Petrogenesis of Suyunhe Super Large Porphyry Mo Deposit in Western Junggar, Xinjiang, and Implications for Regional Tectonic Evolution
-
摘要: 苏云河钼矿是中亚造山带内西准噶尔地区的超大型斑岩型钼矿床,赋矿岩体为侵入至中泥盆统巴尔鲁克组火山碎屑岩的二长花岗斑岩和花岗斑岩.围绕苏云河钼矿含矿岩体开展了详细的岩石学、地球化学、同位素与年代学研究,发现:(1)苏云河二长花岗斑岩、花岗斑岩与花岗闪长斑岩的形成时代为294~302 Ma,矿区斑岩的形成与后续矿化可能是连续的岩浆-热液演化过程;(2)苏云河二长花岗斑岩、花岗斑岩与花岗闪长斑岩可能是同源岩浆不同程度结晶分异的结果,主微量元素均显示出相关性耦合变化,且具有一致的Sr-Nd-Hf同位素组成;(3)矿区岩体富集Rb、U、Th、Nd和Hf,亏损Ba、Nb、Ti和P,显示出后碰撞花岗岩的地球化学特征;(4)较高的Sr含量(平均为202.41×10-6)与Sr/Y比值(平均为14.97)、中等的ɛNd(t)值(+3.8~+6.0),以及较高的锆石ɛHf(t)值(+9.7~+15.6)指示苏云河矿区岩体岩浆主要源于新生幔源物质与少量古老地壳物质的熔融混合.
-
关键词:
- 苏云河斑岩Mo矿 /
- Sr-Nd-Hf同位素 /
- SIMS锆石U-Pb年龄 /
- 构造演化 /
- 巴尔鲁克 /
- 构造地质学
Abstract: The Suyunhe molybdenum deposit is a super large porphyry deposit located in the western Junggar region within the Central Asian Orogenic Belt. The mineralized rocks are monzogranite porphyry and granodiorite porphyry that intruded into the volcaniclastic rock of the Devonian Barluk Formation. In this paper, it reports a detailed study on the petrography, elemental and isotope geochemistry, and geochronology of mineralized rocks from the Suyunhe molybdenum deposit. The results reveal follows. (1) The monzogranite porphyry, granite porphyry, and granodiorite porphyry formed between 294 and 302 Ma as a result of prolonged magmatic-hydrothermal evolution that resulted in mineralization. (2) The monzogranite porphyry, granite porphyry, and granodiorite porphyry are thought to have originated from a common magma source, undergoing varying degrees of crystallization differentiation. This is evidenced by the correlated variations in their major and trace element contents, as well as their uniform Sr-Nd-Hf isotopic signatures. (3) These granitoids are enriched in Rb, U, Th, Nd, and Hf and depleted in Ba, Nb, Ti, and P, exhibiting geochemical characteristics of granites in a post-collisional setting. (4) Elevated Sr content (averaging 202.41×10-6) along with a high Sr/Y ratio (averaging 14.97), moderate εNd(t) values (+3.8 to +6.0), and high zircon εHf(t) values (+9.7 to +15.6) suggest that the magma from the Suyunhe mineral district primarily originated from the melting and mixing of juvenile mantle materials with a minor proportion of ancient crustal materials. -
图 1 西准噶尔地区构造位置(a)与构造单元图(b)
图a据张连昌等(2022),Wu et al(.2023);图b据Wu et al(.2018),Cao et al(.2020)修改. BMTD. 巴尔鲁克-玛依勒-唐巴勒-达拉布特
Fig. 1. Location (a) and tectonic units (b) of the western Junggar
图 4 苏云河Mo矿二长花岗斑岩(a~b)、花岗斑岩(c~d)、霏细岩(e~f)、花岗闪长斑岩(g~h)、闪长岩(i~j)和闪长玢岩(k~l)手标本及镜下照片
Ab. 钠长石;Bt. 黑云母;Hbl. 角闪石;Kfs. 钾长石;Pl. 斜长石;Qz. 石英
Fig. 4. Representative photomicrographs of monzonitic granite porphyry (a-b), granite porphyry (c-d), felsite (e-f), granodiorite porphyry (g-h), diorite (i-j) and porphyritic diorite (k-l)
图 6 苏云河钼矿主要岩体TAS图解(a)和Q-A-P分类图解(b); 苏云河钼矿区侵入岩SiO2-K2O图解(c)及A/CNK-A/NK图解(d)
图a据Le Bas et al.(1986),1989;图c据Middlemost(1985);图d据Maniar and Piccoli(1989)
Fig. 6. TAS diagram (a) and Q (quartz)-A (albite)-P (plagioclase) classification diagram (b) of intrusive rocks from the Suyunhe Mo deposit. SiO2 vs. K2O diagram (c) and A/CNK vs. A/NK diagram (d) of granitoids from the Suyunhe Mo deposit
图 7 苏云河钼矿岩体微量元素原始地幔标准化蛛网图(a)与稀土元素配分模式图(b)
图a据Sun and McDonough(1989);图b据Boynton(1984)
Fig. 7. The primary mantle-normalized incompatible trace element patterns (a) and chondrite-normalized REE patterns (b) of granitoids from the Suyunhe Mo deposit
图 10 苏云河钼矿岩体年龄-εNd (t)关系图解
