|
Abotalib, A. Z., Heggy, E., 2019. A Deep Groundwater Origin for Recurring Slope Lineae on Mars. Nature Geoscience, 12(4): 235-241. https://doi.org/10.1038/s41561-019-0327-5 |
|
Abramov, O., Kring, D. A., 2005. Impact-Induced Hydrothermal Activity on Early Mars. Journal of Geophysical Research: Planets, 110(E12): E12S09. https://doi.org/10.1029/2005JE002453 |
|
Acuña, M. H., Connerney, J. E. P., F., N., et al., 1999. Global Distribution of Crustal Magnetization Discovered by the Mars Global Surveyor Mag/Er Experiment. Science, 284(5415): 790-793. https://doi.org/10.1126/science.284.5415.790 |
|
Amador, E. S., Bandfield, J. L., Brazelton, W. J., et al., 2017. The Lost City Hydrothermal Field: A Spectroscopic and Astrobiological Analogue for Nili Fossae, Mars. Astrobiology, 17(11): 1138-1160. https://doi.org/10.1089/ast.2016.1606 |
|
Amador, E. S., Bandfield, J. L., Thomas, N. H., 2018. A Search for Minerals Associated with Serpentinization across Mars Using Crism Spectral Data. Icarus, 311: 113-134. https://doi.org/10.1016/j.icarus.2018.03.021 |
|
Andrews-Hanna, J. C., Broquet, A., 2023. The History of Global Strain and Geodynamics on Mars. Icarus, 395: 115476. https://doi.org/10.1016/j.icarus.2023.115476 |
|
Anesio, A. M., Laybourn-Parry, J., 2012. Glaciers and Ice Sheets as a Biome. Trends in Ecology & Evolution, 27(4): 219-225. https://doi.org/10.1016/j.tree.2011.09.012 |
|
Atreya, S. K., Mahaffy, P. R., Wong, A.-S., 2007. Methane and Related Trace Species on Mars: Origin, Loss, Implications for Life, and Habitability. Planetary and Space Science, 55(3): 358-369. https://doi.org/10.1016/j.jbc.2022.102838 |
|
Badescu, V., 2009. Mars: Prospective Energy and Material Resources. Springer Berlin, Heidelberg. |
|
Baker, V. R., 2001. Water and the Martian Landscape. Nature, 412(6843): 228-236. https://doi.org/10.1038/35084172 |
|
Banham, S. G., Gupta, S., Rubin, D. M., et al., 2018. Ancient Martian Aeolian Processes and Palaeomorphology Reconstructed from the Stimson Formation on the Lower Slope of Aeolis Mons, Gale Crater, Mars. Sedimentology, 65(4): 993-1042. https://doi.org/10.1111/sed.12469 |
|
Bickel, V. T., Daubar, I. J., Zenhäusern, G., et al., 2025. New Impacts on Mars: Systematic Identification and Association with Insight Seismic Events. Geophysical Research Letters, 52(3): e2024GL109133. https://doi.org/10.1029/2024GL109133 |
|
Bleacher, J. E., Greeley, R., Williams, D. A., et al., 2007. Trends in Effusive Style at the Tharsis Montes, Mars, and Implications for the Development of the Tharsis Province. Journal of Geophysical Research: Planets, 112(E9): E09005. https://doi.org/10.1029/2006JE002873 |
|
Borg, L., Drake, M. J., 2005. A Review of Meteorite Evidence for the Timing of Magmatism and of Surface or near-Surface Liquid Water on Mars. Journal of Geophysical Research: Planets, 110(E12): E12S03. https://doi.org/10.1029/2005JE002402 |
|
06. https://doi.org/10.1038/s43017-021-00169-5 |
|
Bridges, J. C., Schwenzer, S. P., 2012. The Nakhlite Hydrothermal Brine on Mars. Earth and Planetary Science Letters, 359-360: 117-123. https://doi.org/10.1016/j.epsl.2012.09.044 |
|
Bridges, N. T., Bourke, M. C., Geissler, P. E., et al., 2012. Planet-Wide Sand Motion on Mars. Geology, 40(1): 31-34. https://doi.org/10.1130/G32373.1 |
|
Bristow, T. F., Rampe, E. B., Achilles, C. N., et al., 2018. Clay Mineral Diversity and Abundance in Sedimentary Rocks of Gale Crater, Mars. Science Advances, 4(6): eaar3330. https://doi.org/10.1126/sciadv.aar3330 |
|
Broquet, A., Andrews-Hanna, J. C., 2023. Geophysical Evidence for an Active Mantle Plume Underneath Elysium Planitia on Mars. Nature Astronomy, 7(2): 160-169. https://doi.org/10.1038/s41550-022-01836-3 |
|
Brown, A. J., Calvin, W. M., Becerra, P., et al., 2016. Martian North Polar Cap Summer Water Cycle. Icarus, 277: 401-415. https://doi.org/10.1016/j.icarus.2016.05.007 |
|
Brož, P., Hauber, E., Wray, J. J., et al., 2017. Amazonian Volcanism inside Valles Marineris on Mars. Earth and Planetary Science Letters, 473: 122-130. https://doi.org/10.1016/j.epsl.2017.06.003 |
|
Byrne, S., 2009. The Polar Deposits of Mars. Annual Review of Earth and Planetary Sciences, 37: 535-560. https://doi.org/10.1146/annurev.earth.031208.100101 |
|
Cardinale, M., Silvestro, S., Vaz, D. A., et al., 2016. Present-Day Aeolian Activity in Herschel Crater, Mars. Icarus, 265: 139-148. https://doi.org/10.1016/j.icarus.2015.10.022 |
|
Carr, M. H., 1973. Volcanism on Mars. Journal of Geophysical Research, 78(20): 4049-4062. https://doi.org/10.1029/JB078i020p04049 |
|
17. https://doi.org/10.1016/0019-1035(81)90156-1 |
|
Carr, M. H., 2007. The Surface of Mars. Cambridge University Press. |
|
Carr, M. H., Head, J. W., 2010. Geologic History of Mars. Earth and Planetary Science Letters, 294(3): 185-203. https://doi.org/10.1016/j.epsl.2009.06.042 |
|
Carrozzo, F. G., Di Achille, G., Salese, F., et al., 2017. Geology and Mineralogy of the Auki Crater, Tyrrhena Terra, Mars: A Possible Post Impact-Induced Hydrothermal System. Icarus, 281: 228-239. https://doi.org/10.1016/j.icarus.2016.09.001 |
|
Carter, J., Riu, L., Poulet, F., et al., 2023. A Mars Orbital Catalog of Aqueous Alteration Signatures (Mocaas). Icarus, 389: 115164. https://doi.org/10.1016/j.icarus.2022.115164 |
|
Changela, H. G., Chatzitheodoridis, E., Antunes, A., et al., 2021. Mars: New Insights and Unresolved Questions. International Journal of Astrobiology, 20(6): 394-426. https://doi.org/10.1017/S1473550421000276 |
|
Chassefière, E., Lasue, J., Langlais, B., et al., 2016. Early Mars Serpentinization-Derived Ch4 Reservoirs, H2-Induced Warming and Paleopressure Evolution. Meteoritics & Planetary Science, 51(11): 2234-2245. https://doi.org/10.1111/maps.12784 |
|
Chojnacki, M., Burr, D. M., Moersch, J. E., et al., 2011. Orbital Observations of Contemporary Dune Activity in Endeavor Crater, Meridiani Planum, Mars. Journal of Geophysical Research: Planets, 116(E7): E00F19. https://doi.org/10.1029/2010JE003675 |
|
Chojnacki, M., Banks, M. E., Fenton, L. K., et al., 2019. Boundary Condition Controls on the High-Sand-Flux Regions of Mars. Geology, 47(5): 427-430. https://doi.org/10.1130/G45793.1 |
|
Christensen, P. R., 2003. Formation of Recent Martian Gullies through Melting of Extensive Water-Rich Snow Deposits. Nature, 422(6927): 45-48. https://doi.org/10.1038/nature01436 |
|
Cockell, C. S., 2014. Trajectories of Martian Habitability. Astrobiology, 14(2): 182-203. https://doi.org/10.1089/ast.2013.1106 |
|
Cockell, C. S., Bush, T., Bryce, C., et al., 2016. Habitability: A Review. Astrobiology, 16(1): 89-117. https://doi.org/10.1089/ast.2015.1295 |
|
Cockell, C. S., Collins, G. S., Basu, S., et al., 2024. Martian Impact Fracturing Pervasively Influences Habitability. Journal of Geophysical Research: Planets, 129(9): e2023JE008116. https://doi.org/10.1029/2023JE008116 |
