|
An, W. T., Chen, J. P., Zhu, P. F., 2021. A Two-Way Forecasting Method Based on Numerical Simulation of Mineralization Process for the Prediction of Concealed Ore Deposits. Earth Science Frontiers, 28(3): 97-111. (in Chinese with English abstract)
Chapman, J. B., Ducea, M. N., DeCelles, P. G., et al., 2015. Tracking changes in crustal thickness during orogenic evolution with Sr/Y: An example from the North American Cordillera. Geology, 43(10): 919-922. doi: 10.1130/G36996.1
Chen, J. P., Chen, Y., Wang, Q. M., 2008. Study on Synthetic Informational Mineral Resource Prediction Using GIS: A Case Study in Chifeng Region, Inner Mongolia, China. Earth Science Frontiers, 15(4):18-26. (in Chinese with English abstract)
Cheng, Q. M., 2006. Nonlinear Theory of Mineralization Prediction: Singularity–Generalized Self-Similarity–Fractal Spectrum (3S) Models and Methods.Earth Science, 31(3):337–348.(in Chinese with English abstract)
Cheng, Q. M., 2025. A New Paradigm for Mineral Resource Prediction Based on Human Intelligence-Artificial Intelligence Integration. Earth Science Frontiers, 32(4): 1-19. (in Chinese with English abstract)
Dai, J. J., Qu, X. M., Song, Y., 2018. Porphyry copper deposit prognosis in the middle region of the Bangonghu–Nujiang Metallogenic Belt, Tibet, using ASTER remote sensing data. Resource Geology, 68(1): 65-82. doi: 10.1111/rge.12154
Diaz-Rodriguez, J., Müller, R. D., Chandra, R., 2021. Predicting the emplacement of Cordilleran porphyry copper systems using a Spatio-temporal machine learning Model. Ore Geology Reviews, 137: 104300. doi: 10.1016/j.oregeorev.2021.104300
Ding, H. F., Jing, L., Xi, M. J., et al., 2023. Research on Scale Improvement of Geochemical Exploration Based on Remote Sensing Image Fusion. Remote Sensing, 15(8): 1993. doi: 10.3390/rs15081993
Dong, X. F., Gan, F. P., Li, N., et al., 2020. Fine Mineral Identification of GF-5 Hyperspectral Image. Journal of Remote Sensing, 24(4): 454-464. doi: 10.11834/jrs.20209194. (in Chinese)
Feng, T. T., Cai, S. R., Zhang, Z. J., 2025. Mining Elements of Carbonatite-Type Rare Earth Deposits Based on Knowledge Map. Earth Science Frontiers, 32(4): 262-279. (in Chinese with English abstract)
Gan, Y., Peng, S. P., Mao, J. W., et al., 2022. High-Quality Development Strategy for the Supply Chain of Critical Minerals and Its Material Industry in China. Engineering Science in China, 24(3): 1-9. (in Chinese with English abstract)
Ge, Y. Z., Zhang, Z. J., Cheng, Q. M., et al., 2022. Geological mapping of basalt using stream sediment geochemical data: Case study of covered areas in Jining, Inner Mongolia, China. Journal of Geochemical Exploration, 232: 106888. doi: 10.1016/j.gexplo.2021.106888
Hoggard, M. J., Czarnota, K., Richards, F. D., et al., 2020. Global distribution of sediment-hosted metals controlled by craton edge stability. Nature Geoscience, 13(7): 504-510. doi: 10.1038/s41561-020-0593-2
Hou, Z. Q., Wang, R., Zhang, H. J., et al., 2023. Formation of giant copper deposits in Tibet driven by tearing of the subducted Indian plate. Earth-Science Reviews, 243: 104482. doi: 10.1016/j.earscirev.2023.104482
Hu, X. Y., Li, X. H., Yuan, F., et al., 2020. Numerical modeling of ore-forming processes within the Chating Cu-Au porphyry-type deposit, China: Implications for the longevity of hydrothermal systems and potential uses in mineral exploration. Ore Geology Reviews, 116: 103230. doi: 10.1016/j.oregeorev.2019.103230
