• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    黄琪, 史语桐, 赵健楠, 王江, 肖龙, 2026. 火星近现代地质过程与宜居环境演化. 地球科学. doi: 10.3799/dqkx.2026.014
    引用本文: 黄琪, 史语桐, 赵健楠, 王江, 肖龙, 2026. 火星近现代地质过程与宜居环境演化. 地球科学. doi: 10.3799/dqkx.2026.014
    Huang Qi, Shi Yutong, Zhao Jiannan, Wang Jiang, Xiao Long, 2026. Recent Geological Processes and Evolution of Habitable Environment on Mars. Earth Science. doi: 10.3799/dqkx.2026.014
    Citation: Huang Qi, Shi Yutong, Zhao Jiannan, Wang Jiang, Xiao Long, 2026. Recent Geological Processes and Evolution of Habitable Environment on Mars. Earth Science. doi: 10.3799/dqkx.2026.014

    火星近现代地质过程与宜居环境演化

    doi: 10.3799/dqkx.2026.014
    基金项目: 

    对外技术合作科研(航天)项目(ZA09)

    国家自然科学基金项目(Nos. 42241111, 42272274, 42202262)

    天问三号任务关键技术攻关项目(No. TW3004).

    详细信息
      作者简介:

      黄琪(1998-), 男, 博士研究生, 主要从事行星地质学研究. ORCID: 0000-0003-1925-1283. E-mail: qihuang@cug.edu.cn

      通讯作者:

      肖龙, E-mail: longxiao@cug.edu.cn

    • 中图分类号: P691

    Recent Geological Processes and Evolution of Habitable Environment on Mars

    • 摘要: 火星保存了自形成以来多期次地质作用的丰富记录,为研究行星宜居性的长期演化提供了独特窗口。然而,当前对火星近现代(亚马逊纪以来)地质过程与宜居环境演变的理解仍较为薄弱,这制约了我们对火星整体宜居性演化路径的完整认知,尤其是难以厘清其关键转变机制及现今环境状态的成因。近现代地质过程(如火山活动、撞击作用、水及冰川活动及风沙作用)不仅直接塑造了火星当前的地表环境,更记录了火星近期气候与地质变迁的历史,是揭示其宜居性演化晚期阶段特征与驱动机制的关键证据。本文系统总结了火星亚马逊纪以来主要地质过程的研究进展,在此基础上讨论了控制其宜居环境演化的关键因素,初步构建了火星宜居性评价指标体系,并对未来火星探测与研究的主要方向提出展望。亚马逊纪以来的地质过程对火星的宜居环境有着重要影响,未来探测需重点关注火星火山活动演化历史、撞击坑物质组成、水冰分布情况以及风蚀地貌成因演变。

       