|
Córdoba-Jabonero, C., Zorzano, M.-P., Selsis, F., et al., 2005. Radiative Habitable Zones in Martian Polar Environments. Icarus, 175(2): 360-371. https://doi.org/10.1016/j.icarus.2004.12.009 |
|
Cox, M. A., Cavosie, A. J., Orr, K. J., et al., 2022. Impact and Habitability Scenarios for Early Mars Revisited Based on a 4.45-Ga Shocked Zircon in Regolith Breccia. Science Advances, 8(5): eabl7497. https://doi.org/10.1126/sciadv.abl7497 |
|
Daly, L., Lee, M. R., Piazolo, S., et al., 2019. Boom Boom Pow: Shock-Facilitated Aqueous Alteration and Evidence for Two Shock Events in the Martian Nakhlite Meteorites. Science Advances, 5(9): eaaw5549. https://doi.org/10.1126/sciadv.aaw5549 |
|
Daubar, I. J., Lognonné, P., Teanby, N. A., et al., 2020. A New Crater near Insight: Implications for Seismic Impact Detectability on Mars. Journal of Geophysical Research: Planets, 125(8): e2020JE006382. https://doi.org/10.1029/2020JE006382 |
|
Daubar, I. J., Dundas, C. M., Mcewen, A. S., et al., 2022. New Craters on Mars: An Updated Catalog. Journal of Geophysical Research: Planets, 127(7): e2021JE007145. https://doi.org/10.1029/2021JE007145 |
|
Dauphas, N., Pourmand, A., 2011. Hf–W–Th Evidence for Rapid Growth of Mars and Its Status as a Planetary Embryo. Nature, 473(7348): 489-492. https://doi.org/10.1038/nature10077 |
|
Deng, Z. B., Moynier, F., Villeneuve, J., et al., 2020. Early Oxidation of the Martian Crust Triggered by Impacts. Science Advances, 6(44): eabc4941. https://doi.org/10.1126/sciadv.abc4941 |
|
Di Achille, G., Hynek, B. M., 2010. Ancient Ocean on Mars Supported by Global Distribution of Deltas and Valleys. Nature Geoscience, 3(7): 459-463. https://doi.org/10.1038/ngeo891 |
|
Dickson, J. L., Fassett, C. I., Head, J. W., 2009. Amazonian-Aged Fluvial Valley Systems in a Climatic Microenvironment on Mars: Melting of Ice Deposits on the Interior of Lyot Crater. Geophysical Research Letters, 36(8): L08201. https://doi.org/10.1029/2009GL037472 |
|
Diniega, S., Bramson, A. M., Buratti, B., et al., 2021. Modern Mars’ Geomorphological Activity, Driven by Wind, Frost, and Gravity. Geomorphology, 380: 107627. https://doi.org/10.1016/j.geomorph.2021.107627 |
|
Djokic, T., Van Kranendonk, M. J., Campbell, K. A., et al., 2017. Earliest Signs of Life on Land Preserved in Ca. 3.5 Ga Hot Spring Deposits. Nature Communications, 8(1): 15263. https://doi.org/10.1038/ncomms15263 |
|
Dong, C. F., Bougher, S. W., Ma, Y. J., et al., 2014. Solar Wind Interaction with Mars Upper Atmosphere: Results from the One-Way Coupling between the Multifluid Mhd Model and the Mtgcm Model. Geophysical Research Letters, 41(8): 2708-2715. https://doi.org/10.1002/2014GL059515 |
|
Du, P. X., Yuan, P., Liu, J. C., et al., 2023. Clay Minerals on Mars: An up-to-Date Review with Future Perspectives. Earth-Science Reviews, 243: 104491. https://doi.org/10.1016/j.earscirev.2023.104491 |
|
Ehlmann, B. L., Mustard, J. F., Murchie, S. L., 2010. Geologic Setting of Serpentine Deposits on Mars. Geophysical Research Letters, 37(6): L06201. https://doi.org/10.1029/2010GL042596 |
|
Ehlmann, B. L., Mustard, J. F., Murchie, S. L., et al., 2011. Subsurface Water and Clay Mineral Formation during the Early History of Mars. Nature, 479(7371): 53-60. https://doi.org/10.1038/nature10582 |
|
12-9930-0 |
|
Ehlmann, B. L., Anderson, F. S., Andrews-Hanna, J., et al., 2016. The Sustainability of Habitability on Terrestrial Planets: Insights, Questions, and Needed Measurements from Mars for Understanding the Evolution of Earth-Like Worlds. Journal of Geophysical Research: Planets, 121(10): 1927-1961. https://doi.org/10.1002/2016JE005134 |
|
Fassett, C. I., Head, J. W., 2008. The Timing of Martian Valley Network Activity: Constraints from Buffered Crater Counting. Icarus, 195(1): 61-89. https://doi.org/10.1016/j.icarus.2007.12.009 |
|
Fassett, C. I., Dickson, J. L., Head, J. W., et al., 2010. Supraglacial and Proglacial Valleys on Amazonian Mars. Icarus, 208(1): 86-100. https://doi.org/10.1016/j.icarus.2010.02.021 |
|
Fenton, L. K., 2020. Updating the Global Inventory of Dune Fields on Mars and Identification of Many Small Dune Fields. Icarus, 352: 114018. https://doi.org/10.1016/j.icarus.2020.114018 |
|
Foley, C. N., Wadhwa, M., Borg, L. E., et al., 2005. The Early Differentiation History of Mars from 182w-142nd Isotope Systematics in the Snc Meteorites. Geochimica et Cosmochimica Acta, 69(18): 4557-4571. https://doi.org/10.1016/j.gca.2005.05.009 |
|
Fonti, S., Marzo, G. A., 2010. Mapping the Methane on Mars. Astronomy & Astrophysics, 512: A51. https://doi.org/10.1051/0004-6361/200913178 |
|
Forget, F., Haberle, R. M., Montmessin, F., et al., 2006. Formation of Glaciers on Mars by Atmospheric Precipitation at High Obliquity. Science, 311(5759): 368-371. https://doi.org/10.1126/science.1120335 |
|
Formisano, V., Atreya, S., Encrenaz, T., et al., 2004. Detection of Methane in the Atmosphere of Mars. Science, 306(5702): 1758-1761. https://doi.org/10.1126/science.1101732 |
|
Gainey, S. R., Hausrath, E. M., Adcock, C. T., et al., 2017. Clay Mineral Formation under Oxidized Conditions and Implications for Paleoenvironments and Organic Preservation on Mars. Nature Communications, 8(1): 1230. https://doi.org/10.1038/s41467-017-01235-7 |
|
Geng, Y., Zhou J. S., Li, S., et al, 2018. A Brief Introduction of the First Mars Exploration Mission in China. Journal of Deep Space Exploration, 5(05): 399-405 (in Chinese with English abstract). |
|
Golombek, M. P., Warner, N. H., Ganti, V., et al., 2014. Small Crater Modification on Meridiani Planum and Implications for Erosion Rates and Climate Change on Mars. Journal of Geophysical Research: Planets, 119(12): 2522-2547. https://doi.org/10.1002/2014JE004658 |
|
Gou, S., Yue, Z. Y., Di, K. C., et al, 2021. Rampart Craters in the Isidis Planitia,Mars: Remote sensing analysis and environment implications. National Remote Sensing Bulletin, 25(7): 1374-1384 (in Chinese with English abstract). |
|
Goudge, T. A., Milliken, R. E., Head, J. W., et al., 2017. Sedimentological Evidence for a Deltaic Origin of the Western Fan Deposit in Jezero Crater, Mars and Implications for Future Exploration. Earth and Planetary Science Letters, 458: 357-365. https://doi.org/10.1016/j.epsl.2016.10.056 |
|
Grady, M. M., 2020. Exploring Mars with Returned Samples. Space Science Reviews, 216(4): 51. https://doi.org/10.1007/s11214-020-00676-9 |
|
Grant, J. A., Wilson, S. A., 2011. Late Alluvial Fan Formation in Southern Margaritifer Terra, Mars. Geophysical Research Letters, 38(8): L08201. https://doi.org/10.1029/2011GL046844 |
|
