GEOCHEMISTRY OF TRACE ELEMENTS DURING ORE-FORMING PROCESSES IN YINSHAN DEPOSIT
-
摘要: 对银山矿床中矿石、岩体和矿体的蚀变围岩及其原岩的稀土及微量元素特征研究表明, 热液蚀变作用导致蚀变岩的∑ REE普遍升高, 而近岩体∑ REE则稍低于原岩.蚀变围岩出现Eu亏损, w(LREE)/w(HREE)值亦较原岩低.定量计算表明, ∑ w(REE)总升幅中有31% 以下是由围岩质量迁移引起的表观浓缩现象, 而另外的69%以上的效应则因流体带入了REE所致.热液具有w(LREE)/w(HREE)值低、强Eu正异常的特征.热液的还原性质促使Eu3+还原为Eu2+而被活化迁出, 导致围岩的Eu负异常扩大; Sr普遍地比原岩降低, Ba普遍显著地升高, 而Rb则相对稳定; Hf, Th, U, V, Cr, Co, Nb, Mo, Ta, Zr表现为不活动或弱活动性, 成矿元素Cu, Pb, Zn, Ag和Sn等被大量带入, Y, Sc被活化迁出.Abstract: Detailed studies have been conducted of the trace elements in ores, wallrocks of intrusion and orebodies in the Yinshan deposit. It is shown that∑ REE increased in all samples but those close to the intrusion and orebodies decreased.Altered wallrocks are characterized by lower w(LREE)/w(HREE)ratios and depleted in Eu compared with their fresh counterpart. It is suggested by calculation that less much. While E.D.Weinberg expanded the G.Bertrand law and further revealed that certain quantity of manganese may allow some bacteria to grow well but may not be suitable for them to produce bacteriophage. Biologic vital double threshold element content and its physiological effect can be expanded to different hydrogeochemistry zones in hydrogeologic unit. In elements lioxiviated(leached), transferred strongly hydrogeo-chemistry zone, biologic physiological effect and element content show negative correlativity. In elements enrichment, lioxiviated, concentration by evaporation hydrogeochemistry zone and environment polluted by some elements superfluous, biologic physiological negative effect and element content show positive correlativity, between them which above is the element content fitting zone. Take the Lishi-Liulin hydrogeologic unitof Shanxi Province as an instance: The lack of selenium, iodine and fluorine in the hydrochemistry zone with element leaching and loss causes KBD, IDD, and tooth decay, which is in a negative correlativity with element content, respectively. While in the element lioxiviation and enrichment zone, fluorine is superfluous.As a result, endemic fluorosis occurs and its sick rate shows positive correlativity with content.
-
表 1 银山矿床岩体、矿石及围岩的元素组成及部分计算参数值
Table 1. Element compositions of ores, phyllite and intrusion in Yinshan deposit
-
[1] 叶庆同. 赣东北铅锌矿床成矿系列与成矿机理[M]. 北京: 北京科学技术出版社, 1987. 1-114. [2] 郝正平. 江西银山多金属矿床的矿化分带[J]. 矿床地质, 1988, 7(3): 3-13. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ198803001.htm [3] 华仁民. 江西银山铜铅锌矿化机制的讨论[J]. 矿床地质, 1987, 6(2): 90-96. [4] 张德会. 银山矿床成矿作用时空特征及矿床成因讨论[J]. 矿床地质, 1997, 4: 298-307. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ704.001.htm [5] 张理刚. 江西银山(铜)铅锌银矿床水-岩体系氢氧同位素研究[J]. 地质学报, 1996, 1: 48-59. doi: 10.3321/j.issn:0001-5717.1996.01.001 [6] 中国有色金属工业总公司江西地质勘察局《江西银山铜铅锌金银矿床》编写组. 江西银山铜铅锌金银矿床[M]. 北京: 地质出版社, 1996. 1-380. [7] Qi L, Hu J, Gregoire D C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry[J]. Talanta, 2000, 51: 507-513. doi: 10.1016/S0039-9140(99)00318-5 [8] Campbell I H, Lesher C M, Coad P, et al. Rare-earth element mobility in alteration pipes below massive Cu-Zn-sulfide deposits[J]. Chem Geol, 1984, 45: 181-202. doi: 10.1016/0009-2541(84)90036-6 [9] Ague J J. Evidence for major mass transfer and volume strain during regional metamorphism of pelites[J]. Geology, 1991, 19: 855-858. [10] 刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M]. 北京: 科学出版社, 1984. 6-215. [11] Rossman G R, Wei's D, Wasserburg G J. Rb, Sr, Nd and Sm concentration in quartz[J]. Geochim Cosmochim Acta, 1987, 51: 2325-2329. doi: 10.1016/0016-7037(87)90286-9 [12] Norman D I, Kyle P R, Baron C. Analysis of trace elements including rare earth elements in fluid inclusion liquid[J]. Econ Geol, 1989, 84: 162-166. doi: 10.2113/gsecongeo.84.1.162 [13] 林德松, 何国朝. 江西银山矿床矿物包裹体研究[J]. 1993, 17(3): 50-58. [14] Bau M. Rare-earth elements mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium[J]. Chem Geol, 1990, 93: 219-230. [15] Lipin B R, Mckay G A. Geochemistry and mineralogy of rare earth elements[M]. Washington: Mineralogical Society of America, 1989. 201-225. [16] Whitford D J, Korsch M J, Porritt P M. Rare-earth element mobility around the volcanogenic polymetallic massive sulfide deposits at Que River, Tasmania, Australia [J]. Chem Geol, 1988, 68: 105-119. doi: 10.1016/0009-2541(88)90090-3 [17] Ganzeyev A A, Sotskav Y P, Lyapunov S M. Geochemical specialization of ore-bearing solutions in relation to rare-earth elements[J]. Geochem Int, 1984, 20: 160-164. [18] Arvanitidis N D, Richard D T. An evaluation of lanthanide geochemistry in ore petrology[J]. Miner Wealth, 1986, 46: 21-28.