Episodic Magmatism and Continental Reworking in the Yunkai Domain, South China
-
摘要: 云开地区是华南古老基底出露的关键地带,记录了华南多期次复杂的地壳再造过程.庞西垌地区位于云开地块的南西缘,区内出露古老基底残片的云开群石英云母片岩.本研究通过详细的野外地质、岩石学和年代学分析,获得该地区花岗片麻岩、片麻状花岗岩和块状黑云母花岗岩高精度锆石U-Pb年龄分别为~450 Ma、~440 Ma和~105 Ma,指示该区经历了加里东期和燕山期幕式岩浆作用.其中,早古生代花岗质岩石中存在多组锆石年龄(~470 Ma、~450~430 Ma和~390 Ma),暗示其经历了长期、多幕次的岩浆过程.此外,在锆石边部还获得了228~219 Ma(低Th/U=0.01~0.03)和101~99 Ma (高Th/U=0.30~0.78)的年龄组,是成岩后印支期变质流体和燕山期岩浆流体的改造印迹.研究区燕山期花岗岩(~770 ℃)较加里东期(~740~720 ℃)具有更高的锆石饱和温度,可能是由于地壳经过多次熔融后易熔组分消耗、成熟度较高,发生部分熔融所需的温度更高.它们的年龄谱图与华南古老基底一致,且具有S型花岗岩特征,是缺乏幔源物质加入的古老地壳重熔改造的产物.结合区域地质、年代学和地球化学资料,华南显生宙以来至少经历了加里东期(470~390 Ma)、印支期(~248~200 Ma)和燕山期(~180~90 Ma)的大陆地壳再造/变质‒岩浆流体改造过程.加里东期和印支期主要发生古老地壳物质的部分熔融,极少幔源岩浆参与;燕山期改造过程则主要是地幔热源和物质主导的地壳重熔和壳‒幔混合的结果.Abstract: The Yunkai domain is a key area where the ancient basement of the South China Block is exposed, and it records multi-stage, complex crustal reworking processes of the South China Block. The Pangxidong area is located in the southwestern margin of Yunkai, where the ancient basement fragments of the Yunkai group quartz mica schist are outcropped. In this study, detailed field geological, petrological and chronological analyses were conducted and the high-precision zircon U-Pb ages of granitic gneiss, gneissic granite and massive biotite granite in this area were obtained at ~450 Ma, ~440 Ma and ~105 Ma, respectively, indicating that this area has experienced episodic magmatism in the Caledonian and Yanshanian. There are several sets of ages (~470 Ma, ~450-430 Ma and ~390 Ma) found in the Early Paleozoic granitic rocks, suggesting that multiple episodes of magmatic processes may have occurred during the Caledonian. In addition, zircon ages of 228-219 Ma with low Th/U (0.01-0.03) and 101-99 Ma with high Th/U (0.30-0.78) were obtained in their dark rims, recording the overprints of the Indosinian metamorphic fluids and Yanshanian magmatic fluids. The zircon saturation temperature of the Yanshanian granite (~770 ℃) in the study area is higher than that of the Caledonian granite (~740-720 ℃), which may be due to the consumption of fusible components after multiple melting of the crust, and thus, higher temperatures are required for crustal partial melting. Their age spectrum of the granitoids is consistent with that of the ancient basement of South China, and they have the characteristics of S-type granite. These indicate the granitoids are mainly the products of ancient crustal remelting with insignificant mantle-derived material. Combined with regional geological, geochronological and geochemical data, the South China Block has at least experienced Caledonian (~470-390 Ma), Indosinian (~248-200 Ma) and Yanshanian (~180-90 Ma) crustal reconstruction/overprint of metamorphic and magmatic fluids since the Phanerozoic. The partial melting of ancient crustal materials mainly occurred in the Caledonian and Indosinian with few mantle-derived magma inputs, while the crustal melting in the Yanshanian was induced by adding mantle-derived heat with or without mantle materials input.