    • Abotalib, A. Z., Heggy, E., 2019. A Deep Groundwater Origin for Recurring Slope Lineae on Mars. Nature Geoscience, 12(4): 235-241. https://doi.org/10.1038/s41561-019-0327-5
      Abramov, O., Kring, D. A., 2005. Impact-Induced Hydrothermal Activity on Early Mars. Journal of Geophysical Research: Planets, 110(E12): E12S09. https://doi.org/10.1029/2005JE002453
      Acuña, M. H., Connerney, J. E. P., F., N., et al., 1999. Global Distribution of Crustal Magnetization Discovered by the Mars Global Surveyor Mag/Er Experiment. Science, 284(5415): 790-793. https://doi.org/10.1126/science.284.5415.790
      Amador, E. S., Bandfield, J. L., Brazelton, W. J., et al., 2017. The Lost City Hydrothermal Field: A Spectroscopic and Astrobiological Analogue for Nili Fossae, Mars. Astrobiology, 17(11): 1138-1160. https://doi.org/10.1089/ast.2016.1606
      Amador, E. S., Bandfield, J. L., Thomas, N. H., 2018. A Search for Minerals Associated with Serpentinization across Mars Using Crism Spectral Data. Icarus, 311: 113-134. https://doi.org/10.1016/j.icarus.2018.03.021
      Andrews-Hanna, J. C., Broquet, A., 2023. The History of Global Strain and Geodynamics on Mars. Icarus, 395: 115476. https://doi.org/10.1016/j.icarus.2023.115476
      Anesio, A. M., Laybourn-Parry, J., 2012. Glaciers and Ice Sheets as a Biome. Trends in Ecology & Evolution, 27(4): 219-225. https://doi.org/10.1016/j.tree.2011.09.012
      Atreya, S. K., Mahaffy, P. R., Wong, A.-S., 2007. Methane and Related Trace Species on Mars: Origin, Loss, Implications for Life, and Habitability. Planetary and Space Science, 55(3): 358-369. https://doi.org/10.1016/j.jbc.2022.102838
      Badescu, V., 2009. Mars: Prospective Energy and Material Resources. Springer Berlin, Heidelberg.
      Baker, V. R., 2001. Water and the Martian Landscape. Nature, 412(6843): 228-236. https://doi.org/10.1038/35084172
      Banham, S. G., Gupta, S., Rubin, D. M., et al., 2018. Ancient Martian Aeolian Processes and Palaeomorphology Reconstructed from the Stimson Formation on the Lower Slope of Aeolis Mons, Gale Crater, Mars. Sedimentology, 65(4): 993-1042. https://doi.org/10.1111/sed.12469
      Bickel, V. T., Daubar, I. J., Zenhäusern, G., et al., 2025. New Impacts on Mars: Systematic Identification and Association with Insight Seismic Events. Geophysical Research Letters, 52(3): e2024GL109133. https://doi.org/10.1029/2024GL109133
      Bleacher, J. E., Greeley, R., Williams, D. A., et al., 2007. Trends in Effusive Style at the Tharsis Montes, Mars, and Implications for the Development of the Tharsis Province. Journal of Geophysical Research: Planets, 112(E9): E09005. https://doi.org/10.1029/2006JE002873
      Borg, L., Drake, M. J., 2005. A Review of Meteorite Evidence for the Timing of Magmatism and of Surface or near-Surface Liquid Water on Mars. Journal of Geophysical Research: Planets, 110(E12): E12S03. https://doi.org/10.1029/2005JE002402
      06. https://doi.org/10.1038/s43017-021-00169-5
      Bridges, J. C., Schwenzer, S. P., 2012. The Nakhlite Hydrothermal Brine on Mars. Earth and Planetary Science Letters, 359-360: 117-123. https://doi.org/10.1016/j.epsl.2012.09.044
      Bridges, N. T., Bourke, M. C., Geissler, P. E., et al., 2012. Planet-Wide Sand Motion on Mars. Geology, 40(1): 31-34. https://doi.org/10.1130/G32373.1
      Bristow, T. F., Rampe, E. B., Achilles, C. N., et al., 2018. Clay Mineral Diversity and Abundance in Sedimentary Rocks of Gale Crater, Mars. Science Advances, 4(6): eaar3330. https://doi.org/10.1126/sciadv.aar3330
      Broquet, A., Andrews-Hanna, J. C., 2023. Geophysical Evidence for an Active Mantle Plume Underneath Elysium Planitia on Mars. Nature Astronomy, 7(2): 160-169. https://doi.org/10.1038/s41550-022-01836-3
      Brown, A. J., Calvin, W. M., Becerra, P., et al., 2016. Martian North Polar Cap Summer Water Cycle. Icarus, 277: 401-415. https://doi.org/10.1016/j.icarus.2016.05.007
      Brož, P., Hauber, E., Wray, J. J., et al., 2017. Amazonian Volcanism inside Valles Marineris on Mars. Earth and Planetary Science Letters, 473: 122-130. https://doi.org/10.1016/j.epsl.2017.06.003
      Byrne, S., 2009. The Polar Deposits of Mars. Annual Review of Earth and Planetary Sciences, 37: 535-560. https://doi.org/10.1146/annurev.earth.031208.100101
      Cardinale, M., Silvestro, S., Vaz, D. A., et al., 2016. Present-Day Aeolian Activity in Herschel Crater, Mars. Icarus, 265: 139-148. https://doi.org/10.1016/j.icarus.2015.10.022
      Carr, M. H., 1973. Volcanism on Mars. Journal of Geophysical Research, 78(20): 4049-4062. https://doi.org/10.1029/JB078i020p04049
      17. https://doi.org/10.1016/0019-1035(81)90156-1
      Carr, M. H., 2007. The Surface of Mars. Cambridge University Press.
      Carr, M. H., Head, J. W., 2010. Geologic History of Mars. Earth and Planetary Science Letters, 294(3): 185-203. https://doi.org/10.1016/j.epsl.2009.06.042
      Carrozzo, F. G., Di Achille, G., Salese, F., et al., 2017. Geology and Mineralogy of the Auki Crater, Tyrrhena Terra, Mars: A Possible Post Impact-Induced Hydrothermal System. Icarus, 281: 228-239. https://doi.org/10.1016/j.icarus.2016.09.001
      Carter, J., Riu, L., Poulet, F., et al., 2023. A Mars Orbital Catalog of Aqueous Alteration Signatures (Mocaas). Icarus, 389: 115164. https://doi.org/10.1016/j.icarus.2022.115164
      Changela, H. G., Chatzitheodoridis, E., Antunes, A., et al., 2021. Mars: New Insights and Unresolved Questions. International Journal of Astrobiology, 20(6): 394-426. https://doi.org/10.1017/S1473550421000276
      Chassefière, E., Lasue, J., Langlais, B., et al., 2016. Early Mars Serpentinization-Derived Ch4 Reservoirs, H2-Induced Warming and Paleopressure Evolution. Meteoritics & Planetary Science, 51(11): 2234-2245. https://doi.org/10.1111/maps.12784
      Chojnacki, M., Burr, D. M., Moersch, J. E., et al., 2011. Orbital Observations of Contemporary Dune Activity in Endeavor Crater, Meridiani Planum, Mars. Journal of Geophysical Research: Planets, 116(E7): E00F19. https://doi.org/10.1029/2010JE003675
      Chojnacki, M., Banks, M. E., Fenton, L. K., et al., 2019. Boundary Condition Controls on the High-Sand-Flux Regions of Mars. Geology, 47(5): 427-430. https://doi.org/10.1130/G45793.1
      Christensen, P. R., 2003. Formation of Recent Martian Gullies through Melting of Extensive Water-Rich Snow Deposits. Nature, 422(6927): 45-48. https://doi.org/10.1038/nature01436
      Cockell, C. S., 2014. Trajectories of Martian Habitability. Astrobiology, 14(2): 182-203. https://doi.org/10.1089/ast.2013.1106
      Cockell, C. S., Bush, T., Bryce, C., et al., 2016. Habitability: A Review. Astrobiology, 16(1): 89-117. https://doi.org/10.1089/ast.2015.1295
      Cockell, C. S., Collins, G. S., Basu, S., et al., 2024. Martian Impact Fracturing Pervasively Influences Habitability. Journal of Geophysical Research: Planets, 129(9): e2023JE008116. https://doi.org/10.1029/2023JE008116
      Córdoba-Jabonero, C., Zorzano, M.-P., Selsis, F., et al., 2005. Radiative Habitable Zones in Martian Polar Environments. Icarus, 175(2): 360-371. https://doi.org/10.1016/j.icarus.2004.12.009
      Cox, M. A., Cavosie, A. J., Orr, K. J., et al., 2022. Impact and Habitability Scenarios for Early Mars Revisited Based on a 4.45-Ga Shocked Zircon in Regolith Breccia. Science Advances, 8(5): eabl7497. https://doi.org/10.1126/sciadv.abl7497
      Daly, L., Lee, M. R., Piazolo, S., et al., 2019. Boom Boom Pow: Shock-Facilitated Aqueous Alteration and Evidence for Two Shock Events in the Martian Nakhlite Meteorites. Science Advances, 5(9): eaaw5549. https://doi.org/10.1126/sciadv.aaw5549
      Daubar, I. J., Lognonné, P., Teanby, N. A., et al., 2020. A New Crater near Insight: Implications for Seismic Impact Detectability on Mars. Journal of Geophysical Research: Planets, 125(8): e2020JE006382. https://doi.org/10.1029/2020JE006382