亏损地幔线据Goldstein et al.(1984);北疆地区洋壳数据韩宝福等(1999);古-中元古代陆壳Nd同位素演化线据Hu et al.(2000)
Fig. 10. The εNd(t) vs. age diagram of granitoids in the Suyunhe Mo deposit
图 11 苏云河钼矿区岩体锆石206Pb/238U年龄-εHf(t)图(a),锆石εHf(t)值(b)和TDM2(Hf)年龄(c)分布直方图
图a中DM演化线据Bodet and Scharer(2000),准噶尔地区花岗岩同位素数据据Geng et al.(2009)和唐红峰等(2008)
Fig. 11. Zircon 206Pb/238U age vs. εHf(t) diagram (a) of granitoids from the Suyunhe Mo deposit; statistical histograms of zircon εHf(t) values (b) and TDM2(Hf) ages (c)
图 13 苏云河钼矿岩体10 000Ga/Al-(Na2O+K2O)/CaO图解(a),SiO2-Zr图解(b),侵入岩R1-R2图解(c)及Nb-Y-3Ga图解(d)
图a据Whalen et al.(1987);图b据Collins et al.(1982);图c据Batchelor and Bowden(1985);图d据
Eby(1992) . R1=4Si-11(Na+K)-2(Fe+Ti);R2=6Ca+2Mg+A. ①地幔斜长花岗岩;②破坏性活动板块边缘(板块碰撞前)花岗岩;③板块碰撞后隆起期花岗岩;④晚造山期花岗岩;⑤非造山区A型花岗岩;⑥同碰撞(S型)花岗岩;⑦造山期后A型花岗岩. A1. 非造山的A型花岗岩;A2. 造山后A型花岗岩Fig. 13. 10 000Ga/Al vs. (Na2O+K2O)/CaO diagram (a), SiO2 vs. Zr diagram (b), R1 vs. R2 diagram (c), and Nb vs. Y vs. 3Ga diagram (d) for granitoids from the Suyunhe Mo deposit
图 14 苏云河钼矿岩体Rb-(Yb+Ta)图解(a)与Rb/30-Hf-3Ta图解(b)
图a据Pearce(1996);图b据
Harris et al.(1986) Fig. 14. Yb+Ta vs. Rb diagram (a) and Rb/30-Hf-3Ta diagram (b) for granitoids from the Suyunhe Mo deposit
图 15 西准噶尔花岗岩类锆石U-Pb年龄的直方图(a)以及西准噶尔西北部古生代巴尔鲁克陆缘弧的形成及构造演化模式示意简图(b~c)
数据来源于:Kwon et al.(1989);刘志强等(2005);陈晔等(2006);高山林等(2006);韩宝福等(2006);苏玉平等(2006);范裕等(2007);Zhou et al.(2008);Geng et al.(2009,2011);康磊等(2009);Chen et al.(2010);陈家富等(2010);Shen et al.(2010,2013);Tang et al.(2010,2012);冯乾文等(2012);Xu et al.(2012);Li et al.( 2014);杨猛等(2015);钟世华等(2015a);吕串等(2023)
Fig. 15. Histogram of zircon U-Pb ages of granitic rocks in West Junggar (a) and formation and tectonic evolution model of Paleozoic Barluk continental arc (b-c) in the West Junggar
-
Batchelor, R. A., Bowden, P., 1985. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48(1-4): 43-55. https://doi.org/10.1016/0009-2541(85)90034-8 Bodet, F., Schärer, U., 2000. Evolution of the SE-Asian Continent from U-Pb and Hf Isotopes in Single Grains of Zircon and Baddeleyite from Large Rivers. Geochimica et Cosmochimica Acta, 64(12): 2067-2091. https://doi.org/10.1016/S0016-7037(00)00352-5 Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson., ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63-114. https://doi.org/10.1016/b978-0-444-42148-7.50008-3 Cai, J. H., Yan, G. H., Mu, B. L., et al., 2005. Zircon U-Pb Age, Sr-Nd-Pb Isotopic Compositions and Trace Element of Fangshan Complex in Beijing and Their Petrogenesis Significance. Acta Petrologica Sinica, 21(3): 776-788(in Chinese with English abstract). Cao, C., Shen, P., Pan, H. D., et al., 2020. The Formation Mechanism of Reduced Porphyry Mo Deposits in the West Junggar Region, Xinjiang: The Suyunhe Example. Ore Geology Reviews, 117: 103286. https://doi.org/10.1016/j.oregeorev.2019.103286 Chen, B., Arakawa, Y., 2005. Elemental and Nd-Sr Isotopic Geochemistry of Granitoids from the West Junggar Foldbelt (NW China), with Implications for Phanerozoic Continental Growth. Geochimica et Cosmochimica Acta, 69(5): 1307-1320. https://doi.org/10.1016/j.gca.2004.09.019 Chen, B., Jahn, B. M., 2004. Genesis of Post-Collisional Granitoids and Basement Nature of the Junggar Terrane, NW China: Nd-Sr Isotope and Trace Element Evidence. Journal of Asian Earth Sciences, 23(5): 691-703. https://doi.org/10.1016/S1367-9120(03)00118-4 Chen, J. F., Han, B. F., Ji, J. Q., et al., 2010. Zircon U-Pb Ages and Tectonic Implications of Paleozoic Plutons in Northern West Junggar, North Xinjiang, China. Lithos, 