-
Key words:
- continental reworking /
- granite /
- zircon U-Pb geochronology /
- Caledonian /
- Yunkai domain /
- petrology /
- geochemistry
-
图 1 华南云开地块地质简图(改编自彭松柏等, 2006)
Fig. 1. Simplified geological map of the Yunkai domain, South China (revised after Peng et al., 2006)
图 2 庞西垌地区地质简图(据曾长育等, 2015修改)
Fig. 2. Simplified geological map of the Pangxidong area (modified after Zeng et al., 2015)
图 7 庞西垌花岗质岩石地球化学图解
a. SiO2-(K2O+Na2O)图解,底图据Middlemost(1994);b. A/CNK-A/NK图解,底图据Maniar and Piccoli(1989);c. SiO2-K2O图解,底图据Peccerillo and Taylor(1976);庞西垌数据来自曾长育等(2015)
Fig. 7. Geochemical diagrams for Pangxidong granitoids
图 8 源区判别图解
a. Molar CaO/(MgO+FeOt)-Molar Al2O3/(MgO+FeOt),据Lee et al. (2003);b. Molar CaO/(Na2O+K2O)-(Na2O+K2O+MgO+FeOt+TiO2),据Altherr and Siebel (2002);c. La-La/Sm;d. SiO2-TZr,其中TZr为锆石饱和温度,据Watson and Harrison (1983). 样品标记与图 7一致
Fig. 8. Source discrimination diagrams
图 10 样品稀土元素配分图解
底图据Sun and McDonough(1989);a.花岗片麻岩;b.片麻状花岗岩;b. 黑云母花岗岩
Fig. 10. REE patterns of samples
图 11 华夏地块锆石年龄谱系(a;Liu et al., 2022);本研究花岗质岩石锆石核‒边年龄(b);华夏地块新元古代以来岩浆记录(c;据Wang et al., 2013;虞鹏鹏等, 2017;王孝磊等, 2017;Yu et al., 2022a);云开地区容县二长花岗岩锆石定年结果直方图(d;Yu et al., 2022b);武夷‒云开造山带早古生代花岗岩形成年龄(e;Yu et al., 2022b);华南印支‒燕山期花岗质岩石锆石年龄(f;Wang et al., 2013)
Fig. 11. Zircon age spectrum of Cathaysia Block (a; Liu et al., 2022); ages of zircon cores and rims of the granitoids in this study (b); magmatic records in Cathaysia Block since Neoproterozoic (c; Wang et al., 2013, 2017; Yu et al., 2017, 2022a); zircon ages histogram plot for the monzogranite in Rongxian, Yunkai domain (d; Yu et al., 2022b); formation ages of Early Paleozoic granitoids in the Wuyi-Yunkai Orogen (e; Yu et al., 2022b); zircon ages of the Indosinian-Yanshanian granitoids in South China (f; Wang et al., 2013)
表 1 庞西垌地区花岗质岩石锆石年龄结果
Table 1. Dating summary of the granitoid rocks in the Pangxidong area
样品编号 继承锆石年龄 岩浆锆石年龄 改造年龄 HHY-B1 1 422 Ma, 858 Ma, 770 Ma 450±9 Ma, n=15, MSWD=1.9 302 Ma AOT-B2 2 151 Ma, 700 Ma 440±9 Ma, n=14, MSWD=1.7 219 Ma, 228 Ma, 101 Ma, 99 Ma D009-B1 446~440 Ma, 323 Ma, 216 Ma 105±5 Ma, n=6, MSWD=2.0 AOT-B3 1 005 Ma, 797 Ma, 455~426 Ma 105±2 Ma, n=11, MSWD=1.3 -
Altherr, R., Siebel, W., 2002. I-Type Plutonism in a Continental Back-Arc Setting: Miocene Granitoids and Monzonites from the Central Aegean Sea, Greece. Contributions to Mineralogy and Petrology, 143(4): 397-415. https://doi.org/10.1007/s00410-002-0352-y Bai, J. H., Ling, M. X., Yang, X. Y., et al., 2022. Yangshan A-Type Granites in the Lower Yangtze River Belt Formed by Ridge Subduction: Radiogenic Ca and Nd Isotopic Constraints. Journal of Earth Science, 33(3): 581-590. https://doi.org/10.1007/s12583-021-1588-7 Bailie, R., Leetz, A., 2021. A Comparison between the ~1.08-1.13 Ga Volcano-Sedimentary Koras Group and Plutonic Keimoes Suite: Insights into the Post- Collisional Tectono-Magmatic Evolution of the Eastern Namaqua Metamorphic Province, South Africa. Journal of Earth Science, 32(6): 1300-1331. https://doi.org/10.1007/s12583-021-1462-7 Buick, I. S., Storkey, A., Williams, I. S., 2008. Timing Relationships