      Daubar, I. J., Dundas, C. M., Mcewen, A. S., et al., 2022. New Craters on Mars: An Updated Catalog. Journal of Geophysical Research: Planets, 127(7): e2021JE007145. https://doi.org/10.1029/2021JE007145
      Dauphas, N., Pourmand, A., 2011. Hf–W–Th Evidence for Rapid Growth of Mars and Its Status as a Planetary Embryo. Nature, 473(7348): 489-492. https://doi.org/10.1038/nature10077
      Deng, Z. B., Moynier, F., Villeneuve, J., et al., 2020. Early Oxidation of the Martian Crust Triggered by Impacts. Science Advances, 6(44): eabc4941. https://doi.org/10.1126/sciadv.abc4941
      Di Achille, G., Hynek, B. M., 2010. Ancient Ocean on Mars Supported by Global Distribution of Deltas and Valleys. Nature Geoscience, 3(7): 459-463. https://doi.org/10.1038/ngeo891
      Dickson, J. L., Fassett, C. I., Head, J. W., 2009. Amazonian-Aged Fluvial Valley Systems in a Climatic Microenvironment on Mars: Melting of Ice Deposits on the Interior of Lyot Crater. Geophysical Research Letters, 36(8): L08201. https://doi.org/10.1029/2009GL037472
      Diniega, S., Bramson, A. M., Buratti, B., et al., 2021. Modern Mars’ Geomorphological Activity, Driven by Wind, Frost, and Gravity. Geomorphology, 380: 107627. https://doi.org/10.1016/j.geomorph.2021.107627
      Djokic, T., Van Kranendonk, M. J., Campbell, K. A., et al., 2017. Earliest Signs of Life on Land Preserved in Ca. 3.5 Ga Hot Spring Deposits. Nature Communications, 8(1): 15263. https://doi.org/10.1038/ncomms15263
      Dong, C. F., Bougher, S. W., Ma, Y. J., et al., 2014. Solar Wind Interaction with Mars Upper Atmosphere: Results from the One-Way Coupling between the Multifluid Mhd Model and the Mtgcm Model. Geophysical Research Letters, 41(8): 2708-2715. https://doi.org/10.1002/2014GL059515
      Du, P. X., Yuan, P., Liu, J. C., et al., 2023. Clay Minerals on Mars: An up-to-Date Review with Future Perspectives. Earth-Science Reviews, 243: 104491. https://doi.org/10.1016/j.earscirev.2023.104491
      Ehlmann, B. L., Mustard, J. F., Murchie, S. L., 2010. Geologic Setting of Serpentine Deposits on Mars. Geophysical Research Letters, 37(6): L06201. https://doi.org/10.1029/2010GL042596
      Ehlmann, B. L., Mustard, J. F., Murchie, S. L., et al., 2011. Subsurface Water and Clay Mineral Formation during the Early History of Mars. Nature, 479(7371): 53-60. https://doi.org/10.1038/nature10582
      12-9930-0
      Ehlmann, B. L., Anderson, F. S., Andrews-Hanna, J., et al., 2016. The Sustainability of Habitability on Terrestrial Planets: Insights, Questions, and Needed Measurements from Mars for Understanding the Evolution of Earth-Like Worlds. Journal of Geophysical Research: Planets, 121(10): 1927-1961. https://doi.org/10.1002/2016JE005134
      Fassett, C. I., Head, J. W., 2008. The Timing of Martian Valley Network Activity: Constraints from Buffered Crater Counting. Icarus, 195(1): 61-89. https://doi.org/10.1016/j.icarus.2007.12.009
      Fassett, C. I., Dickson, J. L., Head, J. W., et al., 2010. Supraglacial and Proglacial Valleys on Amazonian Mars. Icarus, 208(1): 86-100. https://doi.org/10.1016/j.icarus.2010.02.021
      Fenton, L. K., 2020. Updating the Global Inventory of Dune Fields on Mars and Identification of Many Small Dune Fields. Icarus, 352: 114018. https://doi.org/10.1016/j.icarus.2020.114018
      Foley, C. N., Wadhwa, M., Borg, L. E., et al., 2005. The Early Differentiation History of Mars from 182w-142nd Isotope Systematics in the Snc Meteorites. Geochimica et Cosmochimica Acta, 69(18): 4557-4571. https://doi.org/10.1016/j.gca.2005.05.009
      Fonti, S., Marzo, G. A., 2010. Mapping the Methane on Mars. Astronomy & Astrophysics, 512: A51. https://doi.org/10.1051/0004-6361/200913178
      Forget, F., Haberle, R. M., Montmessin, F., et al., 2006. Formation of Glaciers on Mars by Atmospheric Precipitation at High Obliquity. Science, 311(5759): 368-371. https://doi.org/10.1126/science.1120335
      Formisano, V., Atreya, S., Encrenaz, T., et al., 2004. Detection of Methane in the Atmosphere of Mars. Science, 306(5702): 1758-1761. https://doi.org/10.1126/science.1101732
      Gainey, S. R., Hausrath, E. M., Adcock, C. T., et al., 2017. Clay Mineral Formation under Oxidized Conditions and Implications for Paleoenvironments and Organic Preservation on Mars. Nature Communications, 8(1): 1230. https://doi.org/10.1038/s41467-017-01235-7
      Geng, Y., Zhou J. S., Li, S., et al, 2018. A Brief Introduction of the First Mars Exploration Mission in China. Journal of Deep Space Exploration, 5(05): 399-405 (in Chinese with English abstract).
      Golombek, M. P., Warner, N. H., Ganti, V., et al., 2014. Small Crater Modification on Meridiani Planum and Implications for Erosion Rates and Climate Change on Mars. Journal of Geophysical Research: Planets, 119(12): 2522-2547. https://doi.org/10.1002/2014JE004658
      Gou, S., Yue, Z. Y., Di, K. C., et al, 2021. Rampart Craters in the Isidis Planitia,Mars: Remote sensing analysis and environment implications. National Remote Sensing Bulletin, 25(7): 1374-1384 (in Chinese with English abstract).
      Goudge, T. A., Milliken, R. E., Head, J. W., et al., 2017. Sedimentological Evidence for a Deltaic Origin of the Western Fan Deposit in Jezero Crater, Mars and Implications for Future Exploration. Earth and Planetary Science Letters, 458: 357-365. https://doi.org/10.1016/j.epsl.2016.10.056
      Grady, M. M., 2020. Exploring Mars with Returned Samples. Space Science Reviews, 216(4): 51. https://doi.org/10.1007/s11214-020-00676-9
      Grant, J. A., Wilson, S. A., 2011. Late Alluvial Fan Formation in Southern Margaritifer Terra, Mars. Geophysical Research Letters, 38(8): L08201. https://doi.org/10.1029/2011GL046844
      Grau Galofre, A., Whipple, K. X., Christensen, P. R., et al., 2022. Valley Networks and the Record of Glaciation on Ancient Mars. Geophysical Research Letters, 49(14): e2022GL097974. https://doi.org/10.1029/2022GL097974
      Grotzinger, J. P., Arvidson, R. E., Bell, J. F., et al., 2005. Stratigraphy and Sedimentology of a Dry to Wet Eolian Depositional System, Burns Formation, Meridiani Planum, Mars. Earth and Planetary Science Letters, 240(1): 11-72. https://doi.org/10.1016/j.epsl.2005.09.039
      Haberle, R. M., Zahnle, K., Barlow, N. G., et al., 2019. Impact Degassing of H2 on Early Mars and Its Effect on the Climate System. Geophysical Research Letters, 46(22): 13355-13362. https://doi.org/10.1029/2019GL084733
      Hadland, N., Hamilton, C. W., Duhamel, S., 2024. Young Volcanic Terrains Are Windows into Early Microbial Colonization. Communications Earth & Environment, 5(1): 114. https://doi.org/10.1038/s43247-024-01280-3
      Harrison, T. N., Malin, M. C., Edgett, K. S., et al., 2010. Impact-Induced Overland Fluid Flow and Channelized Erosion at Lyot Crater, Mars. Geophysical Research Letters, 37(21): L21201. https://doi.org/10.1029/2010GL045074
      Hartmann, W. K., 2005. Martian Cratering 8: Isochron Refinement and the Chronology of Mars. Icarus, 174(2): 294-320. https://doi.org/10.1016/j.icarus.2004.11.023
      Hartmann, W. K., Neukum, G., 2001. Cratering Chronology and the Evolution of Mars. Space Science Reviews, 96(1): 165-194. https://doi.org/10.1023/A:1011945222010
      Hassler, D. M., Zeitlin, C., Wimmer-Schweingruber, R. F., et al., 2014. Mars’ Surface Radiation Environment Measured with the Mars Science Laboratory’s Curiosity Rover. Science, 343(6169): 1244797. https://doi.org/10.1126/science.1244797
      Hauber, E., Bleacher, J., Gwinner, K., et al., 2009. The Topography and Morphology of Low Shields and Associated Landforms of Plains Volcanism in the Tharsis Region of Mars. Journal of Volcanology and Geothermal Research, 185(1): 69-95. https://doi.org/10.1016/j.jvolgeores.2009.04.015
