Textural and Compositional Variation of the Sodalite Group Minerals
-
摘要: 方钠石族矿物(SGM)主要包括方钠石、蓝方石、黝方石等,是一种常产出于碱性-过碱性岩浆岩中并富含挥发性元素(如S、Cl等)的铝硅酸盐矿物. 目前,SGM的研究程度极低,特别是关于其结构构造和化学成分变化方面的研究资料非常有限,这严重制约了对该族矿物分类命名和形成机制的理解. 选取四川坪河、江苏娘娘山、苏丹敦比尔地区碱性杂岩体中的SGM,并系统收集全球其他地区的该族矿物研究资料,开展了细致的岩相学和矿物化学方面的对比分析. 提出一种利用SO42-/X(X=阴离子的apfu值)及X值对该族矿物种属进行有效区分的方法. 从方钠石到黝方石再到蓝方石,矿物中的Rb/Sr、Ba/Sr、Be/Sr、B/Sr随着Sr含量增加而显著降低;而总稀土含量与轻、重稀土分异程度依次升高. 方钠石中S/Cl比值可以用来约束岩浆性质,Cl⁃S含量可以反演岩浆演化过程中熔体挥发分的变化情况. 蓝方石中常发育的“格子状构造”和黝方石中的“补丁构造”推测分别为包裹体成因及固态出溶成因. 加强了对方钠石族矿物成因机制的理解,为该族矿物分类定名提供了一个新框架,并强调了该族矿物挥发性元素、结构特征和地球化学演化之间的相互关系.Abstract: The sodalite group minerals (SGM), including sodalite, haüyne, nosean, and related species, are aluminium silicate minerals that typically crystallize in alkaline⁃peralkaline rocks and are enriched in volatile elements such as sulfur (S) and chlorine (Cl). Despite their geochemical significance, research on SGM remains limited, particularly regarding their textural characteristics and geochemical compositions, which has hindered a comprehensive understanding of their classification and formation mechanisms. A detailed comparative study of the petrography and geochemistry of SGM samples was conducted, focusing on specimens from the Pinghe Complex (Sichuan Province, China), Niangniangshan Complex (Jiangsu Province, China), and Jebel Dumbier Complex (Sudan). This analysis was complemented by incorporating global SGM datasets to enhance the scope and robustness of the findings. A novel classification scheme for SGM species is proposed, based on the SO42-/X ratios (where X represents the anion content in atoms per formula unit, apfu) and X values. This framework distinguishes sodalite, nosean, and haüyne along a continuum of geochemical evolution. From sodalite to nosean and finally to haüyne, the ratios of Rb/Sr, Ba/Sr, Be/Sr, and B/Sr decrease progressively as Sr content increases. Conversely, total rare earth element (REE) concentrations and the degree of differentiation between light rare earth elements (LREE) and heavy rare earth elements (HREE) increase systematically. The S/Cl ratios in sodalite serve as a proxy for magma composition, while variations in Cl and S compositions reflect changes in melt volatile content during magmatic evolution. The clathrate texture observed in haüyne and the patchy texture in nosean are interpreted as resulting from mineral inclusions and solid exsolution processes, respectively. This study advances the understanding of SGM formation mechanisms and provides a refined framework for their classification, emphasizing the interplay between volatile elements, textural features, and geochemical evolution.