between Pegmatite Emplacement, Metamorphism and Deformation during the Intra-Plate Alice Springs Orogeny, Central Australia. Journal of Metamorphic Geology, 26(9): 915-936. https://doi.org/10.1111/j.1525-1314.2008.00794.x Cao, R., Ma, X. H., Bagas, L., et al., 2021. Late Jurassic Intracontinental Extension and Related Mineralisation in Southwestern Fujian Province of SE China: Insight from Deformation and Syn-Tectonic Granites. Journal of Earth Science, 32(1): 158-173. https://doi.org/10.1007/s12583-020-1387-6 Cawood, P. A., Kröner, A., Collins, W. J., et al., 2009. Accretionary Orogens through Earth History. Geological Society, London, Special Publications, 318(1): 1-36. https://doi.org/10.1144/sp318.1 Ding, R. X., Yu, P. P., Hu, G. M., et al., 2018. Thermochronology of Pangxidong Fault Zone in Southern Section of Qin-Hang Metallogenic Belt. Earth Science, 43(6): 1830-1838 (in Chinese with English abstract). Hu, X. M., Huang, Z. C., Wang, J. G., et al., 2012. Geology of the Fuding Inlier in Southeastern China: Implication for Late Paleozoic Cathaysian Paleogeography. Gondwana Research, 22(2): 507-518. https://doi.org/10.1016/j.gr.2011.09.016 Huang, X., Zheng, Y., Yu, P. P., et al., 2021. Mass Transfer during Alteration and Ore-Forming Geological Process of the Pangxidong-Jinshan Ag-Au Ore-Field in the Yunkai Area. Geochimica, 50(4): 365-380 (in Chinese with English abstract). Jian, P., 1991. Study on Isotopic Geological Age of Hybrid Rocks and Granites in the Southwest of Yunkai Uplift. Guangdong Geology, 6(2): 58-68 (in Chinese). Jiang, S. Y., Zhao, K. D., Jiang, Y. H., et al., 2008. Characteristics and Genesis of Mesozoic A-Type Granites and Associated Mineral Deposits in the Southern Hunan and Northern Guangxi Provinces along the Shi-Hang Belt, South China. Geological Journal of China Universities, 14(4): 496-509 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2008.04.004 Lee, S. Y., Barnes, C. G., Snoke, A. W., et al., 2003. Petrogenesis of Mesozoic, Peraluminous Granites in the Lamoille Canyon Area, Ruby Mountains, Nevada, USA. Journal of Petrology, 44(4): 713-732. https://doi.org/10.1093/petrology/44.4.713 Liu, E. T., Chen, S., Yan, D. T., et al., 2022. Detrital Zircon Geochronology and Heavy Mineral Composition Constraints on Provenance Evolution in the Western Pearl River Mouth Basin, Northern South China Sea: A Source to Sink Approach. Marine and Petroleum Geology, 145: 105884. https://doi.org/10.1016/j.marpetgeo.2022.105884 Liu, J., Zhang, J. A., Yin, C. Q., et al., 2021. Newly Identified Jurassic-Cretaceous Migmatites in the Liaodong Peninsula: Unravelling a Mesozoic Anatectic Event Related to the Lithospheric Thinning of the North China Craton. Geological Magazine, 158(3): 425-441. https://doi.org/10.1017/s0016756820000552 Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434-010-3052-4 Long, W. G., Xu, D. M., Wang, L., et al., 2012. Formation Age of Hypometamorphic Rocks in Basement of Yunkai Area, South China. Geology and Mineral Resources of South China, 28(4): 290-297 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-3701.2012.04.002 Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635: tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2 Mao, J. W., Chen, M. H., Yuan, S. D., et al., 2011. Geological Characteristics of the Qinhang (or Shihang) Metallogenic Belt in South China and Spatial-Temporal Distribution Regularity of Mineral Deposits. Acta Geologica Sinica, 85(5): 636-658 (in Chinese with English abstract). Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9 Ni, P., Wang, G. G., 2017. Multiple Episodes of Cu-Au Mineralization in the Northeastern Section of the Qin-Hang Metallogenic Belt Induced by Reworking of Continental Crust. Acta Petrologica Sinica, 33(11): 3373-3394 (in Chinese with English abstract). Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/BF00384745 Peng, S. B., Jin, Z. M., Liu, Y. H., et al., 2006. Petrochemistry, Chronology and Tectonic Setting of Strong Peraluminous Anatectic Oanitoids in Yunkai Orogenic Belt, Western Guangdong Province, China. Earth Science, 31(1): 110-120 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2006.01.014 Quelhas, P., Mata, J., Dias, Á. A., 2021. Magmatic Evolution of Garnet-Bearing Highly Fractionated Granitic Rocks from Macao, Southeast China: Implications for Granite-Related Mineralization Processes. Journal of Earth Science, 32(6): 1454-1471. https://doi.org/10.1007/s12583-020-1389-4 Shu, X. J., Wang, X. L., Sun, T., et al., 2013. Crustal Formation in the Nanling Range, South China Block: Hf Isotope Evidence of Zircons from Phanerozoic Granitoids. Journal of Asian Earth Sciences, 74: 210-224. https://doi.org/10.1016/j.jseaes.2013.01.016 Sillitoe, R. H., Creaser, R. A., Kern, R. R., et al., 2014. Squaw Peak, Arizona: Paleoproterozoic Precursor to the Laramide Porphyry Copper Province. Economic Geology, 109(5): 1171-1177. https://doi.org/10.2113/econgeo.109.5.1171 Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 Sun, W. D., Zhang, L. P., 2022. Preface: Pacific Plate Subduction and the Yanshanian Movement in Eastern China. Journal of Earth Science, 33(3): 541-543. https://doi.org/10.1007/s12583-022-1311-3 Wang, C. Y., Alard, O., Lai, Y. J., et al., 2022. Advances in In-Situ Rb-Sr Dating Using LA-ICP-MS/MS: Applications to Igneous Rocks of all Ages and to the Identification of Unrecognized Metamorphic Events. Chemical Geology, 610: 121073. https://doi.org/10.1016/j.chemgeo.2022.121073 Wang, X. L., Zhou, J. C., Chen, X., et al., 2017. Formation and Evolution of the Jiangnan Orogen. Bulletin of Mineralogy, Petrology and Geochemistry, 36(5): 714-735 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-2802.2017.05.003 Wang, Y. J., Fan, W. M., Zhang, G. W., et al., 2013. Phanerozoic Tectonics of the South China Block: Key Observations and Controversies. Gondwana Research, 23(4): 1273-1305. https://doi.org/10.1016/j.gr.2012.02.019 Wark, D. A., Miller, C. F., 1993. Accessory Mineral Behavior during Differentiation of a Granite Suite: Monazite, Xenotime and Zircon in the Sweetwater Wash Pluton, Southeastern California, U. S. A. Chemical Geology, 