      Hauber, E., Brož, P., Jagert, F., et al., 2011. Very Recent and Wide-Spread Basaltic Volcanism on Mars. Geophysical Research Letters, 38(10): L10201. https://doi.org/10.1029/2011GL047310
      Hayward, R. K., Fenton, L. K.. Titus, T. N., 2014. Mars Global Digital Dune Database (Mgd3): Global Dune Distribution and Wind Pattern Observations. Icarus, 230: 38-46. https://doi.org/10.1016/j.icarus.2013.04.011
      Hazen, R. M., Sverjensky, D. A., 2010. Mineral Surfaces, Geochemical Complexities, and the Origins of Life. Cold Spring Harbor perspectives in biology, 2(5): a002162. https://doi.org/10.1101/cshperspect.a002162
      Head, J. W., Kreslavsky, M. A., Pratt, S., 2002. Northern Lowlands of Mars: Evidence for Widespread Volcanic Flooding and Tectonic Deformation in the Hesperian Period. Journal of Geophysical Research: Planets, 107(E1): 3-1-3-29. https://doi.org/10.1029/2000JE001445
      Head, J. W., Mustard, J. F., Kreslavsky, M. A., et al., 2003. Recent Ice Ages on Mars. Nature, 426(6968): 797-802. https://doi.org/10.1038/nature02114
      Heavens, N. G., Kleinböhl, A., Chaffin, M. S., et al., 2018. Hydrogen Escape from Mars Enhanced by Deep Convection in Dust Storms. Nature Astronomy, 2(2): 126-132. https://doi.org/10.1038/s41550-017-0353-4
      Hoehler, T. M., 2007. An Energy Balance Concept for Habitability. Astrobiology, 7(6): 824-838. https://doi.org/10.1089/ast.2006.0095
      Horvath, D. G., Moitra, P., Hamilton, C. W., et al., 2021. Evidence for Geologically Recent Explosive Volcanism in Elysium Planitia, Mars. Icarus, 365: 114499. https://doi.org/10.1016/j.icarus.2021.114499
      Hou, Z. Q., Liu, J. Z., Xu, Y. G., et al., 2024. The Search for Life Signatures on Mars by the Tianwen-3 Mars Sample Return Mission. National Science Review, 11(11): nwae313. https://doi.org/10.1093/nsr/nwae313
      25-02572-0
      Howard, A. D., 2000. The Role of Eolian Processes in Forming Surface Features of the Martian Polar Layered Deposits. Icarus, 144(2): 267-288. https://doi.org/10.1006/icar.1999.6305
      Hu, S., Lin, Y. T., Zhang, J. C., et al., 2019. Ancient Geologic Events on Mars Revealed by Zircons and Apatites from the Martian Regolith Breccia Nwa 7034. Meteoritics & Planetary Science, 54(4): 850-879. https://doi.org/10.1111/maps.13256
      Hu, S., Gao, Y. B., Zhou, Z., et al., 2024. Water and Other Volatiles on Mars. National Science Review, 11(6): nwae094. https://doi.org/10.1093/nsr/nwae094
      Hurowitz, J. A., Mclennan, S. M., 2007. A ∼3.5 ga Record of Water-Limited, Acidic Weathering Conditions on Mars. Earth and Planetary Science Letters, 260(3): 432-443. https://doi.org/10.1016/j.epsl.2007.05.043
      Ivanov, B. A., 2001. Mars/Moon Cratering Rate Ratio Estimates. Space Science Reviews, 96(1): 87-104. https://doi.org/10.1023/A:1011941121102
      Jakosky, B. M., Nealson, K. H., Bakermans, C., et al., 2003. Subfreezing Activity of Microorganisms and the Potential Habitability of Mars’ Polar Regions. Astrobiology, 3(2): 343-350. https://doi.org/10.1089/153110703769016433
      Jakosky, B. M., Brain, D., Chaffin, M., et al., 2018. Loss of the Martian Atmosphere to Space: Present-Day Loss Rates Determined from Maven Observations and Integrated Loss through Time. Icarus, 315: 146-157. https://doi.org/10.1016/j.icarus.2018.05.030
      Jakosky, B. M., 2021. Atmospheric Loss to Space and the History of Water on Mars. Annual Review of Earth and Planetary Sciences, 49: 71-93. https://doi.org/10.1146/annurev-earth-062420-052845
      Jia, Y. Z., Fan, Y., Zou, Y. L., 2018. Scientific Objectives and Payloads of Chinese First Mars Exploration. Chinese Journal of Space Science, 38(05): 650-655. https://doi.org/10.11728/cjss2018.05.650
      Jones, A. P., Mcewen, A. S., Tornabene, L. L., et al., 2011. A Geomorphic Analysis of Hale Crater, Mars: The Effects of Impact into Ice-Rich Crust. Icarus, 211(1): 259-272. https://doi.org/10.1016/j.icarus.2010.10.014
      Ju, E. M., Liu, C. Q., Chen, J., et al., 2024. Detection of Allophane by the Zhurong Rover Indicates Water-Limited Alteration at Utopia Planitia, Mars. Earth and Planetary Science Letters, 639: 118769. https://doi.org/10.1016/j.epsl.2024.118769
      Kargel, J. S., Baker, V. R., Begét, J. E., et al., 1995. Evidence of Ancient Continental Glaciation in the Martian Northern Plains. Journal of Geophysical Research: Planets, 100(E3): 5351-5368. https://doi.org/10.1029/94JE02447
      Kass, D. M., Schofield, J. T., Kleinböhl, A., et al., 2020. Mars Climate Sounder Observation of Mars’ 2018 Global Dust Storm. Geophysical Research Letters, 47(23): e2019GL083931. https://doi.org/10.1029/2019GL083931
      Kelley, D. S., Karson, J. A., Früh-Green, G. L., et al., 2005. A Serpentinite-Hosted Ecosystem: The Lost City Hydrothermal Field. Science, 307(5714): 1428-1434. https://doi.org/10.1126/science.1102556
      Khuller, A. R., Warren, S. G., Christensen, P. R., et al., 2024. Potential for Photosynthesis on Mars within Snow and Ice. Communications Earth & Environment, 5(1): 583. https://doi.org/10.1038/s43247-024-01730-y
      Kim, D., Banerdt, W. B., Ceylan, S., et al., 2022. Surface Waves and Crustal Structure on Mars. Science, 378(6618): 417-421. https://doi.org/10.1126/science.abq7157
      Kite, E. S., Conway, S., 2024. Geological Evidence for Multiple Climate Transitions on Early Mars. Nature Geoscience, 17(1): 10-19. https://doi.org/10.1038/s41561-023-01349-2
      Kleine, T., Mezger, K., Münker, C., et al., 2004. 182hf-182w Isotope Systematics of Chondrites, Eucrites, and Martian Meteorites: Chronology of Core Formation and Early Mantle Differentiation in Vesta and Mars1 1associate Editor: R. J. Walker. Geochimica et Cosmochimica Acta, 68(13): 2935-2946. https://doi.org/10.1016/j.gca.2004.01.009
      Koutnik, M. R., Byrne, S., Murray, B. C., et al., 2005. Eolian Controlled Modification of the Martian South Polar Layered Deposits. Icarus, 174(2): 490-501. https://doi.org/10.1016/j.icarus.2004.09.015
      Krishnan, V., Kumar, P. S., 2023. Long-Lived and Continual Volcanic Eruptions, Tectonic Activity, Pit Chains Formation, and Boulder Avalanches in Northern Tharsis Region: Implications for Late Amazonian Geodynamics and Seismo-Tectonic Processes on Mars. Journal of Geophysical Research: Planets, 128(1): e2022JE007511. https://doi.org/10.1029/2022JE007511
      Krishnan, V., Kumar, P. S., 2025. Late Amazonian Continual Volcanic Eruption, Contemporaneous Tectonics and Pit Chain Formation in the Central Tharsis Region, Mars: Implications for Long-Lived Magmatism and Mantle Plume. Icarus, 441: 116667. https://doi.org/10.1016/j.icarus.2025.116667
      Kuroda, T., Medvedev, A. S., Yiğit, E., 2020. Gravity Wave Activity in the Atmosphere of Mars during the 2018 Global Dust Storm: Simulations with a High-Resolution Model. Journal of Geophysical Research: Planets, 125(11): e2020JE006556. https://doi.org/10.1029/2020JE006556
      Kurokawa, H., Sato, M., Ushioda, M., et al., 2014. Evolution of Water Reservoirs on Mars: Constraints from Hydrogen Isotopes in Martian Meteorites. Earth and Planetary Science Letters, 394: 179-185. https://doi.org/10.1016/j.epsl.2014.03.027
      Lammer, H., Bredehöft, J. H., Coustenis, A., et al., 2009. What Makes a Planet Habitable? The Astronomy and Astrophysics Review, 17(2): 181-249. https://doi.org/10.1007/s00159-009-0019-z
      Laskar, J., Correia, A. C. M., Gastineau, M., et al., 2004. Long Term Evolution and Chaotic Diffusion of the Insolation Quantities of Mars. Icarus, 170(2): 343-364. https://doi.org/10.1016/j.icarus.2004.04.005
      Lei, T. T., Chen, L. Z., Chen, S. X., et al, 2022. Progress in research on the adaptability of microorganisms to extremely cold environments. Acta Microbiologica Sinica, 62(06): 2150-2164 (in Chinese with English abstract).
