• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 8
    Aug.  2025
    Turn off MathJax
    Article Contents
    Liang Xinxin, Wang Lianxun, Shao Hui, She Zhenbing, Xu Chang, 2025. Textural and Compositional Variation of the Sodalite Group Minerals. Earth Science, 50(8): 2993-3012. doi: 10.3799/dqkx.2025.068
    Citation: Liang Xinxin, Wang Lianxun, Shao Hui, She Zhenbing, Xu Chang, 2025. Textural and Compositional Variation of the Sodalite Group Minerals. Earth Science, 50(8): 2993-3012. doi: 10.3799/dqkx.2025.068

    Textural and Compositional Variation of the Sodalite Group Minerals

    doi: 10.3799/dqkx.2025.068
    • Received Date: 2025-01-12
    • Publish Date: 2025-08-25
    • The sodalite group minerals (SGM), including sodalite, haüyne, nosean, and related species, are aluminium silicate minerals that typically crystallize in alkaline⁃peralkaline rocks and are enriched in volatile elements such as sulfur (S) and chlorine (Cl). Despite their geochemical significance, research on SGM remains limited, particularly regarding their textural characteristics and geochemical compositions, which has hindered a comprehensive understanding of their classification and formation mechanisms. A detailed comparative study of the petrography and geochemistry of SGM samples was conducted, focusing on specimens from the Pinghe Complex (Sichuan Province, China), Niangniangshan Complex (Jiangsu Province, China), and Jebel Dumbier Complex (Sudan). This analysis was complemented by incorporating global SGM datasets to enhance the scope and robustness of the findings. A novel classification scheme for SGM species is proposed, based on the SO42-/X ratios (where X represents the anion content in atoms per formula unit, apfu) and X values. This framework distinguishes sodalite, nosean, and haüyne along a continuum of geochemical evolution. From sodalite to nosean and finally to haüyne, the ratios of Rb/Sr, Ba/Sr, Be/Sr, and B/Sr decrease progressively as Sr content increases. Conversely, total rare earth element (REE) concentrations and the degree of differentiation between light rare earth elements (LREE) and heavy rare earth elements (HREE) increase systematically. The S/Cl ratios in sodalite serve as a proxy for magma composition, while variations in Cl and S compositions reflect changes in melt volatile content during magmatic evolution. The clathrate texture observed in haüyne and the patchy texture in nosean are interpreted as resulting from mineral inclusions and solid exsolution processes, respectively. This study advances the understanding of SGM formation mechanisms and provides a refined framework for their classification, emphasizing the interplay between volatile elements, textural features, and geochemical evolution.

       

    • loading
    • Alling, H. L., 1932. Perthites. American Mineralogist: Journal of Earth and Planetary Materials, 17(2): 43-65.
      Bailey, J. C., Gwozdz, R., Rose⁃Hansen, J., et al., 2001. Geochemical Overview of the Ilímaussaq Alkaline Complex, South Greenland. Geology of Greenland Survey Bulletin, 190: 35-53. https://doi.org/10.34194/ggub.v190.5172
      Baioumy, H., 2021. Geochemistry and Origin of High⁃Sr Carbonatite from the Nuba Mountains, Arabian⁃Nubian Shield, Sudan. Journal of Asian Earth Sciences, 214: 104773. https://doi.org/10.1016/j.jseaes.2021.104773
      Balassone, G., Bellatreccia, F., Mormone, A., et al., 2012. Sodalite⁃Group Minerals from the Somma Vesuvius Volcanic Complex, Italy: a Case Study of K⁃Feldspar⁃Rich Xenoliths. Mineralogical Magazine, 76(1): 191-212. https://doi.org/10.1180/minmag.2012.076.1.191
      Balassone, G., Bellatreccia, F., Ottolini, L., et al., 2016. Sodalite⁃Group Minerals from the Somma⁃Vesuvius Volcano (Naples, Italy): a Combined EPMA, SIMS, and FTIR Crystal⁃Chemical Study. The Canadian Mineralogist, 54(3): 583-604. https://doi.org/10.3749/canmin.1500083
      Baudouin, C., Parat, F., 2015. Role of Volatiles (S, Cl, H2O) and Silica Activity on the Crystallization of Haüyne and Nosean in Phonolitic Magmas (Eifel, Germany and Saghro, Morocco). American Mineralogist, 100(10): 2308-2322. https://doi.org/10.2138/am⁃2015⁃5318
      Beccaluva, L., Coltorti, M., Di Girolamo, P., et al., 2002. Petrogenesis and Evolution of Mt. Vulture Alkaline Volcanism (Southern Italy). Mineralogy and Petrology, 74(2): 277-297. https://doi.org/10.1007/s007100200007
      Bellatreccia, F., Della Ventura, G., Piccinini, M., et al., 2009. H2O and CO2 in Minerals of the Haüyne⁃Sodalite Group: an FTIR Spectroscopy Study. Mineralogical Magazine, 73(3): 399-413. https://doi.org/10.1180/minmag.2009.073.3.399
      Brousse, R., Varet, J., Bizouard, H., 1969. Iron in the Minerals of the Sodalite Group. Contributions to Mineralogy and Petrology, 22(3): 169-184. https://doi.org/10.1007/BF00387951
      Bruun⁃Neergard, T. C., 1807. De la Haüyne, Nouvelle Substance Minerale. Journal des Mines, 21: 365-380.