115(1-4): 137-152. https://doi.org/10.1016/j.lithos.2009.11.014 Chen, J. F., Han, B. F., Zhang, L., 2010. Geochemistry, Sr-Nd Isotopes and Tectonic Implications of Two Generations of Late Paleozoic Plutons in Northern West Junggar, Northwest China. Acta Petrologica Sinica, 26(8): 2317-2335(in Chinese with English abstract). Chen, X. H., Seitmuratova, E., Wang, Z. H., et al., 2014. SHRIMP U-Pb and Ar-Ar Geochronology of Major Porphyry and Skarn Cu Deposits in the Balkhash Metallogenic Belt, Central Asia, and Geological Implications. Journal of Asian Earth Sciences, 79: 723-740. https://doi.org/10.1016/j.jseaes.2013.06.011 Chen, Y., Sun, M. X., Zhang, X. L., 2006. SHRIMP U-Pb Dating of Zircons from Quartz Diorite at the Southeast Side of the Ba'erluke Fault, Western Junggar, Xinjiang, China. Geological Bulletin of China, 25(8): 992-994(in Chinese with English abstract). Collins, W. J., Beams, S. D., White, A. J. R., et al., 1982. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200. https://doi.org/10.1007/BF00374895 Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347: 662-665. https://doi.org/10.1038/347662a0 Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641. https://doi.org/10.1130/0091-7613(1992)0200641: csotat>2.3.co;2 doi: 10.1130/0091-7613(1992)0200641:csotat>2.3.co;2 Fan, Y., Zhou, T. F., Yuan, F., et al., 2007. LA-ICP MS Zircon Age of Tasite Pluton in Sawuer Region of West Junggar, Xinjiang. Acta Petrologica Sinica, 23(8): 1901-1908(in Chinese with English abstract). Feng, Q. W., Li, J. Y., Liu, J. F., et al., 2012. Ages and Geological Significance of the Dark Dykes Emplaced in the Karamay Pluton and Adjacent Area, in Western Junggar, Xinjiang, NW China: Evidence Form LA-ICP-MS Zircon Chronology and Ar-Ar Amphibole Chronology. Acta Petrologica Sinica, 28(7): 2158-2170(in Chinese with English abstract). Gao, J., Klemd, R., Zhu, M. T., et al., 2018. Large-Scale Porphyry-Type Mineralization in the Central Asian Metallogenic Domain: A Review. Journal of Asian Earth Sciences, 165: 7-36. https://doi.org/10.1016/j.jseaes.2017.10.002 Gao, S. L., He, Z. L., Zhou, Z. Y., 2006. Geochemical Characteristics of the Karamay Granitoids and Their Significance in West Junggar, Xinjiang. Xinjiang Geology, 24(2): 125-130(in Chinese with English abstract). Geng, H. Y., Sun, M., Yuan, C., et al., 2009. Geochemical, Sr-Nd and Zircon U-Pb-Hf Isotopic Studies of Late Carboniferous Magmatism in the West Junggar, Xinjiang: Implications for Ridge Subduction? Chemical Geology, 266(3-4): 364-389. https://doi.org/10.1016/j.chemgeo.2009.07.001 Geng, H. Y., Sun, M., Yuan, C., et al., 2011. Geochemical and Geochronological Study of Early Carboniferous Volcanic Rocks from the West Junggar: Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 42(5): 854-866. https://doi.org/10.1016/j.jseaes.2011.01.006 Goldstein, S. L., O'Nions, R. K., Hamilton, P. J., 1984. A Sm-Nd Isotopic Study of Atmospheric Dusts and Particulates from Major River Systems. Earth and Planetary Science Letters, 70(2): 221-236. https://doi.org/10.1016/0012-821X(84)90007-4 Goolaerts, A., Mattielli, N., de Jong, J., et al., 2004. Hf and Lu Isotopic Reference Values for the Zircon Standard 91500 by MC-ICP-MS. Chemical Geology, 206(1-2): 1-9. https://doi.org/10.1016/j.chemgeo.2004.01.008 Han, B. F., 2007. Diverse Post-Collisional Granitoids and Their Tectonic Setting Discrimination. Earth Science Frontiers, 14(3): 64-72(in Chinese