      Li, C., Zheng, Y. K., Wang, X., et al., 2022. Layered Subsurface in Utopia Basin of Mars Revealed by Zhurong Rover Radar. Nature, 610(7931): 308-312. https://doi.org/10.1038/s41586-022-05147-5
      Li, C., Dong, Z. B., 2022. Distribution of Dune Landform on Mars. Frontiers in Astronomy and Space Sciences, 9: 811702. https://doi.org/10.3389/fspas.2022.811702
      Li, J. H., Liu, H., Meng, X., et al., 2025. Ancient Ocean Coastal Deposits Imaged on Mars. Proceedings of the National Academy of Sciences, 122(9): e2422213122. https://doi.org/10.1073/pnas.2422213122
      Li, J. Y., Dong, Z. B., 2016. Research Progress of Aeolian Landforms on Mars. Journal of Desert Research, 36(04): 951-961 (in Chinese with English abstract).
      Lillis, R. J., Frey, H. V., Manga, M., 2008. Rapid Decrease in Martian Crustal Magnetization in the Noachian Era: Implications for the Dynamo and Climate of Early Mars. Geophysical Research Letters, 35(14): L14203. https://doi.org/10.1029/2008GL034338
      Lin, H. L., Lin, Y. T., Wei, Y., et al., 2023. Mineralogical Evidence of Water Activity in the Northern Lowlands of Mars Based on Inflight-Calibrated Spectra from the Zhurong Rover. Science China Earth Sciences, 66(11): 2463-2472. https://doi.org/10.1007/s11430-023-1194-4
      Lin, Y. T., El Goresy, A., Hu, S., et al., 2014. Nanosims Analysis of Organic Carbon from the Tissint Martian Meteorite: Evidence for the Past Existence of Subsurface Organic-Bearing Fluids on Mars. Meteoritics & Planetary Science, 49(12): 2201-2218. https://doi.org/10.1111/maps.12389
      Liu, J., Di, K. C., Gou, S., et al., 2020. Mapping and Spatial Statistical Analysis of Mars Yardangs. Planetary and Space Science, 192: 105035. https://doi.org/10.1016/j.pss.2020.105035
      09. https://doi.org/10.1038/s41550-021-01303-5
      24-47326-0
      Liu, J. J., Li, C. L., Zhang, R. Q., et al., 2022a. Geomorphic Contexts and Science Focus of the Zhurong Landing Site on Mars. Nature Astronomy, 6(1): 65-71. https://doi.org/10.1038/s41550-021-01519-5
      Liu, J. J., Qin, X. G., Ren, X., et al., 2023. Martian Dunes Indicative of Wind Regime Shift in Line with End of Ice Age. Nature, 620(7973): 303-309. https://doi.org/10.1038/s41586-023-06206-1
      Liu, J. J., Ren, X., Yan, W., et al., 2024a. A 76-M Per Pixel Global Color Image Dataset and Map of Mars by Tianwen-1. Science Bulletin, 69(14): 2183-2186. https://doi.org/10.1016/j.scib.2024.04.045
      Liu, Y., Wu, X., Liu, Z. H., et al, 2021a. Geological evolution and habitable environment of Mars: Progress and prospects. Reviews of Geophysics and Planetary Physics, 52(04): 416-436 (in Chinese with English abstract).
      Liu, Y., Liu, Z. H., Wu, X., et al, 2021b. Evolution of water environment on Mars. Acta Geologica Sinica, 95(09): 2725-2741 (in Chinese with English abstract).
      Liu, Y., Wu, X., Zhao, Y.-Y. S., et al., 2022b. Zhurong Reveals Recent Aqueous Activities in Utopia Planitia, Mars. Science Advances, 8(19): eabn8555. https://doi.org/10.1126/sciadv.abn8555
      Liu, Z. H., Liu, Y., Pan, L., et al., 2021b. Inverted Channel Belts and Floodplain Clays to the East of Tempe Terra, Mars: Implications for Persistent Fluvial Activity on Early Mars. Earth and Planetary Science Letters, 562: 116854. https://doi.org/10.1016/j.epsl.2021.116854
      Liu, Z. H., Liu, Y., Liu, J., et al, 2024. Distribution Characteristics and Research Progress of Water-Ice on Mars. Earth Science, 49(06): 2253-2276 (in Chinese with English abstract).
      Liuzzi, G., Villanueva, G. L., Crismani, M. M. J., et al., 2020. Strong Variability of Martian Water Ice Clouds during Dust Storms Revealed from Exomars Trace Gas Orbiter/Nomad. Journal of Geophysical Research: Planets, 125(4): e2019JE006250. https://doi.org/10.1029/2019JE006250
      Lowe, D. R., Byerly, G. R., 2018. The Terrestrial Record of Late Heavy Bombardment. New Astronomy Reviews, 81: 39-61. https://doi.org/10.1016/j.newar.2018.03.002
      Lowell, R. P., Rona, P. A., 2002. Seafloor Hydrothermal Systems Driven by the Serpentinization of Peridotite. Geophysical Research Letters, 29(11): 26-1-26-4. https://doi.org/10.1029/2001GL014411
      Luo, G. M., Wang, C., Yin, Z. J., et al, 2025. From Geobiology to Astrobiology. Earth Science, 2025, 50(03): 857-876 (in Chinese with English abstract).
      Ma, Y. Z., Xiao, Z. Y., Luo, F. L., et al., 2023. Sharad Observations for Layered Ejecta Deposits Formed by Late-Amazonian-Aged Impact Craters at Low Latitudes of Mars. Icarus, 404: 115689. https://doi.org/10.1016/j.icarus.2023.115689
      Mackinnon, D. J., Tanaka, K. L., 1989. The Impacted Martian Crust: Structure, Hydrology, and Some Geologic Implications. Journal of Geophysical Research: Solid Earth, 94(B12): 17359-17370. https://doi.org/10.1029/JB094iB12p17359
      633(00)00083-0
      Mao, W. S., Fu, X. H., Wu, Z. C., et al., 2022. The Color Centers in Halite Induced by Martian Dust Activities. Earth and Planetary Science Letters, 578: 117302. https://doi.org/10.1016/j.epsl.2021.117302
      Mao, W. S., Fu, X. H., Wu, Z. C., et al., 2023. Solid−Gas Carbonate Formation during Dust Events on Mars. National Science Review, 10(4): nwac293. https://doi.org/10.1093/nsr/nwac293
      Martin, W., Baross, J., Kelley, D., et al., 2008. Hydrothermal Vents and the Origin of Life. Nature Reviews Microbiology, 6(11): 805-814. https://doi.org/10.1038/nrmicro1991
      Martínez, G. M., Renno, N. O., 2013. Water and Brines on Mars: Current Evidence and Implications for Msl. Space Science Reviews, 175(1): 29-51. https://doi.org/10.1007/s11214-012-9956-3
      Masursky, H., 1973. An Overview of Geological Results from Mariner 9. Journal of Geophysical Research (1896-1977), 78(20): 4009-4030. https://doi.org/10.1029/JB078i020p04009
      Mayyasi, M., Bhattacharyya, D., Clarke, J., et al., 2018. Significant Space Weather Impact on the Escape of Hydrogen from Mars. Geophysical Research Letters, 45(17): 8844-8852. https://doi.org/10.1029/2018GL077727
      Mellon, M. T., Feldman, W. C., Prettyman, T. H., 2004. The Presence and Stability of Ground Ice in the Southern Hemisphere of Mars. Icarus, 169(2): 324-340. https://doi.org/10.1016/j.icarus.2003.10.022
      Mellon, M. T., Sizemore, H. G., Heldmann, J. L., et al., 2024. The Habitability Conditions of Possible Mars Landing Sites for Life Exploration. Icarus, 408: 115836. https://doi.org/10.1016/j.icarus.2023.115836
      Michalski, J. R., Cuadros, J., Niles, P. B., et al., 2013. Groundwater Activity on Mars and Implications for a Deep Biosphere. Nature Geoscience, 6(2): 133-138. https://doi.org/10.1038/ngeo1706
      6. https://doi.org/10.1038/s41561-017-0015-2
      Michalski, J. R., Deanne Rogers, A., Edwards, C. S., et al., 2024. Diverse Volcanism and Crustal Recycling on Early Mars. Nature Astronomy, 8(4): 456-462. https://doi.org/10.1038/s41550-023-02191-7
      Mittelholz, A., Johnson, C. L., Feinberg, J. M., et al., 2020. Timing of the Martian Dynamo: New Constraints for a Core Field 4.5 and 3.7 Ga Ago. Science Advances, 6(18): eaba0513. https://doi.org/doi: 10.1126/sciadv.aba0513
      Moitra, P., Horvath, D. G., Andrews-Hanna, J. C., 2021. Investigating the Roles of Magmatic Volatiles, Ground Ice and Impact-Triggering on a Very Recent and Highly Explosive Volcanic Eruption on Mars. Earth and Planetary Science Letters, 567: 116986. https://doi.org/10.1016/j.epsl.2021.116986
      Montgomery, W., Bromiley, G. D., Sephton, M. A., 2016. The Nature of Organic Records in Impact Excavated Rocks on Mars. Scientific Reports, 6(1): 30947. https://doi.org/10.1038/srep30947
      Morbidelli, A., Nesvorny, D., Laurenz, V., et al., 2018. The Timeline of the Lunar Bombardment: Revisited. Icarus, 305: 262-276. https://doi.org/10.1016/j.icarus.2017.12.046