      Caggiani, M. C., Mangone, A., Acquafredda, P., 2022. Blue Coloured Haüyne from Mt. Vulture (Italy) Volcanic Rocks: SEM⁃EDS and Raman Investigation of Natural and Heated Crystals. Journal of Raman Spectroscopy, 53(5): 956–968. https://doi.org/10.1002/jrs.6310
      Chang, L. H., Chen, M. Y., Jin, W., et al., 2006. Handbook for the Identification of Transparent Mineral Flakes. Geological Publishing, Beijing, 10-12(in Chinese).
      Chukanov, N. V., Vigasina, M. F., Zubkova, N. V., et al., 2020. Extra⁃Framework Content in Sodalite⁃Group Minerals: Complexity and New Aspects of Its Study Using Infrared and Raman Spectroscopy. Minerals, 10(4): 363. https://doi.org/10.3390/min10040363
      Cooper, L. B., Bachmann, O., Huber, C., 2015. Volatile Budget of Tenerife Phonolites Inferred from Textural Zonation of S⁃Rich Haüyne. Geology, 43(5): 423-426. https://doi.org/10.1130/g36505.1
      Cui, Y. H., 2021. Etymology of Mineral Names. China University of Geosciences Press, Wuhan, 157, 427, 746-747, 1090(in Chinese).
      Currie, K. L., Eby, G. N., Gittins, J., 1986. The Petrology of the Mont Saint Hilaire Complex, Southern Quebec: an Alkaline Gabbro⁃Peralkaline Syenite Association. Lithos, 19(1): 65-81. https://doi.org/10.1016/0024⁃4937(86)90016⁃2
      Depmeier, W., 2005. The Sodalite Family: a Simple but Versatile Framework Structure. Reviews in Mineralogy and Geochemistry, 57(1): 203-240. https://doi.org/10.2138/rmg.2005.57.7
      Di Muro, A., Bonaccorsi, E., Principe, C., 2004. Complex Colour and Chemical Zoning of Sodalite⁃Group Phases in a Haüynophyre Lava from Mt. Vulture, Italy. Mineralogical Magazine, 68(4): 591-614. https://doi.org/10.1180/0026461046840206
      Eggenkamp, H. G. M., Marks, M. A. W., Atanasova, P., et al., 2020. Changes in Halogen (F, Cl, Br, and I) and S Ratios in Rock⁃Forming Minerals as Monitors for Magmatic Differentiation, Volatile⁃Loss, and Hydrothermal Overprint: The Case for Peralkaline Systems. Minerals, 10(11): 995. https://doi.org/10.3390/min10110995
      Eggenkamp, H. G. M., Marks, M. A. W., Bonifacie, M., et al., 2022. Cl Isotope Fractionation in Magmatic and Hydrothermal Eudialyte, Sodalite and Tugtupite (Ilímaussaq Intrusion, South Greenland). Chemical Geology, 604: 120932. https://doi.org/10.1016/j.chemgeo.2022.120932
      Friis, H., 2011. Sodalite: a Mineralogical Chameleon. Geology Today, 27(5): 194-198. https://doi.org/10.1111/j.1365⁃2451.2011.00809.x
      Gahlan, H. A., Azer, M. K., Asimow, P. D., et al., 2023. Geochemistry, Petrogenesis and Alteration of Rare⁃Metal⁃Bearing Granitoids and Mineralized Silexite of the Al⁃Ghurayyah Stock, Arabian Shield, Saudi Arabia. Journal of Earth Science, 34(5): 1488-1510. https://doi.org/10.1007/s12583⁃022⁃1708⁃z
      Harris, N. B. W., Mohammed, A. E. R. O., Shaddad, M. Z., 1983. Geochemistry and Petrogenesis of a Nepheline Syenite⁃Carbonatite Complex from the Sudan. Geological Magazine, 120(2): 115-127. https://doi.org/10.1017/s0016756800025279
      Heathcote, R. C., McCormick, G. R., 1989. Major⁃Cation Substitution in Phlogopite and Evolution of Carbonatite in the Potash Sulphur Springs Complex, Garland County, Arkansas. American Mineralogist, 74(1-2): 132-140.