Ma, X. G., 2022. Knowledge graph construction and application in geosciences: A review. Computers & Geosciences, 161: 105082. doi: 10.1016/j.cageo.2022.105082
Martin, E. L., Barrote, V. R., Cawood, P. A., 2022. A resource for automated search and collation of geochemical datasets from journal supplements. Scientific Data, 9: 724. doi: 10.1038/s41597-022-01730-7
Niu, Y. L., 2021. Lithosphere thickness controls the extent of mantle melting, depth of melt extraction and basalt compositions in all tectonic settings on Earth–A review and new perspectives. Earth-Science Reviews, 217: 103614. doi: 10.1016/j.earscirev.2021.103614
Richards, J. P., 2003. Tectono-Magmatic Precursors for Porphyry Cu-(Mo-Au) Deposit Formation. Economic Geology, 98(8): 1515-1533. doi: 10.2113/gsecongeo.98.8.1515
Shi, L. Y., Zuo, R. G., 2025. Mineral Prospecting Large Model. Earth Science. doi:10.3799/dqkx.2025.3190. (in Chinese with English abstract)
Wang, C. B., Wang, M. G., Wang, B, et al., 2024. Knowledge Graph-Infused Quantitative Mineral Resource Forecasting. Earth Science Frontiers, 31(4): 26-36. (in Chinese with English abstract)
Wang, X. Q., 2013. Landmark Events of Exploration Geochemistry in the Past 80 Years. Geology in China, 40(1): 322-330. (in Chinese with English abstract)
Wang, Z. Y., Zuo, R. G., Jing, L. H., 2021. Fusion of Geochemical and Remote-Sensing Data for Lithological Mapping Using Random Forest Metric Learning. Mathematical Geosciences, 53(6): 1125-1145. doi: 10.1007/s11004-020-09897-8
Xiao, F, Chen, X. Y., Cheng, Q. M., 2024. Combining numerical modeling and machine learning to predict mineral prospectivity: A case study from the Fankou Pb–Zn deposit, southern China. Applied Geochemistry, 160: 105857. doi: 10.1016/j.apgeochem.2023.105857
Xiao, K. Y., Fan, M. J., Sun, L., et al., 2023. Theoretical Method of Integrated Geological Information Prediction of Metallogenic Series for Mineral Resource Potential Assessment. Acta Geoscientica Sinica, 44(5): 769-780. (in Chinese with English abstract)
Yuan, F., Li, X. H., Hu, X. Y., et al., 2019. A New Approach for Researching Hydrothermal Deposit: Numerical Simulation. Chinese Journal of Geology, 54(3): 678-690. doi: 10.12017/dzkx.2019.040. (in Chinese with English abstract)
Zhang, N. N., Zhou, K. F, 2017. Identification of hydrothermal alteration zones of the Baogutu porphyry copper deposits in northwest China using ASTER data. Journal of Applied Remote Sensing, 11(1): 015016. doi: 10.1117/1.JRS.11.015016
Zhang, Y. H., Wang, T., Jiao, S. T., et al., 2020. Review of Igneous Rock Databases and Their Application Prospect. Geological Journal of China Universities, 26(1): 11-26. (in Chinese with English abstract)
Zhang, Z. J., Chen, G. X., Kusky, T., et al., 2023a. Lithospheric thickness records tectonic evolution by controlling metamorphic conditions. Science Advances, 9(50): eadi2134. doi: 10.1126/sciadv.adi2134
Zhang, Z. J., Chen, G. X., Yang, J., et al., 2021. Machine Learning for Mineral Prospectivity: A Case Study of Iron-Polymetallic Mineral Prospectivity in Southwestern Fujian. Earth Science Frontiers, 28(3): 221-235. (in Chinese with English abstract)
Zhang, Z. J., Kusky, T., Yang, X. K., et al., 2023b. A paradigm shift in Precambrian research driven by big data. Precambrian Research, 399: 107235. doi: 10.1016/j.precamres.2023.107235