Grau Galofre, A., Whipple, K. X., Christensen, P. R., et al., 2022. Valley Networks and the Record of Glaciation on Ancient Mars. Geophysical Research Letters, 49(14): e2022GL097974. https://doi.org/10.1029/2022GL097974 |
|
Grotzinger, J. P., Arvidson, R. E., Bell, J. F., et al., 2005. Stratigraphy and Sedimentology of a Dry to Wet Eolian Depositional System, Burns Formation, Meridiani Planum, Mars. Earth and Planetary Science Letters, 240(1): 11-72. https://doi.org/10.1016/j.epsl.2005.09.039 |
|
Haberle, R. M., Zahnle, K., Barlow, N. G., et al., 2019. Impact Degassing of H2 on Early Mars and Its Effect on the Climate System. Geophysical Research Letters, 46(22): 13355-13362. https://doi.org/10.1029/2019GL084733 |
|
Hadland, N., Hamilton, C. W., Duhamel, S., 2024. Young Volcanic Terrains Are Windows into Early Microbial Colonization. Communications Earth & Environment, 5(1): 114. https://doi.org/10.1038/s43247-024-01280-3 |
|
Harrison, T. N., Malin, M. C., Edgett, K. S., et al., 2010. Impact-Induced Overland Fluid Flow and Channelized Erosion at Lyot Crater, Mars. Geophysical Research Letters, 37(21): L21201. https://doi.org/10.1029/2010GL045074 |
|
Hartmann, W. K., 2005. Martian Cratering 8: Isochron Refinement and the Chronology of Mars. Icarus, 174(2): 294-320. https://doi.org/10.1016/j.icarus.2004.11.023 |
|
Hartmann, W. K., Neukum, G., 2001. Cratering Chronology and the Evolution of Mars. Space Science Reviews, 96(1): 165-194. https://doi.org/10.1023/A:1011945222010 |
|
Hassler, D. M., Zeitlin, C., Wimmer-Schweingruber, R. F., et al., 2014. Mars’ Surface Radiation Environment Measured with the Mars Science Laboratory’s Curiosity Rover. Science, 343(6169): 1244797. https://doi.org/10.1126/science.1244797 |
|
Hauber, E., Bleacher, J., Gwinner, K., et al., 2009. The Topography and Morphology of Low Shields and Associated Landforms of Plains Volcanism in the Tharsis Region of Mars. Journal of Volcanology and Geothermal Research, 185(1): 69-95. https://doi.org/10.1016/j.jvolgeores.2009.04.015 |
|
Hauber, E., Brož, P., Jagert, F., et al., 2011. Very Recent and Wide-Spread Basaltic Volcanism on Mars. Geophysical Research Letters, 38(10): L10201. https://doi.org/10.1029/2011GL047310 |
|
Hayward, R. K., Fenton, L. K.. Titus, T. N., 2014. Mars Global Digital Dune Database (Mgd3): Global Dune Distribution and Wind Pattern Observations. Icarus, 230: 38-46. https://doi.org/10.1016/j.icarus.2013.04.011 |
|
Hazen, R. M., Sverjensky, D. A., 2010. Mineral Surfaces, Geochemical Complexities, and the Origins of Life. Cold Spring Harbor perspectives in biology, 2(5): a002162. https://doi.org/10.1101/cshperspect.a002162 |
|
Head, J. W., Kreslavsky, M. A., Pratt, S., 2002. Northern Lowlands of Mars: Evidence for Widespread Volcanic Flooding and Tectonic Deformation in the Hesperian Period. Journal of Geophysical Research: Planets, 107(E1): 3-1-3-29. https://doi.org/10.1029/2000JE001445 |
|
Head, J. W., Mustard, J. F., Kreslavsky, M. A., et al., 2003. Recent Ice Ages on Mars. Nature, 426(6968): 797-802. https://doi.org/10.1038/nature02114 |
|
Heavens, N. G., Kleinböhl, A., Chaffin, M. S., et al., 2018. Hydrogen Escape from Mars Enhanced by Deep Convection in Dust Storms. Nature Astronomy, 2(2): 126-132. https://doi.org/10.1038/s41550-017-0353-4 |
|
Hoehler, T. M., 2007. An Energy Balance Concept for Habitability. Astrobiology, 7(6): 824-838. https://doi.org/10.1089/ast.2006.0095 |
|
Horvath, D. G., Moitra, P., Hamilton, C. W., et al., 2021. Evidence for Geologically Recent Explosive Volcanism in Elysium Planitia, Mars. Icarus, 365: 114499. https://doi.org/10.1016/j.icarus.2021.114499 |
|
Hou, Z. Q., Liu, J. Z., Xu, Y. G., et al., 2024. The Search for Life Signatures on Mars by the Tianwen-3 Mars Sample Return Mission. National Science Review, 11(11): nwae313. https://doi.org/10.1093/nsr/nwae313 |
|
25-02572-0 |
|
Howard, A. D., 2000. The Role of Eolian Processes in Forming Surface Features of the Martian Polar Layered Deposits. Icarus, 144(2): 267-288. https://doi.org/10.1006/icar.1999.6305 |
|
Hu, S., Lin, Y. T., Zhang, J. C., et al., 2019. Ancient Geologic Events on Mars Revealed by Zircons and Apatites from the Martian Regolith Breccia Nwa 7034. Meteoritics & Planetary Science, 54(4): 850-879. https://doi.org/10.1111/maps.13256 |
|
Hu, S., Gao, Y. B., Zhou, Z., et al., 2024. Water and Other Volatiles on Mars. National Science Review, 11(6): nwae094. https://doi.org/10.1093/nsr/nwae094 |
|
Hurowitz, J. A., Mclennan, S. M., 2007. A ∼3.5 ga Record of Water-Limited, Acidic Weathering Conditions on Mars. Earth and Planetary Science Letters, 260(3): 432-443. https://doi.org/10.1016/j.epsl.2007.05.043 |
|
Ivanov, B. A., 2001. Mars/Moon Cratering Rate Ratio Estimates. Space Science Reviews, 96(1): 87-104. https://doi.org/10.1023/A:1011941121102 |
|
Jakosky, B. M., Nealson, K. H., Bakermans, C., et al., 2003. Subfreezing Activity of Microorganisms and the Potential Habitability of Mars’ Polar Regions. Astrobiology, 3(2): 343-350. https://doi.org/10.1089/153110703769016433 |
|
Jakosky, B. M., Brain, D., Chaffin, M., et al., 2018. Loss of the Martian Atmosphere to Space: Present-Day Loss Rates Determined from Maven Observations and Integrated Loss through Time. Icarus, 315: 146-157. https://doi.org/10.1016/j.icarus.2018.05.030 |
|
Jakosky, B. M., 2021. Atmospheric Loss to Space and the History of Water on Mars. Annual Review of Earth and Planetary Sciences, 49: 71-93. https://doi.org/10.1146/annurev-earth-062420-052845 |
|
Jia, Y. Z., Fan, Y., Zou, Y. L., 2018. Scientific Objectives and Payloads of Chinese First Mars Exploration. Chinese Journal of Space Science, 38(05): 650-655. https://doi.org/10.11728/cjss2018.05.650 |
|
Jones, A. P., Mcewen, A. S., Tornabene, L. L., et al., 2011. A Geomorphic Analysis of Hale Crater, Mars: The Effects of Impact into Ice-Rich Crust. Icarus, 211(1): 259-272. https://doi.org/10.1016/j.icarus.2010.10.014 |
|
Ju, E. M., Liu, C. Q., Chen, J., et al., 2024. Detection of Allophane by the Zhurong Rover Indicates Water-Limited Alteration at Utopia Planitia, Mars. Earth and Planetary Science Letters, 639: 118769. https://doi.org/10.1016/j.epsl.2024.118769 |
|
Kargel, J. S., Baker, V. R., Begét, J. E., et al., 1995. Evidence of Ancient Continental Glaciation in the Martian Northern Plains. Journal of Geophysical Research: Planets, 100(E3): 5351-5368. https://doi.org/10.1029/94JE02447 |
|
Kass, D. M., Schofield, J. T., Kleinböhl, A., et al., 2020. Mars Climate Sounder Observation of Mars’ 2018 Global Dust Storm. Geophysical Research Letters, 47(23): e2019GL083931. https://doi.org/10.1029/2019GL083931 |
|
Kelley, D. S., Karson, J. A., Früh-Green, G. L., et al., 2005. A Serpentinite-Hosted Ecosystem: The Lost City Hydrothermal Field. Science, 307(5714): 1428-1434. https://doi.org/10.1126/science.1102556 |