      He, L., 2010. Characteristics and Structural Setting of the Pinghe Alkalic Complex in Northern Sichuan (Dissertation). Chengdu University of Technology, Chengdu, 13-14(in Chinese with English abstract).
      Henmi, C., Kusachi, I., Henmi, K., et al., 1973. A New Mineral Bicchulite, the Natural Analogue of Gehlenite Hydrate, from Fuka, Okayama Prefecture, Japan and Carneal, County Antrim, Northern Ireland. Mineralogical Journal, 7(3): 243-251. https://doi.org/10.2465/minerj1953.7.243
      Huang, Y. H., Zhou, X. Z., 1982. Corrective Name of "Nosean": Hauyne of the Alkaline Volcanic Complex of Niangniang Shan, Nanjing. Rock and Mineral Analysis, 1(3): 25-30(in Chinese with English abstract).
      Huo, H. D., Yang, Z. L., Hong, W. T., 2024. Inverse Reaction Rim of Biotite in Early Cretaceous Nosean Phonolite of Niangniangshan, Niangwu Basin: Mineralogical Evidence of Magma Mixing Triggered Volcanic Eruption. East China Geology, 45(1): 115-133(in Chinese with English abstract).
      Kamyab, S. M., Modabberi, S., Williams, C. D., et al., 2020. Synthesis of Sodalite from Sepiolite by Alkali Fusion Method and Its Application to Remove Fe3+, Cr3+, and Cd2+ from Aqueous Solutions. Environmental Engineering Science, 37(10): 689-701. https://doi.org/10.1089/ees.2019.0492
      Kamyab, S. M., Modabberi, S., Williams, C. D., et al., 2021. Pure Sodalite Synthesis, Characterization and Application for Heavy Metal Ions Removal from Aqueous Solutions. Environmental Engineering & Management Journal (EEMJ), 20(5): 687-700. https://doi.org/10.30638/eemj.2021.066
      Klaproth, M. H., 1815. Chemische Untersuchung des Spinellan's. Beiträge zur Chemischen Kenntniss der Mineralkörper. 6: 371-376.
      Kotel'nikov, A. R., Tikhomirova, V. I., Kotel'nikova, Z. A., et al., 2009. An Experimental Study of Cl and S Distribution between Sodalite and Fluid. Geochemistry International, 47(6): 568-577. https://doi.org/10.1134/S0016702909060032
      Krumrei, T. V., Pernicka, E., Kaliwoda, M., et al., 2007. Volatiles in a Peralkaline System: Abiogenic Hydrocarbons and F⁃Cl⁃Br Systematics in the Naujaite of the Ilímaussaq Intrusion, South Greenland. Lithos, 95(3/4): 298-314. https://doi.org/10.1016/j.lithos.2006.08.003
      Lessing, P., Grout, C. M. D., 1971. Haünite from Edwards, New York. American Mineralogist: Journal of Earth and Planetary Materials, 56(5-6): 1096-1100.
      Li, M. X., Du, Y. S., Li, D. P., et al., 2013. Petrographic and Mineralogical Characteristics of Volcanic Rocks of the Niangniangshan Formation in the Ningwu Basin and Their Geological Significance. Mineralogy and Petrology, (1): 27-34 (in Chinese with English abstract).
      Liu, C. S., Chen, X. M., Wang, R. C., et al., 2003. Characteristic and Origin of the Shiling Sodalite Syenite, Conghua City, Guangdong Province. Geological Review, 49(1): 28-29(in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2003.01.005
      Lowndes, A. G., 1953. Nosean as a Tracer Mineral. Nature, 172(4379): 636. https://doi.org/10.1038/172636a0
      Lu, J. W., Peng, X. L., 2010. Handbook of Microscopic Identification of Metallic Minerals. Beijing: Geological Publishing, 62-65(in Chinese).