-
Key words:
- sodalite /
- nosean /
- haüyne /
- mineral chemistry /
- volatile /
- clathrate texture /
- patchy texture /
- mineralogy
-
图 1 研究区域地质简图
a. 四川坪河碱性杂岩体地质简图(据何利,2010修改);b. 江苏娘娘山碱性杂岩体地质简图(据史磊,2014;霍海东,2024修改);c. 苏丹敦比尔碱性杂岩体地质简图(据Harris et al.,1983修改)
Fig. 1. Sketch maps of study areas
图 6 方钠石族矿物主量元素图解
a. K2O⁃Na2O⁃CaO图解(Lessing and Grout, 1971);b. Na⁃(Ca+K)图解(改自Balassone et al.,2012);c. Cl+F⁃SO42⁃图解(改自Balassone et al.,2012);d. 基于阴离子相对含量的方钠石族矿物分类图;引用数据参考文献见附表3
Fig. 6. The diagrams of major elements of SGM
图 8 方钠石S、Cl含量图解
伊利莫萨克方钠石数据引自Eggenkamp et al. (2020);其中方钠-流霞正长岩,方钠霞石正长岩,条纹霞石正长岩,热液方钠石样品地点:伊利莫萨克
Fig. 8. The diagram of S and Cl contents of sodalite
图 11 方钠石族矿物构造与成分变化图解
a. 蓝方石SO42-/X⁃Fe2+/M图解;b. 蓝方石与赋存岩石FeO含量箱线图(箭头代表实际FeO含量略低);c. 黝方石SO42-/X⁃Cl-/X图解;文献蓝方石数据引自Bellatreccia (2009);Baudouin and Parat(2015);娘娘山响岩全岩数据史磊(2014);德国拉赫湖响岩全岩数据引自Baudouin and Parat (2015);意大利兀鹫山蓝方石斑岩全岩数据引自Beccaluva et al. (2002);主晶黝方石文献数据引自Suk et al. (2007);无嵌晶黝方石数据引自Balassone et al. (2012);Balassone et al. (2016)
Fig. 11. The diagrams of textural and composition change of SGM
-
Alling, H. L., 1932. Perthites. American Mineralogist: Journal of Earth and Planetary Materials, 17(2): 43-65. Bailey, J. C., Gwozdz, R., Rose⁃Hansen, J., et al., 2001. Geochemical Overview of the Ilímaussaq Alkaline Complex, South Greenland. Geology of Greenland Survey Bulletin, 190: 35-53. https://doi.org/10.34194/ggub.v190.5172 Baioumy, H., 2021. Geochemistry and Origin of High⁃Sr Carbonatite from the Nuba Mountains, Arabian⁃Nubian Shield, Sudan. Journal of Asian Earth Sciences, 214: 104773. https://doi.org/10.1016/j.jseaes.2021.104773 Balassone, G., Bellatreccia, F., Mormone, A., et al., 2012. Sodalite⁃Group Minerals from the Somma Vesuvius Volcanic Complex, Italy: a Case Study of K⁃Feldspar⁃Rich Xenoliths. Mineralogical Magazine, 76(1): 191-212. https://doi.org/10.1180/minmag.2012.076.1.191 Balassone, G., Bellatreccia, F., Ottolini, L., et al., 2016. Sodalite⁃Group Minerals from the Somma⁃Vesuvius Volcano (Naples, Italy): a Combined EPMA, SIMS, and FTIR Crystal⁃Chemical Study. The Canadian Mineralogist, 54(3): 583-604. https://doi.org/10.3749/canmin.1500083 Baudouin, C., Parat, F., 2015. Role of Volatiles (S, Cl, H2O) and Silica Activity on the Crystallization of Haüyne and Nosean in Phonolitic Magmas (Eifel, Germany and Saghro, Morocco). American Mineralogist, 100(10): 2308-2322. https://doi.org/10.2138/am⁃2015⁃5318 Beccaluva, L., Coltorti, M., Di Girolamo, P., et al., 2002. Petrogenesis and Evolution of Mt. Vulture Alkaline Volcanism (Southern Italy). Mineralogy and Petrology, 74(2): 277-297. https://doi.org/10.1007/s007100200007 Bellatreccia, F., Della Ventura, G., Piccinini, M., et al., 2009. H2O and CO2 in Minerals of the Haüyne⁃Sodalite Group: an FTIR Spectroscopy Study. Mineralogical Magazine, 73(3): 399-413. https://doi.org/10.1180/minmag.2009.073.3.399 Brousse, R., Varet, J., Bizouard, H., 1969. Iron in the Minerals of the Sodalite Group. Contributions to Mineralogy and Petrology, 22(3): 169-184. https://doi.org/10.1007/BF00387951 Bruun⁃Neergard, T. C., 1807. De la Haüyne, Nouvelle Substance Minerale. Journal des Mines, 21: 365-380. Caggiani, M. C., Mangone, A., Acquafredda, P., 2022. Blue Coloured Haüyne from Mt. Vulture (Italy) Volcanic Rocks: SEM⁃EDS and Raman Investigation of Natural and Heated Crystals. Journal of Raman Spectroscopy, 53(5): 956–968. https://doi.org/10.1002/jrs.6310 Chang, L. H., Chen, M. Y., Jin, W., et al., 2006. Handbook for the Identification of Transparent Mineral Flakes. Geological