with English abstract). Han, B. F., He, G. Q., Wang, S. G., 1999. Post-Collision Mantle-Derived Magmatism, Bedding and the Nature of Basement in Junggar Basin. Scientia Sinica (Terrae), 29(1): 16-21(in Chinese). Han, B. F., Ji, J. Q., Song, B., et al., 2006. Late Paleozoic Vertical Growth of Continental Crust around the Junggar Basin, Xinjiang, China (PartⅠ): Timing of Post-Collisionai Plutonism. Acta Petrologica Sinica, 22(5): 1077-1086(in Chinese with English abstract). Harris, N. B. W., Pearce, J. A., Tindle, A. G., 1986. Geochemical Characteristics of Collision-Zone Magmatism. Geological Society, London, Special Publications, 19(1): 67-81. https://doi.org/10.1144/gsl.sp.1986.019.01.04 Hou, Z. Q., 2004. Porphyry Cu-Mo-Au Deposits: Some New Insights and Advances. Earth Science Frontiers, 11(1): 131-144(in Chinese with English abstract). Hu, A. Q., Jahn, B. M., Zhang, G. X., et al., 2000. Crustal Evolution and Phanerozoic Crustal Growth in Northern Xinjiang: Nd Isotopic Evidence. Part I. Isotopic Characterization of Basement Rocks. Tectonophysics, 328(1-2): 15-51. https://doi.org/10.1016/S0040-1951(00)00176-1 Jian, P., Liu, D. Y., Shi, Y. R., et al., 2005. SHRIMP Dating of SSZ Ophiolites from Northern Xinjiang Province, China: Implications for Generation of Oceanic Crust in the Central Asian Orogenic Belt. In: Sklyarov, E. V., ed., Structural and Tectonic Correlation across the Central Asia Orogenic Collage: North-Eastern Segment. Guidebook and Abstract Volume of the Siberian Workshop IGCP-480. IEC SB RAS, Irkutsk, 246-251. Jiang, N., Zhang, S. Q., Zhou, W. G., et al., 2009. Origin of a Mesozoic Granite with A-Type Characteristics from the North China Craton: Highly Fractionated from I-Type Magmas? Contributions to Mineralogy and Petrology, 158(1): 113-130. https://doi.org/10.1007/s00410-008-0373-2 Jiang, Z. X., He, Y., Qu, L. H., et al., 2022. Gravity Anomalies of Ore-Bearing Rock Masses in the Suyunhe Molybdenum Deposit of West Junggar, Xinjiang and Their Geological Significance. Geology and Exploration, 58(5): 965-974(in Chinese with English abstract). Kang, L., Li, Y. J., Zhang, B., et al., 2009. Petrographic Evidence for Magma Mixing of Xiaerpu Granite in West Junggar, Xinjiang. Acta Petrologica et Mineralogica, 28(5): 423-432(in Chinese with English abstract). Kwon, S. T., Tilton, G. R., Coleman, R. G., et al., 1989. Isotopic Studies Bearing on the Tectonics of the West Junggar Region, Xinjiang, China. Tectonics, 8(4): 719-727. https://doi.org/10.1029/tc008i004p00719 Le Bas, M. J., Le Maitre, R. W., Streckeisen, A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27(3): 745-750. https://doi.org/10.1093/petrology/27.3.745 Li, C. F., Li, X. H., Li, Q. L., et al., 2012a. Rapid and Precise Determination of Sr and Nd Isotopic Ratios in Geological Samples from the Same Filament Loading by Thermal Ionization Mass Spectrometry Employing a Single-Step Separation Scheme. Analytica Chimica Acta, 727: 54-60. https://doi.org/10.1016/j.aca.2012.03.040 Li, C. F., Li, X. H., Li, Q. L., et al., 2012b. Simultaneous Determination of 143Nd/144Nd and 147Sm/144Nd Ratios and Sm-Nd Contents from the Same Filament Loaded with Purified Sm-Nd Aliquot from Geological Samples by Isotope Dilution Thermal Ionization Mass Spectrometry. Analytical Chemistry, 84(14): 6040-6047. https://doi.org/10.1021/ac300786x Li, G. M., Cao, M. J., Qin, K. Z., et al., 2014. Thermal-Tectonic History of the Baogutu Porphyry Cu