|
Khuller, A. R., Warren, S. G., Christensen, P. R., et al., 2024. Potential for Photosynthesis on Mars within Snow and Ice. Communications Earth & Environment, 5(1): 583. https://doi.org/10.1038/s43247-024-01730-y |
|
Kim, D., Banerdt, W. B., Ceylan, S., et al., 2022. Surface Waves and Crustal Structure on Mars. Science, 378(6618): 417-421. https://doi.org/10.1126/science.abq7157 |
|
Kite, E. S., Conway, S., 2024. Geological Evidence for Multiple Climate Transitions on Early Mars. Nature Geoscience, 17(1): 10-19. https://doi.org/10.1038/s41561-023-01349-2 |
|
Kleine, T., Mezger, K., Münker, C., et al., 2004. 182hf-182w Isotope Systematics of Chondrites, Eucrites, and Martian Meteorites: Chronology of Core Formation and Early Mantle Differentiation in Vesta and Mars1 1associate Editor: R. J. Walker. Geochimica et Cosmochimica Acta, 68(13): 2935-2946. https://doi.org/10.1016/j.gca.2004.01.009 |
|
Koutnik, M. R., Byrne, S., Murray, B. C., et al., 2005. Eolian Controlled Modification of the Martian South Polar Layered Deposits. Icarus, 174(2): 490-501. https://doi.org/10.1016/j.icarus.2004.09.015 |
|
Krishnan, V., Kumar, P. S., 2023. Long-Lived and Continual Volcanic Eruptions, Tectonic Activity, Pit Chains Formation, and Boulder Avalanches in Northern Tharsis Region: Implications for Late Amazonian Geodynamics and Seismo-Tectonic Processes on Mars. Journal of Geophysical Research: Planets, 128(1): e2022JE007511. https://doi.org/10.1029/2022JE007511 |
|
Krishnan, V., Kumar, P. S., 2025. Late Amazonian Continual Volcanic Eruption, Contemporaneous Tectonics and Pit Chain Formation in the Central Tharsis Region, Mars: Implications for Long-Lived Magmatism and Mantle Plume. Icarus, 441: 116667. https://doi.org/10.1016/j.icarus.2025.116667 |
|
Kuroda, T., Medvedev, A. S., Yiğit, E., 2020. Gravity Wave Activity in the Atmosphere of Mars during the 2018 Global Dust Storm: Simulations with a High-Resolution Model. Journal of Geophysical Research: Planets, 125(11): e2020JE006556. https://doi.org/10.1029/2020JE006556 |
|
Kurokawa, H., Sato, M., Ushioda, M., et al., 2014. Evolution of Water Reservoirs on Mars: Constraints from Hydrogen Isotopes in Martian Meteorites. Earth and Planetary Science Letters, 394: 179-185. https://doi.org/10.1016/j.epsl.2014.03.027 |
|
Lammer, H., Bredehöft, J. H., Coustenis, A., et al., 2009. What Makes a Planet Habitable? The Astronomy and Astrophysics Review, 17(2): 181-249. https://doi.org/10.1007/s00159-009-0019-z |
|
Laskar, J., Correia, A. C. M., Gastineau, M., et al., 2004. Long Term Evolution and Chaotic Diffusion of the Insolation Quantities of Mars. Icarus, 170(2): 343-364. https://doi.org/10.1016/j.icarus.2004.04.005 |
|
Lei, T. T., Chen, L. Z., Chen, S. X., et al, 2022. Progress in research on the adaptability of microorganisms to extremely cold environments. Acta Microbiologica Sinica, 62(06): 2150-2164 (in Chinese with English abstract). |
|
Li, C., Zheng, Y. K., Wang, X., et al., 2022. Layered Subsurface in Utopia Basin of Mars Revealed by Zhurong Rover Radar. Nature, 610(7931): 308-312. https://doi.org/10.1038/s41586-022-05147-5 |
|
Li, C., Dong, Z. B., 2022. Distribution of Dune Landform on Mars. Frontiers in Astronomy and Space Sciences, 9: 811702. https://doi.org/10.3389/fspas.2022.811702 |
|
Li, J. H., Liu, H., Meng, X., et al., 2025. Ancient Ocean Coastal Deposits Imaged on Mars. Proceedings of the National Academy of Sciences, 122(9): e2422213122. https://doi.org/10.1073/pnas.2422213122 |
|
Li, J. Y., Dong, Z. B., 2016. Research Progress of Aeolian Landforms on Mars. Journal of Desert Research, 36(04): 951-961 (in Chinese with English abstract). |
|
Lillis, R. J., Frey, H. V., Manga, M., 2008. Rapid Decrease in Martian Crustal Magnetization in the Noachian Era: Implications for the Dynamo and Climate of Early Mars. Geophysical Research Letters, 35(14): L14203. https://doi.org/10.1029/2008GL034338 |
|
Lin, H. L., Lin, Y. T., Wei, Y., et al., 2023. Mineralogical Evidence of Water Activity in the Northern Lowlands of Mars Based on Inflight-Calibrated Spectra from the Zhurong Rover. Science China Earth Sciences, 66(11): 2463-2472. https://doi.org/10.1007/s11430-023-1194-4 |
|
Lin, Y. T., El Goresy, A., Hu, S., et al., 2014. Nanosims Analysis of Organic Carbon from the Tissint Martian Meteorite: Evidence for the Past Existence of Subsurface Organic-Bearing Fluids on Mars. Meteoritics & Planetary Science, 49(12): 2201-2218. https://doi.org/10.1111/maps.12389 |
|
Liu, J., Di, K. C., Gou, S., et al., 2020. Mapping and Spatial Statistical Analysis of Mars Yardangs. Planetary and Space Science, 192: 105035. https://doi.org/10.1016/j.pss.2020.105035 |
|
09. https://doi.org/10.1038/s41550-021-01303-5 |
|
24-47326-0 |
|
Liu, J. J., Li, C. L., Zhang, R. Q., et al., 2022a. Geomorphic Contexts and Science Focus of the Zhurong Landing Site on Mars. Nature Astronomy, 6(1): 65-71. https://doi.org/10.1038/s41550-021-01519-5 |
|
Liu, J. J., Qin, X. G., Ren, X., et al., 2023. Martian Dunes Indicative of Wind Regime Shift in Line with End of Ice Age. Nature, 620(7973): 303-309. https://doi.org/10.1038/s41586-023-06206-1 |
|
Liu, J. J., Ren, X., Yan, W., et al., 2024a. A 76-M Per Pixel Global Color Image Dataset and Map of Mars by Tianwen-1. Science Bulletin, 69(14): 2183-2186. https://doi.org/10.1016/j.scib.2024.04.045 |
|
Liu, Y., Wu, X., Liu, Z. H., et al, 2021a. Geological evolution and habitable environment of Mars: Progress and prospects. Reviews of Geophysics and Planetary Physics, 52(04): 416-436 (in Chinese with English abstract). |
|
Liu, Y., Liu, Z. H., Wu, X., et al, 2021b. Evolution of water environment on Mars. Acta Geologica Sinica, 95(09): 2725-2741 (in Chinese with English abstract). |
|
Liu, Y., Wu, X., Zhao, Y.-Y. S., et al., 2022b. Zhurong Reveals Recent Aqueous Activities in Utopia Planitia, Mars. Science Advances, 8(19): eabn8555. https://doi.org/10.1126/sciadv.abn8555 |
|
Liu, Z. H., Liu, Y., Pan, L., et al., 2021b. Inverted Channel Belts and Floodplain Clays to the East of Tempe Terra, Mars: Implications for Persistent Fluvial Activity on Early Mars. Earth and Planetary Science Letters, 562: 116854. https://doi.org/10.1016/j.epsl.2021.116854 |
|
Liu, Z. H., Liu, Y., Liu, J., et al, 2024. Distribution Characteristics and Research Progress of Water-Ice on Mars. Earth Science, 49(06): 2253-2276 (in Chinese with English abstract). |
|
Liuzzi, G., Villanueva, G. L., Crismani, M. M. J., et al., 2020. Strong Variability of Martian Water Ice Clouds during Dust Storms Revealed from Exomars Trace Gas Orbiter/Nomad. Journal of Geophysical Research: Planets, 125(4): e2019JE006250. https://doi.org/10.1029/2019JE006250 |
|