Publishing, Beijing, 10-12(in Chinese). Chukanov, N. V., Vigasina, M. F., Zubkova, N. V., et al., 2020. Extra⁃Framework Content in Sodalite⁃Group Minerals: Complexity and New Aspects of Its Study Using Infrared and Raman Spectroscopy. Minerals, 10(4): 363. https://doi.org/10.3390/min10040363 Cooper, L. B., Bachmann, O., Huber, C., 2015. Volatile Budget of Tenerife Phonolites Inferred from Textural Zonation of S⁃Rich Haüyne. Geology, 43(5): 423-426. https://doi.org/10.1130/g36505.1 Cui, Y. H., 2021. Etymology of Mineral Names. China University of Geosciences Press, Wuhan, 157, 427, 746-747, 1090(in Chinese). Currie, K. L., Eby, G. N., Gittins, J., 1986. The Petrology of the Mont Saint Hilaire Complex, Southern Quebec: an Alkaline Gabbro⁃Peralkaline Syenite Association. Lithos, 19(1): 65-81. https://doi.org/10.1016/0024⁃4937(86)90016⁃2 Depmeier, W., 2005. The Sodalite Family: a Simple but Versatile Framework Structure. Reviews in Mineralogy and Geochemistry, 57(1): 203-240. https://doi.org/10.2138/rmg.2005.57.7 Di Muro, A., Bonaccorsi, E., Principe, C., 2004. Complex Colour and Chemical Zoning of Sodalite⁃Group Phases in a Haüynophyre Lava from Mt. Vulture, Italy. Mineralogical Magazine, 68(4): 591-614. https://doi.org/10.1180/0026461046840206 Eggenkamp, H. G. M., Marks, M. A. W., Atanasova, P., et al., 2020. Changes in Halogen (F, Cl, Br, and I) and S Ratios in Rock⁃Forming Minerals as Monitors for Magmatic Differentiation, Volatile⁃Loss, and Hydrothermal Overprint: The Case for Peralkaline Systems. Minerals, 10(11): 995. https://doi.org/10.3390/min10110995 Eggenkamp, H. G. M., Marks, M. A. W., Bonifacie, M., et al., 2022. Cl Isotope Fractionation in Magmatic and Hydrothermal Eudialyte, Sodalite and Tugtupite (Ilímaussaq Intrusion, South Greenland). Chemical Geology, 604: 120932. https://doi.org/10.1016/j.chemgeo.2022.120932 Friis, H., 2011. Sodalite: a Mineralogical Chameleon. Geology Today, 27(5): 194-198. https://doi.org/10.1111/j.1365⁃2451.2011.00809.x Gahlan, H. A., Azer, M. K., Asimow, P. D., et al., 2023. Geochemistry, Petrogenesis and Alteration of Rare⁃Metal⁃Bearing Granitoids and Mineralized Silexite of the Al⁃Ghurayyah Stock, Arabian Shield, Saudi Arabia. Journal of Earth Science, 34(5): 1488-1510. https://doi.org/10.1007/s12583⁃022⁃1708⁃z Harris, N. B. W., Mohammed, A. E. R. O., Shaddad, M. Z., 1983. Geochemistry and Petrogenesis of a Nepheline Syenite⁃Carbonatite Complex from the Sudan. Geological Magazine, 120(2): 115-127. https://doi.org/10.1017/s0016756800025279 Heathcote, R. C., McCormick, G. R., 1989. Major⁃Cation Substitution in Phlogopite and Evolution of Carbonatite in the Potash Sulphur Springs Complex, Garland County, Arkansas. American Mineralogist, 74(1-2): 132-140. He, L., 2010. Characteristics and Structural Setting of the Pinghe Alkalic Complex in Northern Sichuan (Dissertation). Chengdu University of Technology, Chengdu, 13-14(in Chinese with English abstract). Henmi, C., Kusachi, I., Henmi, K., et al., 1973. A New Mineral Bicchulite, the Natural Analogue of Gehlenite Hydrate, from Fuka, Okayama Prefecture, Japan and Carneal, County Antrim, Northern Ireland. Mineralogical Journal, 7(3): 243-251. https://doi.org/10.2465/minerj1953.7.243 Huang, Y. H., Zhou, X. Z., 1982. Corrective Name of "Nosean": Hauyne of the Alkaline Volcanic Complex of Niangniang Shan, Nanjing. Rock and Mineral Analysis, 1(3): 25-30(in Chinese with English abstract). Huo, H. D., Yang, Z. L., Hong, W. T., 2024. Inverse Reaction Rim of Biotite in Early Cretaceous Nosean Phonolite of Niangniangshan, Niangwu