      Moreras-Marti, A., Fox-Powell, M., Zerkle, A. L., et al., 2021. Volcanic Controls on the Microbial Habitability of Mars-Analogue Hydrothermal Environments. Geobiology, 19(5): 489-509. https://doi.org/10.1111/gbi.12459
      Neary, L., Daerden, F., Aoki, S., et al., 2020. Explanation for the Increase in High-Altitude Water on Mars Observed by Nomad during the 2018 Global Dust Storm. Geophysical Research Letters, 47(7): e2019GL084354. https://doi.org/10.1029/2019GL084354
      Neukum, G., Basilevsky, A. T., Kneissl, T., et al., 2010. The Geologic Evolution of Mars: Episodicity of Resurfacing Events and Ages from Cratering Analysis of Image Data and Correlation with Radiometric Ages of Martian Meteorites. Earth and Planetary Science Letters, 294(3): 204-222. https://doi.org/10.1016/j.epsl.2009.09.006
      Nimmo, F., Tanaka, K., 2005. Early Crustal Evolution of Mars1. Annual Review of Earth and Planetary Sciences, 33: 133-161. https://doi.org/10.1146/annurev.earth.33.092203.122637
      Nimmo, F., Hart, S. D., Korycansky, D. G., et al., 2008. Implications of an Impact Origin for the Martian Hemispheric Dichotomy. Nature, 453(7199): 1220-1223. https://doi.org/10.1038/nature07025
      Ojha, L., Wilhelm, M. B., Murchie, S. L., et al., 2015. Spectral Evidence for Hydrated Salts in Recurring Slope Lineae on Mars. Nature Geoscience, 8(11): 829-832. https://doi.org/10.1038/ngeo2546
      Ojha, L., Buffo, J., Karunatillake, S., et al., 2020. Groundwater Production from Geothermal Heating on Early Mars and Implication for Early Martian Habitability. Science Advances, 6(49): eabb1669. https://doi.org/10.1126/sciadv.abb1669
      Ojha, L., Karunatillake, S., Karimi, S., et al., 2021. Amagmatic Hydrothermal Systems on Mars from Radiogenic Heat. Nature Communications, 12(1): 1754. https://doi.org/10.1038/s41467-021-21762-8
      Orosei, R., Lauro, S. E., Pettinelli, E., et al., 2018. Radar Evidence of Subglacial Liquid Water on Mars. Science, 361(6401): 490-493. https://doi.org/10.1126/science.aar7268
      Osinski, G. R., Cockell, C. S., Pontefract, A., et al., 2020. The Role of Meteorite Impacts in the Origin of Life. Astrobiology, 20(9): 1121-1149. https://doi.org/10.1089/ast.2019.2203
      Pan, L., Ehlmann, B. L., Carter, J., et al., 2017. The Stratigraphy and History of Mars’ Northern Lowlands through Mineralogy of Impact Craters: A Comprehensive Survey. Journal of Geophysical Research: Planets, 122(9): 1824-1854. https://doi.org/10.1002/2017JE005276
      Pan, L., Deng, Z. B., Bizzarro, M., 2023. Impact Induced Oxidation and Its Implications for Early Mars Climate. Geophysical Research Letters, 50(6): e2023GL102724. https://doi.org/10.1029/2023GL102724
      Pavlov, A. A., Vasilyev, G., Ostryakov, V. M., et al., 2012. Degradation of the Organic Molecules in the Shallow Subsurface of Mars Due to Irradiation by Cosmic Rays. Geophysical Research Letters, 39(13): L13202. https://doi.org/10.1029/2012GL052166
      Pieterek, B., Ciazela, J., Lagain, A., et al., 2022. Late Amazonian Dike-Fed Distributed Volcanism in the Tharsis Volcanic Province on Mars. Icarus, 386: 115151. https://doi.org/10.1016/j.icarus.2022.115151
      Piqueux, S., Kass, D. M., Kleinböhl, A., et al., 2024. Mars Thermal Inertia and Surface Temperatures by the Mars Climate Sounder. Icarus, 419: 115851. https://doi.org/10.1016/j.icarus.2023.115851
      Posiolova, L. V., Lognonné, P., Banerdt, W. B., et al., 2022. Largest Recent Impact Craters on Mars: Orbital Imaging and Surface Seismic Co-Investigation. Science, 378(6618): 412-417. https://doi.org/10.1126/science.abq7704
      Qin, X. G., Ren, X., Wang, X., et al., 2023. Modern Water at Low Latitudes on Mars: Potential Evidence from Dune Surfaces. Science Advances, 9(17): eadd8868. https://doi.org/10.1126/sciadv.add8868
      Ramirez, R. M., Kopparapu, R., Zugger, M. E., et al., 2014. Warming Early Mars with Co2 and H2. Nature Geoscience, 7(1): 59-63. https://doi.org/10.1038/ngeo2000
      Reiss, D., Hauber, E., Michael, G., et al., 2005. Small Rampart Craters in an Equatorial Region on Mars: Implications for near-Surface Water or Ice. Geophysical Research Letters, 32(10): L10202. https://doi.org/10.1029/2005GL022758
      Richardson, J. A., Bleacher, J. E., Connor, C. B., et al., 2021. Small Volcanic Vents of the Tharsis Volcanic Province, Mars. Journal of Geophysical Research: Planets, 126(2): e2020JE006620. https://doi.org/10.1029/2020JE006620
      Robbins, S. J., Achille, G. D., Hynek, B. M., 2011. The Volcanic History of Mars: High-Resolution Crater-Based Studies of the Calderas of 20 Volcanoes. Icarus, 211(2): 1179-1203. https://doi.org/10.1016/j.icarus.2010.11.012
      Robbins, S. J., Hynek, B. M., 2012. A New Global Database of Mars Impact Craters ≥1 Km: 1. Database Creation, Properties, and Parameters. Journal of Geophysical Research: Planets, 117(E5): E05004. https://doi.org/10.1029/2011JE003966
      Rodriguez, J. a. P., Platz, T., Gulick, V., et al., 2015. Did the Martian Outflow Channels Mostly Form during the Amazonian Period? Icarus, 257: 387-395. https://doi.org/10.1016/j.icarus.2015.04.024
      Russell, P. S., Head Iii, J. W., 2002. The Martian Hydrosphere/Cryosphere System: Implications of the Absence of Hydrologic Activity at Lyot Crater. Geophysical Research Letters, 29(17): 8-1-8-4. https://doi.org/10.1029/2002GL015178
      Sasselov, D. D., Grotzinger, J. P., Sutherland, J. D., 2020. The Origin of Life as a Planetary Phenomenon. Science Advances, 6(6): eaax3419. https://doi.org/10.1126/sciadv.aax3419
      Sauterey, B., Charnay, B., Affholder, A., et al., 2022. Early Mars Habitability and Global Cooling by H2-Based Methanogens. Nature Astronomy, 6(11): 1263-1271. https://doi.org/10.1038/s41550-022-01786-w
      Savijärvi, H. I., Martinez, G. M., Fischer, E., et al., 2020. Humidity Observations and Column Simulations for a Warm Period at the Mars Phoenix Lander Site: Constraining the Adsorptive Properties of Regolith. Icarus, 343: 113688. https://doi.org/10.1016/j.icarus.2020.113688
      Sánchez-García, L., Lezcano, M. Á., Carrizo, D., et al., 2023. Assessing Siliceous Sinter Matrices for Long-Term Preservation of Lipid Biomarkers in Opaline Sinter Deposits Analogous to Mars in El Tatio (Chile). Science of The Total Environment, 870: 161765. https://doi.org/10.1016/j.scitotenv.2023.161765
      Scanlon, K. E., Head, J. W., Marchant, D. R., 2015. Volcanism-Induced, Local Wet-Based Glacial Conditions Recorded in the Late Amazonian Arsia Mons Tropical Mountain Glacier Deposits. Icarus, 250: 18-31. https://doi.org/10.1016/j.icarus.2014.11.016
      Scheller, E. L., Ehlmann, B. L., Hu, R., et al., 2021. Long-Term Drying of Mars by Sequestration of Ocean-Scale Volumes of Water in the Crust. Science, 372(6537): 56-62. https://doi.org/10.1126/science.abc7717
      Schmitt-Kopplin, P., Matzka, M., Ruf, A., et al., 2023. Complex Carbonaceous Matter in Tissint Martian Meteorites Give Insights into the Diversity of Organic Geochemistry on Mars. Science Advances, 9(2): eadd6439. https://doi.org/10.1126/sciadv.add6439
      Schröder, C., Bland, P. A., Golombek, M. P., et al., 2016. Amazonian Chemical Weathering Rate Derived from Stony Meteorite Finds at Meridiani Planum on Mars. Nature Communications, 7(1): 13459. https://doi.org/10.1038/ncomms13459
      Schulte, M., Blake, D., Hoehler, T., et al., 2006. Serpentinization and Its Implications for Life on the Early Earth and Mars. Astrobiology, 6(2): 364-376. https://doi.org/10.1089/ast.2006.6.364
      Schulze-Makuch, D., Dohm, J. M., Fan, C., et al., 2007. Exploration of Hydrothermal Targets on Mars. Icarus, 189(2): 308-324. https://doi.org/10.1016/j.icarus.2007.02.007
      Schwander, L., Brabender, M., Mrnjavac, N., et al., 2023. Serpentinization as the Source of Energy, Electrons, Organics, Catalysts, Nutrients and Ph Gradients for the Origin of Luca and Life. Frontiers in Microbiology, 14 - 2023. https://doi.org/10.3389/fmicb.2023.1257597