Zhang, Z. J., Yang, Z. X., Jian, F. Y., et al., 2025. Interpretability-Enhanced Mineral Prospectivity Models: A Synergistic Approach Using Large Language Models, Knowledge Graphs, and Machine Learning. Mathematical Geosciences: doi: 10.1007/s11004-025-10231-3
Zhao, M. L., Zhang, Z. J., Yang, J., et al., 2025. Knowledge graph construction and knowledge discovery for porphyry copper deposits. Ore Geology Reviews: 106875. doi: 10.1016/j.oregeorev.2025.106875
Zhao, P. D., 2019. Characteristics and Rational Utilization of Geological Big Data. Earth Science Frontiers, 26(4): 1-5. (in Chinese with English abstract)
Zhou, C. H., Wang, H., Wang, C. S., et al., 2021. Geoscience Knowledge Graph Research in the Big Data Era. Science China Earth Sciences, 51(7): 1070-1079. (in Chinese with English abstract)
Zhou, Y. Z., Zhang, Q. L., Huang, Y. J., et al., 2021. Constructing Knowledge Graph for the Porphyry Copper Deposit in the Qingzhou–Hangzhou Bay Area: Insight into Knowledge Graph Based Mineral Resource Prediction and Evaluation. Earth Science Frontiers, 28(3): 67-75. (in Chinese with English abstract)
Zhou, Y. Z., Zuo, R. G., Liu, G., et al., 2021b. The Great-Leap-Forward Development of Mathematical Geoscience During 2010–2019: Big Data and Artificial Intelligence Algorithm Are Changing Mathematical Geoscience. Bulletin of Mineralogy, Petrology and Geochemistry, 40(3): 556-573. (in Chinese with English abstract)
Zhu, Y. Q., Sun, K., Li, W. R., et al., 2023. Comparative Analysis and Enlightenment of Geoscience Knowledge Graphs: A Perspective of Construction Methods and Contents. Geological Journal of China Universities, 29(3):382–394. doi: 10.16108/j.issn1006-7493.2021111. (in Chinese with English abstract)
Zou, Y. H., Liu, Y., Dai, T. G., et al., 2017. Finite difference modeling of metallogenic processes in the Hutouya Pb-Zn deposit, Qinghai, China: Implications for hydrothermal mineralization. Ore Geology Reviews, 91: 463-476. doi: 10.1016/j.oregeorev.2017.09.008
Zuo, R. G., Cheng, Q. M., Xu, Y., et al., 2024. Explainable Artificial Intelligence Models for Mineral Prospectivity Mapping. Science China Earth Sciences, 67(9): 2864-2875. (in Chinese with English abstract)
中文参考文献
安文通,陈建平,朱鹏飞,2021.基于成矿过程数值模拟的隐伏矿双向预测研究.地学前缘,28(3):97-111.
陈建平,陈勇,王全明,2008.基于 GIS 的多元信息成矿预测研究——以赤峰地区为例.地学前缘,15(4):18-26.
成秋明,2006.非线性成矿预测理论: 多重分形奇异性-广义自相似性-分形谱系模型与方法.地球科学,31(3):337-348.
成秋明,2025.面向人类智能与人工智能融合的矿产资源预测新范式.地学前缘,32(4):1-19.
董新丰,甘甫平,李娜,等,2020.高分五号高光谱影像矿物精细识别.遥感学报,24(4):454-464.
冯婷婷,蔡诗柔,张振杰,2025.基于知识图谱的碳酸岩型稀土矿成矿要素挖掘.地学前缘,32(4):262-279.
干勇,彭苏萍,毛景文,等,2022.我国关键矿产及其材料产业供应链高质量发展战略研究.中国工程科学,24(3):1-9.
师路易,左仁广,2025.矿产预测大模型.地球科学:doi: 10.3799/dqkx.2025.3190.
王成彬,王明果,王博,等,2024.融合知识图谱的矿产资源定量预测.地学前缘,31(4):26-36.
王学求,2013.勘查地球化学 80 年来重大事件回顾.中国地质,40(1):322-330.
肖克炎,樊铭静,孙莉,等,2023.矿床成矿系列综合信息预测理论方法及其应用.地球学报,44(5):769-780.
袁峰,李晓晖,胡训宇,李跃,贾蔡,2019.热液矿床成矿作用研究新途径:数值模拟.地质科学,54(3):678-690.
张颖慧,王涛,焦守涛,等,2020.国内外岩浆岩数据库现状与应用前景.高校地质学报,26(1):11-26.
张振杰,成秋明,杨玠,等,2021.机器学习与成矿预测:以闽西南铁多金属矿预测为例.地学前缘,28(3):221-235.
赵鹏大,2019.地质大数据特点及其合理开发利用.地学前缘,26(4):1-5.
周成虎,王华,王成善,等,2021.大数据时代的地学知识图谱研究.中国科学: 地球科学,51(7):1070-1079.
周永章,张前龙,黄永健,等,2021a.钦杭成矿带斑岩铜矿知识图谱构建及应用展望.地学前缘,28(3):67-75.
周永章,左仁广,刘刚,等,2021b.数学地球科学跨越发展的十年: 大数据,人工智能算法正在改变地质学.矿物岩石地球化学通报,40(3):556-573.
诸云强,孙凯,李威蓉,等,2023.地球科学知识图谱比较分析与启示: 构建方法与内容视角.高校地质学报,29(3):382-394.
左仁广,成秋明,许莹,等,2024.可解释性矿产预测人工智能模型.中国科学:地球科学,54(9):2917-2928. |