110(1-3): 49-67. https://doi.org/10.1016/0009-2541(93)90247-G Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012-821X(83)90211-X Yang, J. W., 1998. Application of Binary Mixing Model in the Studies on the Gensis and Material Sources of Tangpeng Granite in Lianjiang County, Guangdong Province. Jiangsu Geology, 22(3): 176-181 (in Chinese). Yu, J. H., Liu, Q., Hu, X. M., et al., 2012. New Discovery of Late Paleozoic Magmatism in South China: Island Arc or Intracontinental Orogeny? Chinese Science Bulletin, 57(31): 2964-2971 (in Chinese). doi: 10.1360/csb2012-57-31-2964 Yu, J. H., O'Reilly, Y. S., Wang, L. J., et al., 2007. Discovery of Ancient Materials in Cathaysian Block and Formation of Precambrian Crust. Chinese Science Bulletin, 52(1): 11-18 (in Chinese). doi: 10.1360/csb2007-52-1-11 Yu, P. P., Weinberg, R. F., Zheng, Y., et al., 2022a. Multiple Crustal Melting Pulses and Hf Systematics in Zircons. Lithos, 410-411: 106583. https://doi.org/10.1016/j.lithos.2021.106583 Yu, P. P., Zheng, Y., Cawood, P. A., et al., 2022b. Setting and Formation of the Earliest Neoproterozoic Rifted Arc Pingshui VMS Deposit, South China. Precambrian Research, 369: 106548. https://doi.org/10.1016/j.precamres.2021.106548 Yu, P. P., Zhang, Y. Z., Zhou, Y. Z., et al., 2019a. Melt Evolution of Crustal Anatexis Recorded by the Early Paleozoic Baiyunshan Migmatite-Granite Suite in South China. Lithos, 332-333: 83-98. https://doi.org/10.1016/j.lithos.2019.02.020 Yu, P. P., Zheng, Y., Zhou, Y. Z., et al., 2018. Zircon U-Pb Geochronology and Geochemistry of the Metabasite and Gabbro: Implications for the Neoproterozoic and Paleozoic Tectonic Settings of the Qinzhou Bay-Hangzhou Bay Suture Zone, South China. Geological Journal, 53(5): 2219-2239. https://doi.org/10.1002/gj.3060 Yu, P. P., Zhou, Y. Z., Chen, X. Y., et al., 2014. Comprehensive Geochemical and Geophysical Anomalies and Ore-Prospecting Potential of the South Section of the Qin-Hang Metallogenic Belt, Tangpeng-Changshan Area, West Guangdong Province, China. Bulletin of Mineralogy, Petrology and Geochemistry, 33(3): 366-376 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-2802.2014.03.011 Yu, P. P., Zhou, Y. Z., Zheng, Y., et al., 2017. Neoproterozoic Subduction of the South Section of Qin-Hang Orogenic Junction Belt: Evidence from the Geochronology and Geochemistry for the Metabasite in Guizi Mélange, Western Guangdong Province, South China. Acta Petrologica Sinica, 33(3): 739-752 (in Chinese with English abstract). Yu, S. Y., Li, S. Z., Zhang, J. X., et al., 2019b. Multistage Anatexis during Tectonic Evolution from Oceanic Subduction to Continental Collision: A Review of the North Qaidam UHP Belt, NW China. Earth-Science Reviews, 191: 190-211. https://doi.org/10.1016/j.earscirev.2019.02.016 Zeng, C. Y., Ding, R. X., Li, H. Z., et al., 2015. Analysis of X-Ray Fluorescence Spectroscopy and Plasma Mass Spectrometry of Pangxidong Composite Granitoid Pluton and Its Implications for Magmatic Differentiation. Spectroscopy and Spectral Analysis, 35(11): 3187-3191 (in Chinese with English