Lowe, D. R., Byerly, G. R., 2018. The Terrestrial Record of Late Heavy Bombardment. New Astronomy Reviews, 81: 39-61. https://doi.org/10.1016/j.newar.2018.03.002 |
|
Lowell, R. P., Rona, P. A., 2002. Seafloor Hydrothermal Systems Driven by the Serpentinization of Peridotite. Geophysical Research Letters, 29(11): 26-1-26-4. https://doi.org/10.1029/2001GL014411 |
|
Luo, G. M., Wang, C., Yin, Z. J., et al, 2025. From Geobiology to Astrobiology. Earth Science, 2025, 50(03): 857-876 (in Chinese with English abstract). |
|
Ma, Y. Z., Xiao, Z. Y., Luo, F. L., et al., 2023. Sharad Observations for Layered Ejecta Deposits Formed by Late-Amazonian-Aged Impact Craters at Low Latitudes of Mars. Icarus, 404: 115689. https://doi.org/10.1016/j.icarus.2023.115689 |
|
Mackinnon, D. J., Tanaka, K. L., 1989. The Impacted Martian Crust: Structure, Hydrology, and Some Geologic Implications. Journal of Geophysical Research: Solid Earth, 94(B12): 17359-17370. https://doi.org/10.1029/JB094iB12p17359 |
|
633(00)00083-0 |
|
Mao, W. S., Fu, X. H., Wu, Z. C., et al., 2022. The Color Centers in Halite Induced by Martian Dust Activities. Earth and Planetary Science Letters, 578: 117302. https://doi.org/10.1016/j.epsl.2021.117302 |
|
Mao, W. S., Fu, X. H., Wu, Z. C., et al., 2023. Solid−Gas Carbonate Formation during Dust Events on Mars. National Science Review, 10(4): nwac293. https://doi.org/10.1093/nsr/nwac293 |
|
Martin, W., Baross, J., Kelley, D., et al., 2008. Hydrothermal Vents and the Origin of Life. Nature Reviews Microbiology, 6(11): 805-814. https://doi.org/10.1038/nrmicro1991 |
|
Martínez, G. M., Renno, N. O., 2013. Water and Brines on Mars: Current Evidence and Implications for Msl. Space Science Reviews, 175(1): 29-51. https://doi.org/10.1007/s11214-012-9956-3 |
|
Masursky, H., 1973. An Overview of Geological Results from Mariner 9. Journal of Geophysical Research (1896-1977), 78(20): 4009-4030. https://doi.org/10.1029/JB078i020p04009 |
|
Mayyasi, M., Bhattacharyya, D., Clarke, J., et al., 2018. Significant Space Weather Impact on the Escape of Hydrogen from Mars. Geophysical Research Letters, 45(17): 8844-8852. https://doi.org/10.1029/2018GL077727 |
|
Mellon, M. T., Feldman, W. C., Prettyman, T. H., 2004. The Presence and Stability of Ground Ice in the Southern Hemisphere of Mars. Icarus, 169(2): 324-340. https://doi.org/10.1016/j.icarus.2003.10.022 |
|
Mellon, M. T., Sizemore, H. G., Heldmann, J. L., et al., 2024. The Habitability Conditions of Possible Mars Landing Sites for Life Exploration. Icarus, 408: 115836. https://doi.org/10.1016/j.icarus.2023.115836 |
|
Michalski, J. R., Cuadros, J., Niles, P. B., et al., 2013. Groundwater Activity on Mars and Implications for a Deep Biosphere. Nature Geoscience, 6(2): 133-138. https://doi.org/10.1038/ngeo1706 |
|
6. https://doi.org/10.1038/s41561-017-0015-2 |
|
Michalski, J. R., Deanne Rogers, A., Edwards, C. S., et al., 2024. Diverse Volcanism and Crustal Recycling on Early Mars. Nature Astronomy, 8(4): 456-462. https://doi.org/10.1038/s41550-023-02191-7 |
|
Mittelholz, A., Johnson, C. L., Feinberg, J. M., et al., 2020. Timing of the Martian Dynamo: New Constraints for a Core Field 4.5 and 3.7 Ga Ago. Science Advances, 6(18): eaba0513. https://doi.org/doi: 10.1126/sciadv.aba0513 |
|
Moitra, P., Horvath, D. G., Andrews-Hanna, J. C., 2021. Investigating the Roles of Magmatic Volatiles, Ground Ice and Impact-Triggering on a Very Recent and Highly Explosive Volcanic Eruption on Mars. Earth and Planetary Science Letters, 567: 116986. https://doi.org/10.1016/j.epsl.2021.116986 |
|
Montgomery, W., Bromiley, G. D., Sephton, M. A., 2016. The Nature of Organic Records in Impact Excavated Rocks on Mars. Scientific Reports, 6(1): 30947. https://doi.org/10.1038/srep30947 |
|
Morbidelli, A., Nesvorny, D., Laurenz, V., et al., 2018. The Timeline of the Lunar Bombardment: Revisited. Icarus, 305: 262-276. https://doi.org/10.1016/j.icarus.2017.12.046 |
|
Moreras-Marti, A., Fox-Powell, M., Zerkle, A. L., et al., 2021. Volcanic Controls on the Microbial Habitability of Mars-Analogue Hydrothermal Environments. Geobiology, 19(5): 489-509. https://doi.org/10.1111/gbi.12459 |
|
Neary, L., Daerden, F., Aoki, S., et al., 2020. Explanation for the Increase in High-Altitude Water on Mars Observed by Nomad during the 2018 Global Dust Storm. Geophysical Research Letters, 47(7): e2019GL084354. https://doi.org/10.1029/2019GL084354 |
|
Neukum, G., Basilevsky, A. T., Kneissl, T., et al., 2010. The Geologic Evolution of Mars: Episodicity of Resurfacing Events and Ages from Cratering Analysis of Image Data and Correlation with Radiometric Ages of Martian Meteorites. Earth and Planetary Science Letters, 294(3): 204-222. https://doi.org/10.1016/j.epsl.2009.09.006 |
|
Nimmo, F., Tanaka, K., 2005. Early Crustal Evolution of Mars1. Annual Review of Earth and Planetary Sciences, 33: 133-161. https://doi.org/10.1146/annurev.earth.33.092203.122637 |
|
Nimmo, F., Hart, S. D., Korycansky, D. G., et al., 2008. Implications of an Impact Origin for the Martian Hemispheric Dichotomy. Nature, 453(7199): 1220-1223. https://doi.org/10.1038/nature07025 |
|
Ojha, L., Wilhelm, M. B., Murchie, S. L., et al., 2015. Spectral Evidence for Hydrated Salts in Recurring Slope Lineae on Mars. Nature Geoscience, 8(11): 829-832. https://doi.org/10.1038/ngeo2546 |
|
Ojha, L., Buffo, J., Karunatillake, S., et al., 2020. Groundwater Production from Geothermal Heating on Early Mars and Implication for Early Martian Habitability. Science Advances, 6(49): eabb1669. https://doi.org/10.1126/sciadv.abb1669 |
|
Ojha, L., Karunatillake, S., Karimi, S., et al., 2021. Amagmatic Hydrothermal Systems on Mars from Radiogenic Heat. Nature Communications, 12(1): 1754. https://doi.org/10.1038/s41467-021-21762-8 |
|
Orosei, R., Lauro, S. E., Pettinelli, E., et al., 2018. Radar Evidence of Subglacial Liquid Water on Mars. Science, 361(6401): 490-493. https://doi.org/10.1126/science.aar7268 |
|
Osinski, G. R., Cockell, C. S., Pontefract, A., et al., 2020. The Role of Meteorite Impacts in the Origin of Life. Astrobiology, 20(9): 1121-1149. https://doi.org/10.1089/ast.2019.2203 |
|
Pan, L., Ehlmann, B. L., Carter, J., et al., 2017. The Stratigraphy and History of Mars’ Northern Lowlands through Mineralogy of Impact Craters: A Comprehensive Survey. Journal of Geophysical Research: Planets, 122(9): 1824-1854. https://doi.org/10.1002/2017JE005276 |
|
Pan, L., Deng, Z. B., Bizzarro, M., 2023. Impact Induced Oxidation and Its Implications for Early Mars Climate. Geophysical Research Letters, 50(6): e2023GL102724. https://doi.org/10.1029/2023GL102724 |
|
Pavlov, A. A., Vasilyev, G., Ostryakov, V. M., et al., 2012. Degradation of the Organic Molecules in the Shallow Subsurface of Mars Due to Irradiation by Cosmic Rays. Geophysical Research Letters, 39(13): L13202. https://doi.org/10.1029/2012GL052166 |