      Markl, G., Marks, M., Schwinn, G., et al., 2001. Phase Equilibrium Constraints on Intensive Crystallization Parameters of the Ilímaussaq Complex, South Greenland. Journal of Petrology, 42(12): 2231-2257. https://doi.org/10.1093/petrology/42.12.2231
      Möller, V., Williams⁃Jones, A. E., 2016. Petrogenesis of the Nechalacho Layered Suite, Canada: Magmatic Evolution of A REE⁃Nb⁃Rich Nepheline Syenite Intrusion. Journal of Petrology, 57(2): 229-276. https://doi.org/10.1093/petrology/egw003
      Pandit, D., 2015. Geochemistry of Feldspar Intergrowth Microtextures from Paleoproterozoic Granitoids in Central India: Implications to Exsolution Processes in Granitic System. Journal of the Geological Society of India, 85(2): 163-182. https://doi.org/10.1007/s12594⁃015⁃0204⁃9
      Pautov. L. A., Karpenko, V. Y., Sokolova, E. V., et al., 1993. Tsaregorodtsevite N(CH3)4[Si2(Si0.5Al0.5)O6]2-: a New Mineral. Zapiski Vserossijskogo Mineralogicheskogo Obshchestva. 128(1): 128-135.
      Rahmani, S., Azizi, S. N., Asemi, N., 2016. Application of Synthetic Nanozeolite Sodalite in Drug Delivery. International Current Pharmaceutical Journal, 5(6): 55-58. https://doi.org/10.3329/icpj.v5i6.27710
      Sapozhnikov, A. N., Tauson, V. L., Lipko, S. V., et al., 2021. On the Crystal Chemistry of Sulfur⁃Rich Lazurite, Ideally Na7Ca(Al6Si6O24)(SO4)(S3)⁃nH2O. American Mineralogist, 106(2): 226-234. https://doi.org/10.2138/am⁃2020⁃7317
      Shi, L., 2014. Petrogenesis of K⁃Rich Volcanic Rocks of Niangniangshan Formation in Ningwu Basin(Dissertation). Hefei University of Technology, Hefei, 12, 26 (in Chinese with English abstract).
      Sørensen, H., 1962. On the Occurrence of Steenstrupine in the Ilímaussaq Massif, Southwest Greenland. Bulletin Grønlands Geologiske Undersøgelse, 32: 1-251. https://doi.org/10.34194/bullggu.v32.6566
      Stoliaroff, A., Schira, R., Blumentritt, F., et al., 2021. Point Defects Modeling Explains Multiple Sulfur Species in Sulfur⁃Doped Na4(Al3Si3O12)Cl Sodalite. The Journal of Physical Chemistry C, 125(30): 16674-16680. https://doi.org/10.1021/acs.jpcc.1c02423
      Suk, N. I., Kotel'nikov, A. R., Koval'skii, A. M., 2007. Mineral Thermometry and the Composition of Fluids of the Sodalite Syenites of the Lovozero Alkaline Massif. Petrology, 15(5): 441-458. https://doi.org/10.1134/S0869591107050025
      Tao, K. Y., Huang, G. Z., Wang, M. X., 1979. Petrology and Origin of the Alkaline Volcanic Complex of Niangniang Shan, Nanjing. Acta Geologica Sinica, (00): 121-133, 143-144 (in Chinese with English abstract).
      Taylor, D., 1967. The Sodalite Group of Minerals. Contributions to Mineralogy and Petrology, 16(2): 172-188. https://doi.org/10.1007/BF00372796
      Thomson, T., 1811. A Chemical Analysis of Sodalite, a New Mineral from Greenland. A Journal of Natural Philosophy, Chemistry, and the Arts, 29: 285-292.
      Tong, Q. L., Li, Z. Y., Fan, H. H., et al., 2023. Petrogenesis and Tectonic Implications of the Jabal Hadb Ad Dayheen Granitic Complex, Central Arabian Shield. Journal of Earth Science, 34(1): 20-36. https://doi.org/10.1007/s12583⁃020⁃1355⁃1
      Uchida, E., Iiyama, J. T., 1981. On Kamaishilite, Ca2Al2SiO6(OH)2, a New Mineral Dimorphous (Tetragonal) with Bicchulite from the Kamaishi Mine, Japan. Proceedings of the Japan Academy, Series B, 57(7): 239-243. https://doi.org/10.2183/pjab.57.239
      Van Peteghem, J., Burley, B. J., 1962. Studies on the Sodalite Group of Minerals. Transactions of the Royal Society of Canada. 56: 37-53.