Deposit, West Junggar as Constrained from Zircon U-Pb, Biotite Ar/Ar and Zircon/Apatite (U-Th)/He Dating. Journal of Asian Earth Sciences, 79: 741-758. https://doi.org/10.1016/j.jseaes.2013.05.026 Li, X. H., Liu, Y., Li, Q. L., et al., 2009. Precise Determination of Phanerozoic Zircon Pb/Pb Age by Multicollector SIMS without External Standardization. Geochemistry, Geophysics, Geosystems, 10(4): Q04010. https://doi.org/10.1029/2009GC002400 Liu, Z. Q., Han, B. F., Ji, J. Q., et al., 2005. Ages and Geochemistry of the Post-Collisional Granitic Rocks from Eastern Alataw Mountains, Xinjiang, and Implications for Vertical Crustal Growth. Acta Petrologica Sinica, 21(3): 623-639(in Chinese with English abstract). Ludwig, K. R., 2003. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, California. BGC Special Publication, Berkeley, (4): 70. Luo, Q., Wang, Q. J., Yang, W., et al., 2023. Internal Structural Units, Differential Characteristics of Permeability and Their Transport, Shielding and Reservoir Control Modes of Strike-Slip Faults. Earth Science, 48(6): 2342-2360 (in Chinese with English abstract). Lyu, C., Gao, J. F., Qi, L., et al., 2023. Analytical Methods and Application of Sulfide Re-Os Isotope Dating of Mineral Deposits: Research Progress and Problems. Earth Science, 48(12): 4387-4403 (in Chinese with English abstract). Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635: tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2 Martin, H., 1999. Adakitic Magmas: Modern Analogues of Archaean Granitoids. Lithos, 46(3): 411-429. https://doi.org/10.1016/S0024-4937(98)00076-0 Middlemost, E. A. K., 1985. Magmas and Magmatic Rocks: An Introduction to Igneous Petrology. Longman Group, London and New York, 1-266. https://doi.org/10.1180/minmag.1986.050.355.34 Peacock, S. M., Rushmer, T., Thompson, A. B., 1994. Partial Melting of Subducting Oceanic Crust. Earth and Planetary Science Letters, 121(1-2): 227-244. https://doi.org/10.1016/0012-821X(94)90042-6 Pearce, J., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4): 120-125. https://doi.org/10.18814/epiiugs/1996/v19i4/005 Shen, P., Pan, H. D., Cao, C., et al., 2017. The Formation of the Suyunhe Large Porphyry Mo Deposit in the West Junggar Terrain, NW China: Zircon U-Pb Age, Geochemistry and Sr-Nd-Hf Isotopic Results. Ore Geology Reviews, 81: 808-828. https://doi.org/10.1016/j.oregeorev.2016.02.015 Shen, P., Pan, H. D., Xiao, W. J., et al., 2013. Early Carboniferous Intra-Oceanic Arc and Back-Arc Basin System in the West Junggar, NW China. International Geology Review, 55(16): 1991-2007. https://doi.org/10.1080/00206814.2013.810385 Shen, P., Shen, Y. C., Pan, H. D., et al., 2012. Geochronology and Isotope Geochemistry of the Baogutu Porphyry Copper Deposit in the West Junggar Region, Xinjiang, China. Journal of Asian Earth Sciences, 49: 99-115. https://doi.org/10.1016/j.jseaes.2011.11.025 Shen, P., Shen, Y. C., Zeng, Q. D., et al., 2004. Helium and Argon Isotope Trace in Ore-Forming Fluid of Sawuer Gold Belt in Xinjiang, China. Chinese Science Bulletin, 49(13): 1408-1414. https://doi.org/10.1360/03wd0620 Shen, P., Shen, Y. C., Pan, H. D., et al., 2010. Baogutu Porphyry Cu-Mo-Au Deposit, West Junggar, Northwest China: Petrology, Alteration, and Mineralization. Economic Geology, 105(5): 947-970. https://doi.org/10.2113/econgeo.105.5.947 Sláma, J. K., Košler, J., Condon, D. J., et al., 2008. Plešovice Zircon—A New Natural Reference Material for