|
Pieterek, B., Ciazela, J., Lagain, A., et al., 2022. Late Amazonian Dike-Fed Distributed Volcanism in the Tharsis Volcanic Province on Mars. Icarus, 386: 115151. https://doi.org/10.1016/j.icarus.2022.115151 |
|
Piqueux, S., Kass, D. M., Kleinböhl, A., et al., 2024. Mars Thermal Inertia and Surface Temperatures by the Mars Climate Sounder. Icarus, 419: 115851. https://doi.org/10.1016/j.icarus.2023.115851 |
|
Posiolova, L. V., Lognonné, P., Banerdt, W. B., et al., 2022. Largest Recent Impact Craters on Mars: Orbital Imaging and Surface Seismic Co-Investigation. Science, 378(6618): 412-417. https://doi.org/10.1126/science.abq7704 |
|
Qin, X. G., Ren, X., Wang, X., et al., 2023. Modern Water at Low Latitudes on Mars: Potential Evidence from Dune Surfaces. Science Advances, 9(17): eadd8868. https://doi.org/10.1126/sciadv.add8868 |
|
Ramirez, R. M., Kopparapu, R., Zugger, M. E., et al., 2014. Warming Early Mars with Co2 and H2. Nature Geoscience, 7(1): 59-63. https://doi.org/10.1038/ngeo2000 |
|
Reiss, D., Hauber, E., Michael, G., et al., 2005. Small Rampart Craters in an Equatorial Region on Mars: Implications for near-Surface Water or Ice. Geophysical Research Letters, 32(10): L10202. https://doi.org/10.1029/2005GL022758 |
|
Richardson, J. A., Bleacher, J. E., Connor, C. B., et al., 2021. Small Volcanic Vents of the Tharsis Volcanic Province, Mars. Journal of Geophysical Research: Planets, 126(2): e2020JE006620. https://doi.org/10.1029/2020JE006620 |
|
Robbins, S. J., Achille, G. D., Hynek, B. M., 2011. The Volcanic History of Mars: High-Resolution Crater-Based Studies of the Calderas of 20 Volcanoes. Icarus, 211(2): 1179-1203. https://doi.org/10.1016/j.icarus.2010.11.012 |
|
Robbins, S. J., Hynek, B. M., 2012. A New Global Database of Mars Impact Craters ≥1 Km: 1. Database Creation, Properties, and Parameters. Journal of Geophysical Research: Planets, 117(E5): E05004. https://doi.org/10.1029/2011JE003966 |
|
Rodriguez, J. a. P., Platz, T., Gulick, V., et al., 2015. Did the Martian Outflow Channels Mostly Form during the Amazonian Period? Icarus, 257: 387-395. https://doi.org/10.1016/j.icarus.2015.04.024 |
|
Russell, P. S., Head Iii, J. W., 2002. The Martian Hydrosphere/Cryosphere System: Implications of the Absence of Hydrologic Activity at Lyot Crater. Geophysical Research Letters, 29(17): 8-1-8-4. https://doi.org/10.1029/2002GL015178 |
|
Sasselov, D. D., Grotzinger, J. P., Sutherland, J. D., 2020. The Origin of Life as a Planetary Phenomenon. Science Advances, 6(6): eaax3419. https://doi.org/10.1126/sciadv.aax3419 |
|
Sauterey, B., Charnay, B., Affholder, A., et al., 2022. Early Mars Habitability and Global Cooling by H2-Based Methanogens. Nature Astronomy, 6(11): 1263-1271. https://doi.org/10.1038/s41550-022-01786-w |
|
Savijärvi, H. I., Martinez, G. M., Fischer, E., et al., 2020. Humidity Observations and Column Simulations for a Warm Period at the Mars Phoenix Lander Site: Constraining the Adsorptive Properties of Regolith. Icarus, 343: 113688. https://doi.org/10.1016/j.icarus.2020.113688 |
|
Sánchez-García, L., Lezcano, M. Á., Carrizo, D., et al., 2023. Assessing Siliceous Sinter Matrices for Long-Term Preservation of Lipid Biomarkers in Opaline Sinter Deposits Analogous to Mars in El Tatio (Chile). Science of The Total Environment, 870: 161765. https://doi.org/10.1016/j.scitotenv.2023.161765 |
|
Scanlon, K. E., Head, J. W., Marchant, D. R., 2015. Volcanism-Induced, Local Wet-Based Glacial Conditions Recorded in the Late Amazonian Arsia Mons Tropical Mountain Glacier Deposits. Icarus, 250: 18-31. https://doi.org/10.1016/j.icarus.2014.11.016 |
|
Scheller, E. L., Ehlmann, B. L., Hu, R., et al., 2021. Long-Term Drying of Mars by Sequestration of Ocean-Scale Volumes of Water in the Crust. Science, 372(6537): 56-62. https://doi.org/10.1126/science.abc7717 |
|
Schmitt-Kopplin, P., Matzka, M., Ruf, A., et al., 2023. Complex Carbonaceous Matter in Tissint Martian Meteorites Give Insights into the Diversity of Organic Geochemistry on Mars. Science Advances, 9(2): eadd6439. https://doi.org/10.1126/sciadv.add6439 |
|
Schröder, C., Bland, P. A., Golombek, M. P., et al., 2016. Amazonian Chemical Weathering Rate Derived from Stony Meteorite Finds at Meridiani Planum on Mars. Nature Communications, 7(1): 13459. https://doi.org/10.1038/ncomms13459 |
|
Schulte, M., Blake, D., Hoehler, T., et al., 2006. Serpentinization and Its Implications for Life on the Early Earth and Mars. Astrobiology, 6(2): 364-376. https://doi.org/10.1089/ast.2006.6.364 |
|
Schulze-Makuch, D., Dohm, J. M., Fan, C., et al., 2007. Exploration of Hydrothermal Targets on Mars. Icarus, 189(2): 308-324. https://doi.org/10.1016/j.icarus.2007.02.007 |
|
Schwander, L., Brabender, M., Mrnjavac, N., et al., 2023. Serpentinization as the Source of Energy, Electrons, Organics, Catalysts, Nutrients and Ph Gradients for the Origin of Luca and Life. Frontiers in Microbiology, 14 - 2023. https://doi.org/10.3389/fmicb.2023.1257597 |
|
Schwenzer, S. P., Kring, D. A., 2013. Alteration Minerals in Impact-Generated Hydrothermal Systems – Exploring Host Rock Variability. Icarus, 226(1): 487-496. https://doi.org/10.1016/j.icarus.2013.06.003 |
|
Shau, Y.-H., Peacor, D. R., Essene, E. J., 1993. Formation of Magnetic Single-Domain Magnetite in Ocean Ridge Basalts with Implications for Sea-Floor Magnetism. Science, 261(5119): 343-345. https://doi.org/10.1126/science.261.5119.343 |
|
She, X. Y., Wang, J., Huang, J., et al, 2024. Research Status of Lava Tube Exploration in the Solar System. Journal of Deep Space Exploration, 2024, 11(04): 313-327+311-312 (in Chinese with English abstract). |
|
Shi, Y. T., Zhao, J. N., Xiao, L., et al., 2022. An Arid-Semiarid Climate during the Noachian-Hesperian Transition in the Huygens Region, Mars: Evidence from Morphological Studies of Valley Networks. Icarus, 373: 114789. https://doi.org/10.1016/j.icarus.2021.114789 |
|
Shi, Y. T., Zhao, J. N., Zhang, M. J., et al, 2025. Evolution of the Martian Geological Environment and Exploration of Habitability of Mars. Journal of Deep Space Exploration, 12(01): 86-96 (in Chinese with English abstract). |
|
Sholes, S. F., Smith, M. L., Claire, M. W., et al., 2017. Anoxic Atmospheres on Mars Driven by Volcanism: Implications for Past Environments and Life. Icarus, 290: 46-62. https://doi.org/10.1016/j.icarus.2017.02.022 |
|
Sizemore, H. G., Mellon, M. T., Rempel, A. W., et al., 2026. Liquid Vein Networks as Habitats in Ice-Cemented Ground on Earth and Mars: Effects of Soil Geometry and Salts. Icarus, 445: 116828. https://doi.org/10.1016/j.icarus.2025.116828 |
|