      Van Peteghem, J., Burley, B. J., 1963. Studies on Solid Solution between Sodalite, Nosean and Hauyne. The Canadian Mineralogist, 7(5): 808-813.
      Wang, L. X., Marks, M. A. W., Keller, J., et al., 2014. Halogen Variations in Alkaline Rocks from the Upper Rhine Graben (SW Germany): Insights into F, Cl and Br Behavior during Magmatic Processes. Chemical Geology, 380: 133-144. https://doi.org/10.1016/j.chemgeo.2014.05.003
      Webster, J. D., Holloway, J. R., 1990. Partitioning of F and Cl between Magmatic Hydrothermal Fluids and Highly Evolved Granitic Magmas. Geol. Soc. Am. Spec. Pap. 246: 21-34. https://doi.org/10.1130/SPE246⁃p21
      Yuguchi, T., Nishiyama, T., 2007. Cooling Process of a Granitic Body Deduced from the Extents of Exsolution and Deuteric Sub⁃Solidus Reactions: Case Study of the Okueyama Granitic Body, Kyushu, Japan. Lithos, 97(3/4): 395–421. https://doi.org/10.1016/j.lithos.2007.01.005
      Yu, Y. X., Liu, Z. G., Wang, C. M., et al., 2024. Preparation of Nano⁃Sodalite and Its Drug⁃Loading and Antibacterial Properties. Journal of North China University of Science and Technology (Natural Science Edition), 46(1): 89-96 (in Chinese with English abstract).
      Zhang, X., Liu, S. Q., Chen, L. F., et al., 2023. Preparation of Sodalite Crystals under Room⁃Temperature Condition, Characterization and Adsorption Performance to Lead Ion. Chemical Research and Application, 35(2): 419-426 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-1656.2023.02.025
      Zhou, T. R., Xu, Y., 1996. Tianshan Blue: the Sodalite Deposit in Tianshan, China. Mineral Deposits, 15(S1): 40-41 (in Chinese).
      常丽华, 陈曼云, 金巍, 等, 2006. 透明矿物薄片鉴定手册. 北京: 地质出版社, 10-12.
      崔云昊, 2021. 矿物名称词源. 武汉: 中国地质大学出版社, 157, 427, 746-747, 1090.
      何利, 2010. 川北坪河碱性杂岩体特征及其构造背景(硕士学位论文). 成都: 成都理工大学, 13-14.
      黄蕴慧, 周秀仲, 1982. 江苏铜井娘娘山碱性火山杂岩体中黝方石之正名——蓝方石. 岩矿测试, 1(3): 25-30.
      霍海东, 杨祝良, 洪文涛, 2024. 宁芜盆地娘娘山早白垩世黝方石响岩中黑云母逆反应边结构: 岩浆混合触发火山喷发的矿物学证据. 华东地质, 45(1): 115-133.
      李明轩, 杜杨松, 李大鹏, 等, 2013. 宁芜盆地娘娘山组钾质火山岩的岩相学和矿物学特征及其地质意义. 矿物岩石, (1): 27-34.
      刘昌实, 陈小明, 王汝成, 等, 2003. 广东从化石岭方钠石正长岩特征及其起源. 地质论评, 49(1): 28-29. doi: 10.3321/j.issn:0371-5736.2003.01.005
      卢静文, 彭晓蕾, 2010. 金属矿物鉴定手册. 北京: 地质出版社, 62-65.
      史磊, 2014. 宁芜盆地娘娘山组富钾火山岩的成因(硕士学位论文). 合肥: 合肥工业大学, 12, 26.
      陶奎元, 黄光昭, 王美星, 1979. 南京南部娘娘山碱性火山杂岩及其成因. 地球学报, (00): 121-133, 143-144.
      于亚鑫, 刘志刚, 王春梅, 等, 2024. 纳米方钠石的制备及其载药抗菌性能. 华北理工大学学报(自然科学版), 46(1): 89-96.
      张旭, 刘苏琪, 陈利锋, 等, 2023. 室温下方钠石的制备、表征及其对Pb2+的吸附性能. 化学研究与应用, 35(2): 419-426. doi: 10.3969/j.issn.1004-1656.2023.02.025
      邹天人, 徐珏, 1996. 天山蓝——中国天山方钠石矿床. 矿床地质. 15(S1): 40-41.
    • 梁馨心附图1-方钠石族矿物分布.docx
      梁馨心附件1-方钠石族矿物结晶学特征.docx
      梁馨心附件2-测试分析方法.docx
      梁馨心附表.xlsx
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(13)

      Article views (204) PDF downloads(27) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return