      Schwenzer, S. P., Kring, D. A., 2013. Alteration Minerals in Impact-Generated Hydrothermal Systems – Exploring Host Rock Variability. Icarus, 226(1): 487-496. https://doi.org/10.1016/j.icarus.2013.06.003
      Shau, Y.-H., Peacor, D. R., Essene, E. J., 1993. Formation of Magnetic Single-Domain Magnetite in Ocean Ridge Basalts with Implications for Sea-Floor Magnetism. Science, 261(5119): 343-345. https://doi.org/10.1126/science.261.5119.343
      She, X. Y., Wang, J., Huang, J., et al, 2024. Research Status of Lava Tube Exploration in the Solar System. Journal of Deep Space Exploration, 2024, 11(04): 313-327+311-312 (in Chinese with English abstract).
      Shi, Y. T., Zhao, J. N., Xiao, L., et al., 2022. An Arid-Semiarid Climate during the Noachian-Hesperian Transition in the Huygens Region, Mars: Evidence from Morphological Studies of Valley Networks. Icarus, 373: 114789. https://doi.org/10.1016/j.icarus.2021.114789
      Shi, Y. T., Zhao, J. N., Zhang, M. J., et al, 2025. Evolution of the Martian Geological Environment and Exploration of Habitability of Mars. Journal of Deep Space Exploration, 12(01): 86-96 (in Chinese with English abstract).
      Sholes, S. F., Smith, M. L., Claire, M. W., et al., 2017. Anoxic Atmospheres on Mars Driven by Volcanism: Implications for Past Environments and Life. Icarus, 290: 46-62. https://doi.org/10.1016/j.icarus.2017.02.022
      Sizemore, H. G., Mellon, M. T., Rempel, A. W., et al., 2026. Liquid Vein Networks as Habitats in Ice-Cemented Ground on Earth and Mars: Effects of Soil Geometry and Salts. Icarus, 445: 116828. https://doi.org/10.1016/j.icarus.2025.116828
      Skok, J. R., Mustard, J. F., Ehlmann, B. L., et al., 2010. Silica Deposits in the Nili Patera Caldera on the Syrtis Major Volcanic Complex on Mars. Nature Geoscience, 3(12): 838-841. https://doi.org/10.1038/ngeo990
      Sleep, N. H., Zahnle, K., 1998. Refugia from Asteroid Impacts on Early Mars and the Early Earth. Journal of Geophysical Research: Planets, 103(E12): 28529-28544. https://doi.org/10.1029/98JE01809
      Smith, I. B., Spiga, A., Holt, J. W., 2015. Aeolian Processes as Drivers of Landform Evolution at the South Pole of Mars. Geomorphology, 240: 54-69. https://doi.org/10.1016/j.geomorph.2014.08.026
      Stähler, S. C., Mittelholz, A., Perrin, C., et al., 2022. Tectonics of Cerberus Fossae Unveiled by Marsquakes. Nature Astronomy, 6(12): 1376-1386. https://doi.org/10.1038/s41550-022-01803-y
      Steele, A., Mccubbin, F. M., Fries, M. D., 2016. The Provenance, Formation, and Implications of Reduced Carbon Phases in Martian Meteorites. Meteoritics & Planetary Science, 51(11): 2203-2225. https://doi.org/10.1111/maps.12670
      Steele, A., Benning, L. G., Wirth, R., et al., 2022. Organic Synthesis Associated with Serpentinization and Carbonation on Early Mars. Science, 375(6577): 172-177. https://doi.org/10.1126/science.abg7905
      Sun, V. Z., Milliken, R. E., 2015. Ancient and Recent Clay Formation on Mars as Revealed from a Global Survey of Hydrous Minerals in Crater Central Peaks. Journal of Geophysical Research: Planets, 120(12): 2293-2332. https://doi.org/10.1002/2015JE004918
      Sweeney, J., Warner, N. H., Ganti, V., et al., 2018. Degradation of 100-M-Scale Rocky Ejecta Craters at the Insight Landing Site on Mars and Implications for Surface Processes and Erosion Rates in the Hesperian and Amazonian. Journal of Geophysical Research: Planets, 123(10): 2732-2759. https://doi.org/10.1029/2018JE005618
      Tan, J. S. W., Salter, T. L., Watson, J. S., et al., 2023. Organic Biosignature Degradation in Hydrothermal and Serpentinizing Environments: Implications for Life Detection on Icy Moons and Mars. Astrobiology, 23(10): 1045-1055. https://doi.org/10.1089/ast.2022.0144
      Tanaka, K. L., 1986. The Stratigraphy of Mars. Journal of Geophysical Research: Solid Earth, 91(B13): E139-E158. https://doi.org/10.1029/JB091iB13p0E139
      Tanaka, K. L., Skinner, J. A., Dohm, J. M., et al., 2014. Geologic Map of Mars. U.S. Geological Survey. https://dx.doi.org/10.3133/sim3292
      Tarnas, J. D., Mustard, J. F., Sherwood Lollar, B., et al., 2018. Radiolytic H2 Production on Noachian Mars: Implications for Habitability and Atmospheric Warming. Earth and Planetary Science Letters, 502: 133-145. https://doi.org/10.1016/j.epsl.2018.09.001
      Tsoar, H., Greeley, R., Peterfreund, A. R., 1979. Mars: The North Polar Sand Sea and Related Wind Patterns. Journal of Geophysical Research: Solid Earth, 84(B14): 8167-8180. https://doi.org/10.1029/JB084iB14p08167
      Turner, S. M. R., Bridges, J. C., Grebby, S., et al., 2016. Hydrothermal Activity Recorded in Post Noachian-Aged Impact Craters on Mars. Journal of Geophysical Research: Planets, 121(4): 608-625. https://doi.org/10.1002/2015JE004989
      Tutolo, B. M., Tosca, N. J., 2023. Observational Constraints on the Process and Products of Martian Serpentinization. Science Advances, 9(5): eadd8472. https://doi.org/doi: 10.1126/sciadv.add8472
      Ulrich, M., Wagner, D., Hauber, E., et al., 2012. Habitable Periglacial Landscapes in Martian Mid-Latitudes. Icarus, 219(1): 345-357. https://doi.org/10.1016/j.icarus.2012.03.019
      Voigt, J. R. C., Hamilton, C. W., 2018. Investigating the Volcanic Versus Aqueous Origin of the Surficial Deposits in Eastern Elysium Planitia, Mars. Icarus, 309: 389-410. https://doi.org/10.1016/j.icarus.2018.03.009
      Voigt, J. R. C., Hamilton, C. W., Steinbrügge, G., et al., 2023. Revealing Elysium Planitia’s Young Geologic History: Constraints on Lava Emplacement, Areas, and Volumes. Journal of Geophysical Research: Planets, 128(12): e2023JE007947. https://doi.org/10.1029/2023JE007947
      Wang, C.-Y., Manga, M., Wong, A., 2005. Floods on Mars Released from Groundwater by Impact. Icarus, 175(2): 551-555. https://doi.org/10.1016/j.icarus.2004.12.003
      Wang, J., Xiao, L., Huang, J., et al, 2021. Advances in Martian yardangs. Acta Geologica Sinica, 2021, 95(09): 2742-2754 (in Chinese with English abstract).
      Wang, J., Zhao, J. N., Xiao, L., et al., 2023. Recent Aqueous Activity on Mars Evidenced by Transverse Aeolian Ridges in the Zhurong Exploration Region of Utopia Planitia. Geophysical Research Letters, 50(6): e2022GL101650. https://doi.org/10.1029/2022GL101650
      Weiss, D. K., Head, J. W., Palumbo, A. M., et al., 2017. Extensive Amazonian-Aged Fluvial Channels on Mars: Evaluating the Role of Lyot Crater in Their Formation. Geophysical Research Letters, 44(11): 5336-5344. https://doi.org/10.1002/2017GL073821
      Werner, S. C., 2009. The Global Martian Volcanic Evolutionary History. Icarus, 201(1): 44-68. https://doi.org/10.1016/j.icarus.2008.12.019
      Werner, S. C., Tanaka, K. L., 2011. Redefinition of the Crater-Density and Absolute-Age Boundaries for the Chronostratigraphic System of Mars. Icarus, 215(2): 603-607. https://doi.org/10.1016/j.icarus.2011.07.024
      Westall, F., Loizeau, D., Foucher, F., et al., 2013. Habitability on Mars from a Microbial Point of View. Astrobiology, 13(9): 887-897. https://doi.org/10.1089/ast.2013.1000
      Westall, F., Foucher, F., Bost, N., et al., 2015. Biosignatures on Mars: What, Where, and How? Implications for the Search for Martian Life. Astrobiology, 15(11): 998-1029. https://doi.org/10.1089/ast.2015.1374
      Williams, K. E., Toon, O. B., Heldmann, J. L., et al., 2008. Stability of Mid-Latitude Snowpacks on Mars. Icarus, 196(2): 565-577. https://doi.org/10.1016/j.icarus.2008.03.017
      Wohletz, K. H., Sheridan, M. F., 1983. Martian Rampart Crater Ejecta: Experiments and Analysis of Melt-Water Interaction. Icarus, 56(1): 15-37. https://doi.org/10.1016/0019-1035(83)90125-2