Skok, J. R., Mustard, J. F., Ehlmann, B. L., et al., 2010. Silica Deposits in the Nili Patera Caldera on the Syrtis Major Volcanic Complex on Mars. Nature Geoscience, 3(12): 838-841. https://doi.org/10.1038/ngeo990 |
|
Sleep, N. H., Zahnle, K., 1998. Refugia from Asteroid Impacts on Early Mars and the Early Earth. Journal of Geophysical Research: Planets, 103(E12): 28529-28544. https://doi.org/10.1029/98JE01809 |
|
Smith, I. B., Spiga, A., Holt, J. W., 2015. Aeolian Processes as Drivers of Landform Evolution at the South Pole of Mars. Geomorphology, 240: 54-69. https://doi.org/10.1016/j.geomorph.2014.08.026 |
|
Stähler, S. C., Mittelholz, A., Perrin, C., et al., 2022. Tectonics of Cerberus Fossae Unveiled by Marsquakes. Nature Astronomy, 6(12): 1376-1386. https://doi.org/10.1038/s41550-022-01803-y |
|
Steele, A., Mccubbin, F. M., Fries, M. D., 2016. The Provenance, Formation, and Implications of Reduced Carbon Phases in Martian Meteorites. Meteoritics & Planetary Science, 51(11): 2203-2225. https://doi.org/10.1111/maps.12670 |
|
Steele, A., Benning, L. G., Wirth, R., et al., 2022. Organic Synthesis Associated with Serpentinization and Carbonation on Early Mars. Science, 375(6577): 172-177. https://doi.org/10.1126/science.abg7905 |
|
Sun, V. Z., Milliken, R. E., 2015. Ancient and Recent Clay Formation on Mars as Revealed from a Global Survey of Hydrous Minerals in Crater Central Peaks. Journal of Geophysical Research: Planets, 120(12): 2293-2332. https://doi.org/10.1002/2015JE004918 |
|
Sweeney, J., Warner, N. H., Ganti, V., et al., 2018. Degradation of 100-M-Scale Rocky Ejecta Craters at the Insight Landing Site on Mars and Implications for Surface Processes and Erosion Rates in the Hesperian and Amazonian. Journal of Geophysical Research: Planets, 123(10): 2732-2759. https://doi.org/10.1029/2018JE005618 |
|
Tan, J. S. W., Salter, T. L., Watson, J. S., et al., 2023. Organic Biosignature Degradation in Hydrothermal and Serpentinizing Environments: Implications for Life Detection on Icy Moons and Mars. Astrobiology, 23(10): 1045-1055. https://doi.org/10.1089/ast.2022.0144 |
|
Tanaka, K. L., 1986. The Stratigraphy of Mars. Journal of Geophysical Research: Solid Earth, 91(B13): E139-E158. https://doi.org/10.1029/JB091iB13p0E139 |
|
Tanaka, K. L., Skinner, J. A., Dohm, J. M., et al., 2014. Geologic Map of Mars. U.S. Geological Survey. https://dx.doi.org/10.3133/sim3292 |
|
Tarnas, J. D., Mustard, J. F., Sherwood Lollar, B., et al., 2018. Radiolytic H2 Production on Noachian Mars: Implications for Habitability and Atmospheric Warming. Earth and Planetary Science Letters, 502: 133-145. https://doi.org/10.1016/j.epsl.2018.09.001 |
|
Tsoar, H., Greeley, R., Peterfreund, A. R., 1979. Mars: The North Polar Sand Sea and Related Wind Patterns. Journal of Geophysical Research: Solid Earth, 84(B14): 8167-8180. https://doi.org/10.1029/JB084iB14p08167 |
|
Turner, S. M. R., Bridges, J. C., Grebby, S., et al., 2016. Hydrothermal Activity Recorded in Post Noachian-Aged Impact Craters on Mars. Journal of Geophysical Research: Planets, 121(4): 608-625. https://doi.org/10.1002/2015JE004989 |
|
Tutolo, B. M., Tosca, N. J., 2023. Observational Constraints on the Process and Products of Martian Serpentinization. Science Advances, 9(5): eadd8472. https://doi.org/doi: 10.1126/sciadv.add8472 |
|
Ulrich, M., Wagner, D., Hauber, E., et al., 2012. Habitable Periglacial Landscapes in Martian Mid-Latitudes. Icarus, 219(1): 345-357. https://doi.org/10.1016/j.icarus.2012.03.019 |
|
Voigt, J. R. C., Hamilton, C. W., 2018. Investigating the Volcanic Versus Aqueous Origin of the Surficial Deposits in Eastern Elysium Planitia, Mars. Icarus, 309: 389-410. https://doi.org/10.1016/j.icarus.2018.03.009 |
|
Voigt, J. R. C., Hamilton, C. W., Steinbrügge, G., et al., 2023. Revealing Elysium Planitia’s Young Geologic History: Constraints on Lava Emplacement, Areas, and Volumes. Journal of Geophysical Research: Planets, 128(12): e2023JE007947. https://doi.org/10.1029/2023JE007947 |
|
Wang, C.-Y., Manga, M., Wong, A., 2005. Floods on Mars Released from Groundwater by Impact. Icarus, 175(2): 551-555. https://doi.org/10.1016/j.icarus.2004.12.003 |
|
Wang, J., Xiao, L., Huang, J., et al, 2021. Advances in Martian yardangs. Acta Geologica Sinica, 2021, 95(09): 2742-2754 (in Chinese with English abstract). |
|
Wang, J., Zhao, J. N., Xiao, L., et al., 2023. Recent Aqueous Activity on Mars Evidenced by Transverse Aeolian Ridges in the Zhurong Exploration Region of Utopia Planitia. Geophysical Research Letters, 50(6): e2022GL101650. https://doi.org/10.1029/2022GL101650 |
|
Weiss, D. K., Head, J. W., Palumbo, A. M., et al., 2017. Extensive Amazonian-Aged Fluvial Channels on Mars: Evaluating the Role of Lyot Crater in Their Formation. Geophysical Research Letters, 44(11): 5336-5344. https://doi.org/10.1002/2017GL073821 |
|
Werner, S. C., 2009. The Global Martian Volcanic Evolutionary History. Icarus, 201(1): 44-68. https://doi.org/10.1016/j.icarus.2008.12.019 |
|
Werner, S. C., Tanaka, K. L., 2011. Redefinition of the Crater-Density and Absolute-Age Boundaries for the Chronostratigraphic System of Mars. Icarus, 215(2): 603-607. https://doi.org/10.1016/j.icarus.2011.07.024 |
|
Westall, F., Loizeau, D., Foucher, F., et al., 2013. Habitability on Mars from a Microbial Point of View. Astrobiology, 13(9): 887-897. https://doi.org/10.1089/ast.2013.1000 |
|
Westall, F., Foucher, F., Bost, N., et al., 2015. Biosignatures on Mars: What, Where, and How? Implications for the Search for Martian Life. Astrobiology, 15(11): 998-1029. https://doi.org/10.1089/ast.2015.1374 |
|
Williams, K. E., Toon, O. B., Heldmann, J. L., et al., 2008. Stability of Mid-Latitude Snowpacks on Mars. Icarus, 196(2): 565-577. https://doi.org/10.1016/j.icarus.2008.03.017 |
|
Wohletz, K. H., Sheridan, M. F., 1983. Martian Rampart Crater Ejecta: Experiments and Analysis of Melt-Water Interaction. Icarus, 56(1): 15-37. https://doi.org/10.1016/0019-1035(83)90125-2 |
|
Wordsworth, R., Knoll, A. H., Hurowitz, J., et al., 2021. A Coupled Model of Episodic Warming, Oxidation and Geochemical Transitions on Early Mars. Nature Geoscience, 14(3): 127-132. https://doi.org/10.1038/s41561-021-00701-8 |
|
Wright, V., Morzfeld, M., Manga, M., 2024. Liquid Water in the Martian Mid-Crust. Proceedings of the National Academy of Sciences, 121(35): e2409983121. https://doi.org/10.1073/pnas.2409983121 |
|
Wu, B., Dong, J., Wang, Y. R., et al., 2024. A Probable Ancient Nearshore Zone in Southern Utopia on Mars Unveiled from Observations at the Zhurong Landing Area. Scientific Reports, 14(1): 24389. https://doi.org/10.1038/s41598-024-75507-w |
|
Wu, Z. P., Li, T., Zhang, X., et al., 2020. Dust Tides and Rapid Meridional Motions in the Martian Atmosphere during Major Dust Storms. Nature Communications, 11(1): 614. https://doi.org/10.1038/s41467-020-14510-x |
