NUMERICAL SOLUTION TO GEOTHERMAL FIELD MODEL OF OVERPRESSURE STRATUM AT NON-EPISODE MODE EXPULSION STAGE OF BASIN
-
摘要: 盆地超压层段的地热场模拟对超压成因研究及油气生成、排放机理分析有重要意义, 但求解超压层段的热传递方程的数值解法至今仍没有被很好地解决.问题的关键在于确定超压流体速度场.由于超压流体发生幕式突破之前的排出速率极低, 其速度场 v =vx i +vz k 近似满足条件∂vx/∂x+∂vz/∂z=0, 可以将其近似地视为稳定的不可压缩的无源流体, 利用这一条件及相应的边界压力条件, 可使整个计算过程得到简化.在此基础上所建立的地热场模型有限元数值解法和模拟软件, 能够实现对含油气盆地在幕式突破之前的超压层段地热场进行动态模拟.Abstract: The simulation of the geothermal field of overpressure stratum in a basin is a key to the research into the overpressure genesis and its effect on oil and gas generation and expulsion. However, the numerical solution to the thermal conduction equation of the overpressure stratum has not been proved very effectively. The key to this problem is determination of the speed field of the overpressure fluid. The expulsion speed of the overpressure fluid is extremely low before the episode-like expulsion of the overpressure fluid. In addition, the corresponding speed field: v =vx i +vz k satisfies the condition ∂vx/∂x+∂vz/∂z=0. In this sense, this speed field can be approximately regarded as stable incompressible source-free fluid. This condition and the corresponding boundary pressure condition are both employed to simplify the whole calculation process. Therefore, the finite element numerical solution of the geothermal field and the corresponding simulation software thus designed can be used to simulate dynamically the geothermal field of the overpressure stratum before the episode-like expulsion in the petroleum and gas basin.
-
[1] Jean du Rouchet. Stress fields: a key to oil migration[J]. AAPG Bulletin, 1981, 55(1): 74-85. [2] 胡济世. 异常高压、流体压裂与油气运移(上)[J]. 石油勘探与开发, 1989, 16(2, 3): 16-23. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK198902002.htm [3] 李明诚. 石油与天然气运移[M]. 第二版. 北京: 石油工业出版社, 1994. 62. [4] Law B E, Nuccio V F, Bar her C E. Kinky vitrinite reflectance well profiles: evidence of paleopore pressure in low-permeability, gas-bearing sequences in Rocky Mountain foreland basin[J]. AAPG Bulletin, 1989, 73: 999-1010. [5] Price L C, Wenger K M. The influence of pressure on petroleum generation and maturation as suggested by aqueous pyrolysis[J]. Org Geochem, 1992, 19: 141-159. doi: 10.1016/0146-6380(92)90033-T [6] Hao F, Li S T, Dong W L, et al. Abnormal organic-matter maturation in the Yinggegai basin, South China Sea: implications for hydrocarbon expulsion and fluid migration from overpressured systems[J]. Journal of Petroleum Geology, 1998, 21(4): 427-444. doi: 10.1111/j.1747-5457.1998.tb00794.x [7] Hermanrud C. Basin modeling techniques— an overview [A]. In: Dore A G, ed. Basin modeling: advances and applications[C]. Amsterdam: Elsevier, 1993.1-34. [8] Waples D W. Maturity modeling: thermal indicators, hydrocarbon generation, and oil cracking[A]. In: Magoon L B, Dow W G, eds. The petroleum system: from source to trap[C]. AAPG Memoir, 1994, 60: 285-306. [9] Powers M C. Fluid-release mechanisms in compacting marine mudrocks and their importance in oil exploration[J]. AAPG Bulletin, 1967, 51: 1240-1254. [10] Barker C. Aquathermal pressuring-role of temperature in development of abnormal-pressure zones[J]. AAPG Bulletin, 1972, 56: 2068-2071. [11] Vasseur G, Brigaud F, Demongodin L. Thermal conductivity estimation in sedimentary basins[A]. In: Balling N, Decker E R, eds. Heat flow and thermal regimes of continental lithosphere[C]. Amsterdam: Elsevier, 1995. 167-174. [12] Waples D W. Modeling of sedimentary basins and petroleum systems[A]. In: Magoon L B, Dow W G, eds. The petroleum system: from source to trap[C]. AAPG Memoir, 1994, 60: 307-322. [13] 杨起, 吴冲龙, 汤达祯, 等. 中国煤变质作用[M]. 北京: 煤炭工业出版社, 1996. 96-104. [14] 吴冲龙, 杨起, 刘刚, 等. 煤变质作用热动力学分析的原理与方法[J]. 煤炭学报, 1997, 22(3): 225-229. doi: 10.3321/j.issn:0253-9993.1997.03.001 [15] 吴冲龙, 李星, 刘刚, 等. 盆地地热场模拟的若干问题探讨[J]. 石油实验地质, 1999, 21(1): 1-6. doi: 10.3969/j.issn.1001-6112.1999.01.001 [16] 谢树艺. 矢量分析与场论[M]. 北京: 高等教育出版社, 1985. 42.
点击查看大图
计量
- 文章访问数: 3774
- HTML全文浏览量: 600
- PDF下载量: 18
- 被引次数: 0