U–Pb and Hf Isotopic Microanalysis. Chemical Geology, 249(1/2): 1-35. https://doi.org/10.1016/j.chemgeo.2007.11.005 Song, H. X., Liu, Y. L., Qu, W. J., et al., 2007. Geological Characters of Baogutu Porphyry Copper Deposit in Xinjiang, NW China. Acta Petrologica Sinica, 23(8): 1981-1988(in Chinese with English abstract). Su, Y. P., Tang, H. F., Hou, G. S., et al., 2006. Geochemistry of Aluminous A-Type Granites along Darabut Tectonic Belt in West Junggar, Xinjiang. Geochimica, 35(1): 55-67(in Chinese with English abstract). Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 Tang, G. J., Wang, Q., Wyman, D. A., et al., 2010. Ridge Subduction and Crustal Growth in the Central Asian Orogenic Belt: Evidence from Late Carboniferous Adakites and High-Mg Diorites in the Western Junggar Region, Northern Xinjiang (West China). Chemical Geology, 277(3/4): 281-300. https://doi.org/10.1016/j.chemgeo.2010.08.012 Tang, G. J., Wang, Q., Wyman, D. A., et al., 2012. Recycling Oceanic Crust for Continental Crustal Growth: Sr-Nd-Hf Isotope Evidence from Granitoids in the Western Junggar Region, NW China. Lithos, 128: 73-83. https://doi.org/10.1016/j.lithos.2011.11.003 Tang, G. J., Wang, Q., Zhao, Z. H., et al., 2009. Geochronology and Geochemistry of the Ore-Bearing Porphyries in the Baogutu Area (Western Junggar): Petrogenesis and Their Implications for Tectonics and Cu-Au Mineralization. Earth Science, 34(1): 56-74(in Chinese with English abstract). Tang, H. F., Zhao, Z. Q., Huang, R. S., et al., 2008. Primary Hf Isotopic Study on Zircons from the A-Type Granites in Eastern Junggar of Xinjiang, Northwest China. Acta Mineralogica Sinica, 28(4): 335-342(in Chinese with English abstract). Wang, Y. M., Yin, J. Y., Yuan, C., et al., 2021. Exhumation and Preservation Conditions of Suyunhe Porphyry Molybdenum Deposit in the West Junggar, Xinjiang(NW China): Constraints from the Fission Track and (U-Th)/He Thermochronology. Acta Petrologica Sinica, 37(8): 2547-2561(in Chinese with English abstract). doi: 10.18654/1000-0569/2021.08.18 Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202 Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards Newsletter, 19(1): 1-23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x Wilson, M., 1989. Igneous Petrogenesis. Allen and Unwin, London. Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47. https://doi.org/10.1144/0016-76492006-022 Woodhead, J., Hergt, J., Shelley, M., et al., 2004. Zircon Hf-Isotope Analysis with an Excimer Laser, Depth Profiling, Ablation of Complex Geometries, and Concomitant Age Estimation. Chemical Geology, 209(1-2): 121-135. https://doi.org/10.1016/j.chemgeo.2004.04.026 Wu, C., Dong, L. H., Zhou, G., et al., 2016. Paleozoic Tectonic Units and Evolution of West Junggar, CAOB. Xinjiang Geology, 34(3): 302-311(in Chinese with English abstract). Wu, C., Hong, T., Xu, X. W., et al., 2018. Tectonic Evolution of the Paleozoic Barluk Continental Arc, West Junggar, NW China. Journal of Asian Earth Sciences, 160: 48-66. https://doi.org/10.1016/j.jseaes.2018.04.008 Wu, C., Hong, T., Xu, X. W., et al., 2023. Report of 2.7 Ga Zircon U-Pb Age of Orthogneiss in the Wenquan Metamorphic Complex, West Tianshan, China. China Geology, 6(1): 168-170. https://doi.org/10.31035/cg2021071 Wu, C., Liu, Y., Cao, M. J., et al., 2015. Characteristics and Formation Mechanism of Reduced Porphyry Cu and Mo-Cu Deposits. Acta Petrologica Sinica, 31(2): 617-638(in Chinese with English abstract). Wu, F. Y., Yang, Y. H., Xie, L. W., et al., 2006. Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology. Chemical Geology, 234(1-2): 105-126. https://doi.org/10.1016/j.chemgeo.2006.05.003 Xiao, W. J., Kröner, A., Windley, B. F., 2009. Geodynamic Evolution of Central Asia in the Paleozoic and Mesozoic. International Journal of Earth Sciences, 98(6): 1185-1188. https://doi.org/10.1007/s00531-009-0418-4 Xiao, W. J., Santosh, M., 2014. The Western Central Asian Orogenic Belt: A Window to Accretionary Orogenesis and Continental Growth. Gondwana Research, 25(4): 1429-1444. https://doi.org/10.1016/j.gr.2014.01.008 Xu, S. L., Ding, W. C., Chen, X. H., et al., 2022. Late Paleozoic Crustal Composition and Growth in West Junggar: Evidence from Sr-Nd-Pb Isotopic Mapping. Earth Science Frontiers, 29(2): 261-280(in Chinese with English abstract). Xu, X. W., Jiang, N., Li, X. H., et al., 2015. Spatial-Temporal Framework for the Closure of the Junggar Ocean in Central Asia: New SIMS Zircon U-Pb Ages of the Ophiolitic Mélange and Collisional Igneous Rocks in the Zhifang Area, East Junggar. Journal of Asian Earth Sciences, 111: 470-491. https://doi.org/10.1016/j.jseaes.2015.06.017 Xu, Z., Han, B. F., Ren, R., et al., 2012. Ultramafic-Mafic Mélange, Island Arc and Post-Collisional Intrusions in the Mayile Mountain, West Junggar, China: Implications for Paleozoic Intra-Oceanic Subduction-Accretion Process. Lithos, 132: 141-161. https://doi.org/10.1016/j.lithos.2011.11.016 Xu, Z., Han, B. F., Ren, R., et al., 2013. Palaeozoic Multiphase Magmatism at Barleik Mountain, Southern West Junggar, Northwest China: Implications for Tectonic Evolution of the West Junggar. International Geology Review, 55(5): 633-656. https://doi.org/10.1080/00206814.2012.741315 Yang, G., Xiao, L., Wang, G. C., et al., 2015. Geochronology, Geochemistry and Zircon Lu-Hf Study of Granites in Western Section of Xiemisitai Area, Western Junggar. Earth Science, 40(3): 548-562 (in Chinese with English abstract). Yang, M., Wang, J. L., Wang, J. Q., et al., 2015. Late Carboniferous Intra-Oceanic Subduction and Mineralization in Western Junggar: Evidence from the Petrology, Geochemistry and Zircon U-Pb Geochronology of Ⅰ# Ore-Bearing Granite Body in Suyunhe Molybdenite Orefield, Xinjiang. Acta Petrologica Sinica, 31(2): 523-533(in Chinese with English abstract). Yang, Y. H., Zhang, H. F., Chu, Z. Y., et al., 2010. Combined Chemical Separation of Lu, Hf, Rb, Sr, Sm and Nd from a Single Rock Digest and Precise and Accurate Isotope Determinations of Lu-Hf, Rb-Sr and Sm-Nd Isotope Systems Using Multi-Collector ICP-MS and TIMS. International Journal of Mass Spectrometry, 290(2-3): 120-126. https://doi.org/10.1016/j.ijms.2009.12.011 You, J., 2016. Ore-Forming Mechanism and Tectonic Setting of Porphyry Mo Deposits in the North-Western Margin of Junggar Area (Dissertation). University of Chinese Academy of Sciences, Beijing (in Chinese with English abstract). Zhang, L. C., Feng, J., Li, P., et al., 2022. Tectonic Evolution and Metallogenic Regularity of Dominant Deposits in the Western Tianshan. Earth Science, 47(9): 3127-3146 (in Chinese with English abstract). Zhong, S. H., Seltmann, R., Shen, P., 2017. Two Different Types of Granitoids in the Suyunhe Large Porphyry Mo Deposit, NW China and Their Genetic Relationships with Molybdenum Mineralization. Ore Geology Reviews, 88: 116-139. https://doi.org/10.1016/j.oregeorev.2017.04.012 