|
Xiao, L., Huang, J., Christensen, P. R., et al., 2012. Ancient Volcanism and Its Implication for Thermal Evolution of Mars. Earth and Planetary Science Letters, 323-324: 9-18. https://doi.org/10.1016/j.epsl.2012.01.027 |
|
Xiao, L., 2013. Plantary Geology. Geological Press, Beijing (in Chinese) |
|
Xiao, L., 2022. What is the geological environment and habitable evolution history of Mars?. Earth Science, 47(10): 3792-3793 (in Chinese with English abstract). |
|
Xiao, L., 2023. Evolution of the Geological Environment and Exploration for Life on Mars. Journal of Earth Science, 34(5): 1626-1628. https://doi.org/10.1007/s12583-023-1929-7 |
|
Xiao, L., Huang, J., Kusky, T., et al., 2023a. Evidence for Marine Sedimentary Rocks in Utopia Planitia: Zhurong Rover Observations. National Science Review, 10(9): nwad137. https://doi.org/10.1093/nsr/nwad137 |
|
Xiao, L., Huang, J., Xiao, Z., et al., 2023b. Volcanism in the Solar System. Science China Earth Sciences, 66(11): 2419-2440. https://doi.org/10.1007/s11430-022-1085-y |
|
Xu, H., Liu, Q., Jin, Z., et al., 2024. Organic Compounds in Geological Hydrothermal Systems: A Critical Review of Molecular Transformation and Distribution. Earth-Science Reviews, 252: 104757. https://doi.org/10.1016/j.earscirev.2024.104757 |
|
Xu, X. T., Xu, Y., Han, Z., et al., 2025. Shallow Water Ice Detection from Sharad Data in Central Utopia Planitia, Mars. Journal of Geophysical Research: Planets, 130(1): e2023JE008145. https://doi.org/10.1029/2023JE008145 |
|
Yiğit, E., Medvedev, A. S., Benna, M., et al., 2021. Dust Storm-Enhanced Gravity Wave Activity in the Martian Thermosphere Observed by Maven and Implication for Atmospheric Escape. Geophysical Research Letters, 48(5): e2020GL092095. https://doi.org/10.1029/2020GL092095 |
|
Yiğit, E., 2021. Martian Water Escape and Internal Waves. Science, 374(6573): 1323-1324. https://doi.org/10.1126/science.abg5893 |
|
Yiğit, E., 2023. Coupling and Interactions across the Martian Whole Atmosphere System. Nature Geoscience, 16(2): 123-132. https://doi.org/10.1038/s41561-022-01118-7 |
|
Zhang, L., Li, C., Zhang, J. H., et al., 2024. Buried Palaeo-Polygonal Terrain Detected Underneath Utopia Planitia on Mars by the Zhurong Radar. Nature Astronomy, 8(1): 69-76. https://doi.org/10.1038/s41550-023-02117-3 |
|
Zhang, M. J., Zhao, J. N., Xiao, L., et al., 2023. Fan-Shaped Deposits in the Northern Hellas Region, Mars: Implications for the Evolution of Water Reservoir and Climate. Icarus, 395: 115470. https://doi.org/10.1016/j.icarus.2023.115470 |
|
Zhao, J. N., Xiao, L., 2016. Achievements, Issues and Prospects in Study of Martian Paleolakes. Earth Science, 41(09): 1572-1582 (in Chinese with English abstract). |
|
Zhao, J. N., Xiao, L., Glotch, T. D., 2020. Paleolakes in the Northwest Hellas Region, Mars: Implications for the Regional Geologic History and Paleoclimate. Journal of Geophysical Research: Planets, 125(3): e2019JE006196. https://doi.org/10.1029/2019JE006196 |
|
Zhao, J. N., Shi, Y. T., Zhang, M. J., et al, 2021. Advances in Martian water-related land forms. Acta Geologica Sinica, 95(09): 2755-2768 (in Chinese with English abstract). |
|
Zhao, J. N., Wang, J., Zhang, M. J., et al., 2021. Unique Curvilinear Ridges in the Qaidam Basin, Nw China: Implications for Martian Fluvial Ridges. Geomorphology, 372: 107472. https://doi.org/10.1016/j.geomorph.2020.107472 |
|
Zhao, J. N., Zhao, Y., Zhang, S. Q., et al, 2024a. Research progress on exploration, exploitation, and in-situ resource utilization of Martian water resources. Journal of Huazhong University of Science and Technology(Natural Science Edition), 52(08): 29-40 (in Chinese with English abstract). |
|
Zhao, J. N., Zhang, S. Q., Geng, Z. Q., et al, 2024b. Progress and prospects in the research of Martian resource endowment and the in-situ resource utilization technology. Acta Geologica Sinica, 98(02): 611-622 (in Chinese with English abstract). |
|
Zhao, T. X., Xu, S., Hao, F., 2023b. Differential Adsorption of Clay Minerals: Implications for Organic Matter Enrichment. Earth-Science Reviews, 246:104598. https://doi.org/10.1016/j.earscirev.2023.104598 |
|
Zhao, Y.-Y. S., Zhou, D. S., Li, X. Y., et al, 2020. The evolution of scientific goals for Mars exploration and future prospects. Chinese Science Bulletin, 65(23): 2439-2453 (in Chinese with English abstract). |
|
Zhao, Y.-Y. S., Yu, J., Wei, G. F., et al., 2023a. In Situ Analysis of Surface Composition and Meteorology at the Zhurong Landing Site on Mars. National Science Review, 10(6): nwad056. https://doi.org/10.1093/nsr/nwad056 |
|
Zhong, S. J., 2009. Migration of Tharsis Volcanism on Mars Caused by Differential Rotation of the Lithosphere. Nature Geoscience, 2(1): 19-23. https://doi.org/10.1038/ngeo392 |
|
Zhou, X., Wei, Y., Wu, Z. P., et al, 2024. Martian whole atmosphere model and dust activities: Review and prospect. Chinese Science Bulletin, 69(08): 1058-1067 (in Chinese with English abstract). |
|
Zhuang, Y. T., Liu, R. C., Chen, Y. L., et al, 2022. Extremophiles and their applications. Scientia Sinica(Vitae), 52(02): 204-222 (in Chinese with English abstract). |
|
Zou, Y. L., Zhu, Y., Bai, Y. F., et al., 2021. Scientific Objectives and Payloads of Tianwen-1, China’s First Mars Exploration Mission. Advances in Space Research, 67(2): 812-823. https://doi.org/10.1016/j.asr.2020.11.005 |
|
耿言, 周继时, 李莎,等, 2018. 我国首次火星探测任务. 深空探测学报, 5(05): 399-405. |
|
芶盛, 岳宗玉, 邸凯昌, 等, 2021. 火星伊西底斯平原的壁垒撞击坑:遥感分析及环境启示意义. 遥感学报, 25(7): 1374-1384. |
|
雷婷婷, 陈良仲, 陈绍兴, 等, 2022. 微生物对低温极端环境适应性的研究进展. 微生物学报, 62(06): 2150-2164. |
|
李继彦. 董治宝, 2016. 火星风沙地貌研究进展. 中国沙漠, 36(04): 951-961. |
|
刘洋, 吴兴, 刘正豪, 等., 2021a. 火星的地质演化和宜居环境研究进展. 地球与行星物理论评, 52(04): 416-436. |
|
刘洋, 刘正豪, 吴兴, 等, 2021b. 火星的水环境演化. 地质学报, 95(09): 2725-2741. |
|
刘正豪, 刘洋, 刘佳, 等, 2024. 火星水冰分布特征和研究进展. 地球科学, 49(06): 2253-2276. |
|
罗根明, 王畅, 殷宗军, 等, 2025. 从地球生物学到天体生物学. 地球科学, 50(03): 857-876. |
|
佘星阳, 王江, 黄俊, et al., 2024. 太阳系天体熔岩管探测研究现状. 深空探测学报(中英文), 11(04): 313-327+311-312. |
|
史语桐, 赵健楠, 张明杰, 等, 2025. 火星地质环境演变与生命宜居性探索. 深空探测学报(中英文), 12(01): 86-96. |
|
王江, 肖龙, 黄俊, 等, 2021. 火星雅丹地貌研究进展. 地质学报, 95(09): 2742-2754. |
|
肖龙, 2013. 行星地质学. 北京:地质出版社. |
|
肖龙, 2022. 火星的地质环境及宜居性演变历史如何?. 地球科学, 47(10): 3792-3793. |
|
赵健楠. 肖龙, 2016. 火星古湖泊研究的现状、问题与展望. 地球科学, 41(09): 1572-1582. |
|
赵健楠, 史语桐, 张明杰, 等, 2021. 火星水成地貌研究进展. 地质学报, 95(09): 2755-2768. |
|
赵健楠, 赵源, 张诗琪, 等, 2024a. 火星水资源探测、开采及原位利用研究进展. 华中科技大学学报(自然科学版), 52(08): 29-40. |
|
赵健楠, 张诗琪, 耿志卿, 等, 2024b. 火星资源赋存状况及其原位利用技术研究进展与展望. 地质学报, 98(02): 611-622. |
|
赵宇鴳, 周迪圣, 李雄耀, 等, 2020. 国际火星探测科学目标演变与未来展望. 科学通报, 65(23): 2439-2453. |
|
周旭, 魏勇, 吴兆朋, 等, 2024. 火星全大气模式与沙尘活动模拟研究:回顾与展望. 科学通报, 69(08): 1058-1067. |
|
庄滢潭, 刘芮存, 陈雨露, 等, 2022. 极端微生物及其应用研究进展. 中国科学:生命科学, 52(02): 204-222. |