      Wordsworth, R., Knoll, A. H., Hurowitz, J., et al., 2021. A Coupled Model of Episodic Warming, Oxidation and Geochemical Transitions on Early Mars. Nature Geoscience, 14(3): 127-132. https://doi.org/10.1038/s41561-021-00701-8
      Wright, V., Morzfeld, M., Manga, M., 2024. Liquid Water in the Martian Mid-Crust. Proceedings of the National Academy of Sciences, 121(35): e2409983121. https://doi.org/10.1073/pnas.2409983121
      Wu, B., Dong, J., Wang, Y. R., et al., 2024. A Probable Ancient Nearshore Zone in Southern Utopia on Mars Unveiled from Observations at the Zhurong Landing Area. Scientific Reports, 14(1): 24389. https://doi.org/10.1038/s41598-024-75507-w
      Wu, Z. P., Li, T., Zhang, X., et al., 2020. Dust Tides and Rapid Meridional Motions in the Martian Atmosphere during Major Dust Storms. Nature Communications, 11(1): 614. https://doi.org/10.1038/s41467-020-14510-x
      Xiao, L., Huang, J., Christensen, P. R., et al., 2012. Ancient Volcanism and Its Implication for Thermal Evolution of Mars. Earth and Planetary Science Letters, 323-324: 9-18. https://doi.org/10.1016/j.epsl.2012.01.027
      Xiao, L., 2013. Plantary Geology. Geological Press, Beijing (in Chinese)
      Xiao, L., 2022. What is the geological environment and habitable evolution history of Mars?. Earth Science, 47(10): 3792-3793 (in Chinese with English abstract).
      Xiao, L., 2023. Evolution of the Geological Environment and Exploration for Life on Mars. Journal of Earth Science, 34(5): 1626-1628. https://doi.org/10.1007/s12583-023-1929-7
      Xiao, L., Huang, J., Kusky, T., et al., 2023a. Evidence for Marine Sedimentary Rocks in Utopia Planitia: Zhurong Rover Observations. National Science Review, 10(9): nwad137. https://doi.org/10.1093/nsr/nwad137
      Xiao, L., Huang, J., Xiao, Z., et al., 2023b. Volcanism in the Solar System. Science China Earth Sciences, 66(11): 2419-2440. https://doi.org/10.1007/s11430-022-1085-y
      Xu, H., Liu, Q., Jin, Z., et al., 2024. Organic Compounds in Geological Hydrothermal Systems: A Critical Review of Molecular Transformation and Distribution. Earth-Science Reviews, 252: 104757. https://doi.org/10.1016/j.earscirev.2024.104757
      Xu, X. T., Xu, Y., Han, Z., et al., 2025. Shallow Water Ice Detection from Sharad Data in Central Utopia Planitia, Mars. Journal of Geophysical Research: Planets, 130(1): e2023JE008145. https://doi.org/10.1029/2023JE008145
      Yiğit, E., Medvedev, A. S., Benna, M., et al., 2021. Dust Storm-Enhanced Gravity Wave Activity in the Martian Thermosphere Observed by Maven and Implication for Atmospheric Escape. Geophysical Research Letters, 48(5): e2020GL092095. https://doi.org/10.1029/2020GL092095
      Yiğit, E., 2021. Martian Water Escape and Internal Waves. Science, 374(6573): 1323-1324. https://doi.org/10.1126/science.abg5893
      Yiğit, E., 2023. Coupling and Interactions across the Martian Whole Atmosphere System. Nature Geoscience, 16(2): 123-132. https://doi.org/10.1038/s41561-022-01118-7
      Zhang, L., Li, C., Zhang, J. H., et al., 2024. Buried Palaeo-Polygonal Terrain Detected Underneath Utopia Planitia on Mars by the Zhurong Radar. Nature Astronomy, 8(1): 69-76. https://doi.org/10.1038/s41550-023-02117-3
      Zhang, M. J., Zhao, J. N., Xiao, L., et al., 2023. Fan-Shaped Deposits in the Northern Hellas Region, Mars: Implications for the Evolution of Water Reservoir and Climate. Icarus, 395: 115470. https://doi.org/10.1016/j.icarus.2023.115470
      Zhao, J. N., Xiao, L., 2016. Achievements, Issues and Prospects in Study of Martian Paleolakes. Earth Science, 41(09): 1572-1582 (in Chinese with English abstract).
      Zhao, J. N., Xiao, L., Glotch, T. D., 2020. Paleolakes in the Northwest Hellas Region, Mars: Implications for the Regional Geologic History and Paleoclimate. Journal of Geophysical Research: Planets, 125(3): e2019JE006196. https://doi.org/10.1029/2019JE006196
      Zhao, J. N., Shi, Y. T., Zhang, M. J., et al, 2021. Advances in Martian water-related land forms. Acta Geologica Sinica, 95(09): 2755-2768 (in Chinese with English abstract).
      Zhao, J. N., Wang, J., Zhang, M. J., et al., 2021. Unique Curvilinear Ridges in the Qaidam Basin, Nw China: Implications for Martian Fluvial Ridges. Geomorphology, 372: 107472. https://doi.org/10.1016/j.geomorph.2020.107472
      Zhao, J. N., Zhao, Y., Zhang, S. Q., et al, 2024a. Research progress on exploration, exploitation, and in-situ resource utilization of Martian water resources. Journal of Huazhong University of Science and Technology(Natural Science Edition), 52(08): 29-40 (in Chinese with English abstract).
      Zhao, J. N., Zhang, S. Q., Geng, Z. Q., et al, 2024b. Progress and prospects in the research of Martian resource endowment and the in-situ resource utilization technology. Acta Geologica Sinica, 98(02): 611-622 (in Chinese with English abstract).
      Zhao, T. X., Xu, S., Hao, F., 2023b. Differential Adsorption of Clay Minerals: Implications for Organic Matter Enrichment. Earth-Science Reviews, 246:104598. https://doi.org/10.1016/j.earscirev.2023.104598
      Zhao, Y.-Y. S., Zhou, D. S., Li, X. Y., et al, 2020. The evolution of scientific goals for Mars exploration and future prospects. Chinese Science Bulletin, 65(23): 2439-2453 (in Chinese with English abstract).
      Zhao, Y.-Y. S., Yu, J., Wei, G. F., et al., 2023a. In Situ Analysis of Surface Composition and Meteorology at the Zhurong Landing Site on Mars. National Science Review, 10(6): nwad056. https://doi.org/10.1093/nsr/nwad056
      Zhong, S. J., 2009. Migration of Tharsis Volcanism on Mars Caused by Differential Rotation of the Lithosphere. Nature Geoscience, 2(1): 19-23. https://doi.org/10.1038/ngeo392
      Zhou, X., Wei, Y., Wu, Z. P., et al, 2024. Martian whole atmosphere model and dust activities: Review and prospect. Chinese Science Bulletin, 69(08): 1058-1067 (in Chinese with English abstract).
      Zhuang, Y. T., Liu, R. C., Chen, Y. L., et al, 2022. Extremophiles and their applications. Scientia Sinica(Vitae), 52(02): 204-222 (in Chinese with English abstract).
      Zou, Y. L., Zhu, Y., Bai, Y. F., et al., 2021. Scientific Objectives and Payloads of Tianwen-1, China’s First Mars Exploration Mission. Advances in Space Research, 67(2): 812-823. https://doi.org/10.1016/j.asr.2020.11.005
      耿言, 周继时, 李莎,等, 2018. 我国首次火星探测任务. 深空探测学报, 5(05): 399-405.
      芶盛, 岳宗玉, 邸凯昌, 等, 2021. 火星伊西底斯平原的壁垒撞击坑:遥感分析及环境启示意义. 遥感学报, 25(7): 1374-1384.
      雷婷婷, 陈良仲, 陈绍兴, 等, 2022. 微生物对低温极端环境适应性的研究进展. 微生物学报, 62(06): 2150-2164.
      李继彦. 董治宝, 2016. 火星风沙地貌研究进展. 中国沙漠, 36(04): 951-961.
      刘洋, 吴兴, 刘正豪, 等., 2021a. 火星的地质演化和宜居环境研究进展. 地球与行星物理论评, 52(04): 416-436.
      刘洋, 刘正豪, 吴兴, 等, 2021b. 火星的水环境演化. 地质学报, 95(09): 2725-2741.
      刘正豪, 刘洋, 刘佳, 等, 2024. 火星水冰分布特征和研究进展. 地球科学, 49(06): 2253-2276.
      罗根明, 王畅, 殷宗军, 等, 2025. 从地球生物学到天体生物学. 地球科学, 50(03): 857-876.
      佘星阳, 王江, 黄俊, et al., 2024. 太阳系天体熔岩管探测研究现状. 深空探测学报(中英文), 11(04): 313-327+311-312.
      史语桐, 赵健楠, 张明杰, 等, 2025. 火星地质环境演变与生命宜居性探索. 深空探测学报(中英文), 12(01): 86-96.
      王江, 肖龙, 黄俊, 等, 2021. 火星雅丹地貌研究进展. 地质学报, 95(09): 2742-2754.
      肖龙, 2013. 行星地质学. 北京:地质出版社.
      肖龙, 2022. 火星的地质环境及宜居性演变历史如何?. 地球科学, 47(10): 3792-3793.
      赵健楠. 肖龙, 2016. 火星古湖泊研究的现状、问题与展望. 地球科学, 41(09): 1572-1582.
      赵健楠, 史语桐, 张明杰, 等, 2021. 火星水成地貌研究进展. 地质学报, 95(09): 2755-2768.
      赵健楠, 赵源, 张诗琪, 等, 2024a. 火星水资源探测、开采及原位利用研究进展. 华中科技大学学报(自然科学版), 52(08): 29-40.
      赵健楠, 张诗琪, 耿志卿, 等, 2024b. 火星资源赋存状况及其原位利用技术研究进展与展望. 地质学报, 98(02): 611-622.
      赵宇鴳, 周迪圣, 李雄耀, 等, 2020. 国际火星探测科学目标演变与未来展望. 科学通报, 65(23): 2439-2453.
      周旭, 魏勇, 吴兆朋, 等, 2024. 火星全大气模式与沙尘活动模拟研究:回顾与展望. 科学通报, 69(08): 1058-1067.
      庄滢潭, 刘芮存, 陈雨露, 等, 2022. 极端微生物及其应用研究进展. 中国科学:生命科学, 52(02): 204-222.
    • 加载中
    计量
    • 文章访问数:  13
    • HTML全文浏览量:  0
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2025-10-16
    • 网络出版日期:  2026-01-28

    目录

      /

      返回文章
      返回