abstract). Zhou, X. M., 2003. My Thinking about Granite Geneses of South China. Geological Journal of China Universities, 9(4): 556-565 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2003.04.009 Zhou, Y. Z., Li, X. Y., Zheng, Y., et al., 2017. Geological Settings and Metallogenesis of Qinzhou Bay-Hangzhou Bay Orogenic Juncture Belt, South China. Acta Petrologica Sinica, 33(3): 667-681 (in Chinese with English abstract). Zhou, Y. Z., Zeng, C. Y., Li, H. Z., et al., 2012. Geological Evolution and Ore-Prospecting Targets in Southern Segment of Qinzhou Bay-Hangzhou Bay Juncture Orogenic Belt, Southern China. Geological Bulletin of China, 31(S1): 486-491 (in Chinese with English abstract). 丁汝鑫, 虞鹏鹏, 胡光明, 等, 2018. 钦‒杭成矿带南段庞西垌断裂带热年代学证据. 地球科学, 43(6): 1830-1838. doi: 10.3799/dqkx.2018.609 黄玺, 郑义, 虞鹏鹏, 等, 2021. 云开地区庞西垌‒金山银金矿田元素迁移特征及成矿地质过程. 地球化学, 50(4): 365-380. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX202104004.htm 简平, 1991. 云开隆起西南端混合岩, 花岗岩同位素地质年代研究. 广东地质, 6(2): 58-68. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201506025.htm 蒋少涌, 赵葵东, 姜耀辉, 等, 2008. 十杭带湘南‒桂北段中生代A型花岗岩带成岩成矿特征及成因讨论. 高校地质学报, 14(4): 496-509. doi: 10.3969/j.issn.1006-7493.2008.04.004 龙文国, 徐德明, 王磊, 等, 2012. 两广云开地区基底深变质岩的形成时代. 华南地质与矿产, 28(4): 290-297. doi: 10.3969/j.issn.1007-3701.2012.04.002 毛景文, 陈懋弘, 袁顺达, 等, 2011. 华南地区钦杭成矿带地质特征和矿床时空分布规律. 地质学报, 85(5): 636-658. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201105006.htm 倪培, 王国光, 2017. 大陆再造与钦杭带北东段多期铜金成矿作用. 岩石学报, 33(11): 3373-3394. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201711003.htm 彭松柏, 金振民, 刘云华, 等, 2006. 云开造山带强过铝深熔花岗岩地球化学、年代学及构造背景. 地球科学, 31(1): 110-120. http://www.earth-science.net/article/id/1543 王孝磊, 周金城, 陈昕, 等, 2017. 江南造山带的形成与演化. 矿物岩石地球化学通报, 36(5): 714-735. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201705004.htm 杨建文, 1998. 二元混合模型在广东塘蓬花岗岩成因和物质来源研究中的应用. 江苏地质, 22(3): 176-181. https://www.cnki.com.cn/Article/CJFDTOTAL-JSDZ803.026.htm 于津海, 刘潜, 胡修棉, 等, 2012. 华南晚古生代岩浆活动的新发现: 岛弧还是陆内造山? 科学通报, 57(31): 2964-2971. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201231011.htm 于津海, O'Reilly, Y. S., 王丽娟, 等, 2007. 华夏地块古老物质的发现和前寒武纪地壳的形成. 科学通报, 52(1): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200701001.htm 虞鹏鹏, 周永章, 陈宣谕, 等, 2014. 钦‒杭成矿带(南段)粤西塘蓬: 长山地化地物综合异常及其找矿远景分析. 矿物岩石地球化学通报, 33(3): 366-376. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201403012.htm 虞鹏鹏, 周永章, 郑义, 等, 2017. 钦‒杭结合带南段新元古代俯冲作用: 来自粤西贵子混杂岩变基性岩年代学和地球化学的证据. 岩石学报, 33(3): 739-752. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201703006.htm 曾长育, 丁汝鑫, 李红中, 等, 2015. 庞西垌花岗质复式岩体X射线荧光光谱、等离子体质谱分析及其对岩浆分异的指示意义. 光谱学与光谱分析, 35(11): 3187-3191. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201511053.htm 周新民, 2003. 对华南花岗岩研究的若干思考. 高校地质学报, 9(4): 556-565. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200304008.htm 周永章, 李兴远, 郑义, 等, 2017. 钦杭结合带成矿地质背景及成矿规律. 岩石学报, 33(3): 667-681. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201703001.htm 周永章, 曾长育, 李红中, 等, 2012. 钦州湾‒杭州湾构造结合带(南段)地质演化和找矿方向. 地质通报, 31(S1): 486-491. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2012Z1034.htm -
dqkxzx-48-9-3205-附表.docx
-