿产资源定量预测.地学前缘,31(4):26-36. 王学求,2013.勘查地球化学 80 年来重大事件回顾.中国地质,40(1):322-330. 肖克炎,樊铭静,孙莉,等,2023.矿床成矿系列综合信息预测理论方法及其应用.地球学报,44(5):769-780. 袁峰,李晓晖,胡训宇,李跃,贾蔡,2019.热液矿床成矿作用研究新途径:数值模拟.地质科学,54(3):678-690. 张颖慧,王涛,焦守涛,等,2020.国内外岩浆岩数据库现状与应用前景.高校地质学报,26(1):11-26. 张振杰,成秋明,杨玠,等,2021.机器学习与成矿预测:以闽西南铁多金属矿预测为例.地学前缘,28(3):221-235. 赵鹏大,2019.地质大数据特点及其合理开发利用.地学前缘,26(4):1-5. 周成虎,王华,王成善,等,2021.大数据时代的地学知识图谱研究.中国科学: 地球科学,51(7):1070-1079. 周永章,张前龙,黄永健,等,2021a.钦杭成矿带斑岩铜矿知识图谱构建及应用展望.地学前缘,28(3):67-75. 周永章,左仁广,刘刚,等,2021b.数学地球科学跨越发展的十年: 大数据,人工智能算法正在改变地质学.矿物岩石地球化学通报,40(3):556-573. 诸云强,孙凯,李威蓉,等,2023.地球科学知识图谱比较分析与启示: 构建方法与内容视角.高校地质学报,29(3):382-394. 左仁广,成秋明,许莹,等,2024.可解释性矿产预测人工智能模型.中国科学:地球科学,54(9):2917-2928.
    • 加载中
    计量
    • 文章访问数:  11
    • HTML全文浏览量:  0
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-11-17
    • 网络出版日期:  2026-01-28

    目录

      /

      返回文章
      返回