Zhong, S. H., Shen, P., Pan, H. D., et al., 2015a. Geochemistry and Geochronology of Ore-Bearing Granites in Suyunhe Mo Deposit, West Junggar, Xinjiang. Mineral Deposits, 34(1): 39-62(in Chinese with English abstract). Zhong, S. H., Shen, P., Pan, H. D., et al., 2015b. The Ore-Forming Fluid and Geochronology of the Suyunhe Mo Deposit, West Junggar, Xinjiang. Acta Petrologica Sinica, 31(2): 449-464(in Chinese with English abstract). Zhou, T. F., Yuan, F., Fan, Y., et al., 2008. Granites in the Sawuer Region of the West Junggar, Xinjiang Province, China: Geochronological and Geochemical Characteristics and Their Geodynamic Significance. Lithos, 106(3-4): 191-206. https://doi.org/10.1016/j.lithos.2008.06.014 Zhu, X. K., Wang, Z. C., Chen, H. Y., 2022. Advances in Isotope Geochronology and Isotope Geochemistry: A Preface. Journal of Earth Science, 33(1): 1-4. https://doi.org/10.1007/s12583-021-1605-x 蔡剑辉, 阎国翰, 牟保磊, 等, 2005. 北京房山岩体锆石U-Pb年龄和Sr、Nd、Pb同位素与微量元素特征及成因探讨. 岩石学报, 21(3): 776-788. 陈家富, 韩宝福, 张磊, 2010. 西准噶尔北部晚古生代两期侵入岩的地球化学、Sr-Nd同位素特征及其地质意义. 岩石学报, 26(8): 2317-2335. 陈晔, 孙明新, 张新龙, 2006. 西准噶尔巴尔鲁克断裂东南侧石英闪长岩锆石SHRIMP U-Pb测年. 地质通报, 25(8): 992-994. 范裕, 周涛发, 袁峰, 等, 2007. 新疆西准噶尔地区塔斯特岩体锆石LA-ICP-MS年龄及其意义. 岩石学报, 23(8): 1901-1908. 冯乾文, 李锦轶, 刘建峰, 等, 2012. 新疆西准噶尔克拉玛依岩体中暗色岩墙的形成时代及地质意义: 来自锆石LA-ICP-MS和角闪石Ar-Ar定年的证据. 岩石学报, 28(7): 2158-2170. 高山林, 何治亮, 周祖翼, 2006. 西准噶尔克拉玛依花岗岩体地球化学特征及其意义. 新疆地质, 24(2): 125-130. 韩宝福, 2007. 后碰撞花岗岩类的多样性及其构造环境判别的复杂性. 地学前缘, 14(3): 64-72. 韩宝福, 何国琦, 王式洸, 1999. 后碰撞幔源岩浆活动、底垫作用及准噶尔盆地基底的性质. 中国科学(D辑: 地球科学), 29(1): 16-21. 韩宝福, 季建清, 宋彪, 等, 2006. 新疆准噶尔晚古生代陆壳垂向生长(Ⅰ): 后碰撞深成岩浆活动的时限. 岩石学报, 22(5): 1077-1086. 侯增谦, 2004. 斑岩Cu-Mo-Au矿床: 新认识与新进展. 地学前缘, 11(1): 131-144. 蒋忠祥, 何跃, 屈李华, 等, 2022. 新疆西准噶尔苏云河钼矿含矿岩体重力异常特征及其地质意义. 地质与勘探, 58(5): 965-974. 康磊, 李永军, 张兵, 等, 2009. 新疆西准噶尔夏尔莆岩体岩浆混合的岩相学证据. 岩石矿物学杂志, 28(5): 423-432. 刘志强, 韩宝福, 季建清, 等, 2005. 新疆阿拉套山东部后碰撞岩浆活动的时代、地球化学性质及其对陆壳垂向增长的意义. 岩石学报, 21(3): 623-639. 罗群, 王千军, 杨威, 等, 2023. 走滑断裂内部结构渗透差异特征及其输导控藏模式. 地球科学, 48(6): 2342-2360. doi: 10.3799/dqkx.2023.092 吕串, 高剑峰, 漆亮, 等, 2023. 硫化物Re-Os同位素定年分析方法及其在矿床年代学中的应用: 研究现状及存在问题. 地球科学, 48(12): 4387-4403. doi: 10.3799/dqkx.2023.061 宋会侠, 刘玉琳, 屈文俊, 等, 2007. 新疆包古图斑岩铜矿矿床地质特征. 岩石学报, 23(8): 1981-1988. 苏玉平, 唐红峰, 侯广顺, 等, 2006. 新疆西准噶尔达拉布特构造带铝质A型花岗岩的地球化学研究. 地球化学, 35(1): 55-67. 唐功建, 王强, 赵振华, 等, 2009. 西准噶尔包古图成矿斑岩年代学与地球化学: 岩石成因与构造、铜金成矿意义. 地球科学, 34(1): 56-74. http://www.earth-science.net/article/id/1787 唐红峰, 赵志琦, 黄荣生, 等, 2008. 新疆东准噶尔A型花岗岩的锆石Hf同位素初步研究. 矿物学报, 28(4): 335-342. 王雅美, 尹继元, 袁超, 等, 2021. 新疆西准噶尔苏云河斑岩型钼矿的剥露和保存条件: 来自裂变径迹和(U-Th)/He热年代学的约束. 岩石学报, 37(8): 2547-2561. 吴楚, 董连慧, 周刚, 等, 2016. 西准噶尔古生代构造单元划分与构造演化. 新疆地质, 34(3): 302-311. 吴楚, 刘妍, 曹明坚, 等, 2015. 还原性斑岩型Cu与Mo-Cu矿特征与形成机制. 岩石学报, 31(2): 617-638. 徐盛林, 丁伟翠, 陈宣华, 等, 2022. 西准噶尔晚古生代地壳组成与生长: 来自Sr-Nd-Pb同位素填图的证据. 地学前缘, 29(2): 261-280. 杨钢, 肖龙, 王国灿, 等, 2015. 西准噶尔谢米斯台西段花岗岩年代学、地球化学、锆石Lu-Hf同位素特征及大地构造意义. 地球科学, 40(3): 548-562. doi: 10.3799/dqkx.2015.043 杨猛, 王居里, 王建其, 等, 2015. 新疆西准噶尔地区晚石炭世洋内俯冲与成矿: 来自苏云河钼矿区Ⅰ#含矿花岗岩体的证据. 岩石学报, 31(2): 523-533. 游军, 2016. 西准噶尔西北缘斑岩钼矿成矿机制与构造背景(博士学位论文). 北京: 中国科学院大学. 张连昌, 冯京, 李平, 等, 2022. 西天山构造演化与优势矿产成矿规律. 地球科学, 47(9): 3127-3146. doi: 10.3799/dqkx.2021.222 钟世华, 申萍, 潘鸿迪, 等, 2015a. 新疆西准噶尔苏云河钼矿床含矿岩体地球化学和年代学. 矿床地质, 34(1): 39-62. 钟世华, 申萍, 潘鸿迪, 等, 2015b. 新疆西准噶尔苏云河钼矿床成矿流体和成矿时代. 岩石学报, 31(2): 449-464. -
dqkxzx-50-4-1284-表5_锆石Hf_-_副本.docx
dqkxzx-50-4-1284-表1_全岩主量元素含量_-_副本.docx
dqkxzx-50-4-1284-表3_锆石U-Pb_-_副本.docx
dqkxzx-50-4-1284-表2__全岩微量元素含量_-_副本.docx
dqkxzx-50-4-1284-表4_全岩Sr-Nd_-_副本.docx
-