Basin: Mineralogical Evidence of Magma Mixing Triggered Volcanic Eruption. East China Geology, 45(1): 115-133(in Chinese with English abstract). Kamyab, S. M., Modabberi, S., Williams, C. D., et al., 2020. Synthesis of Sodalite from Sepiolite by Alkali Fusion Method and Its Application to Remove Fe3+, Cr3+, and Cd2+ from Aqueous Solutions. Environmental Engineering Science, 37(10): 689-701. https://doi.org/10.1089/ees.2019.0492 Kamyab, S. M., Modabberi, S., Williams, C. D., et al., 2021. Pure Sodalite Synthesis, Characterization and Application for Heavy Metal Ions Removal from Aqueous Solutions. Environmental Engineering & Management Journal (EEMJ), 20(5): 687-700. https://doi.org/10.30638/eemj.2021.066 Klaproth, M. H., 1815. Chemische Untersuchung des Spinellan's. Beiträge zur Chemischen Kenntniss der Mineralkörper. 6: 371-376. Kotel'nikov, A. R., Tikhomirova, V. I., Kotel'nikova, Z. A., et al., 2009. An Experimental Study of Cl and S Distribution between Sodalite and Fluid. Geochemistry International, 47(6): 568-577. https://doi.org/10.1134/S0016702909060032 Krumrei, T. V., Pernicka, E., Kaliwoda, M., et al., 2007. Volatiles in a Peralkaline System: Abiogenic Hydrocarbons and F⁃Cl⁃Br Systematics in the Naujaite of the Ilímaussaq Intrusion, South Greenland. Lithos, 95(3/4): 298-314. https://doi.org/10.1016/j.lithos.2006.08.003 Lessing, P., Grout, C. M. D., 1971. Haünite from Edwards, New York. American Mineralogist: Journal of Earth and Planetary Materials, 56(5-6): 1096-1100. Li, M. X., Du, Y. S., Li, D. P., et al., 2013. Petrographic and Mineralogical Characteristics of Volcanic Rocks of the Niangniangshan Formation in the Ningwu Basin and Their Geological Significance. Mineralogy and Petrology, (1): 27-34 (in Chinese with English abstract). Liu, C. S., Chen, X. M., Wang, R. C., et al., 2003. Characteristic and Origin of the Shiling Sodalite Syenite, Conghua City, Guangdong Province. Geological Review, 49(1): 28-29(in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2003.01.005 Lowndes, A. G., 1953. Nosean as a Tracer Mineral. Nature, 172(4379): 636. https://doi.org/10.1038/172636a0 Lu, J. W., Peng, X. L., 2010. Handbook of Microscopic Identification of Metallic Minerals. Beijing: Geological Publishing, 62-65(in Chinese). Markl, G., Marks, M., Schwinn, G., et al., 2001. Phase Equilibrium Constraints on Intensive Crystallization Parameters of the Ilímaussaq Complex, South Greenland. Journal of Petrology, 42(12): 2231-2257. https://doi.org/10.1093/petrology/42.12.2231 Möller, V., Williams⁃Jones, A. E., 2016. Petrogenesis of the Nechalacho Layered Suite, Canada: Magmatic Evolution of A REE⁃Nb⁃Rich Nepheline Syenite Intrusion. Journal of Petrology, 57(2): 229-276. https://doi.org/10.1093/petrology/egw003 Pandit, D., 2015. Geochemistry of Feldspar Intergrowth Microtextures from Paleoproterozoic Granitoids in Central India: Implications to Exsolution Processes in Granitic System. Journal of the Geological Society of India, 85(2): 163-182. https://doi.org/10.1007/s12594⁃015⁃0204⁃9 Pautov. L. A., Karpenko, V. Y., Sokolova, E. V., et al., 1993. Tsaregorodtsevite N(CH3)4[Si2(Si0.5Al0.5)O6]2-: a New Mineral. Zapiski Vserossijskogo Mineralogicheskogo Obshchestva. 128(1): 128-135. Rahmani, S., Azizi, S. N., Asemi, N., 2016. Application of Synthetic Nanozeolite Sodalite in Drug Delivery. International Current Pharmaceutical Journal, 5(6): 55-58. https://doi.org/10.3329/icpj.v5i6.27710 Sapozhnikov, A. N., Tauson, V. L., Lipko, S. V., et al., 2021. On the Crystal Chemistry of Sulfur⁃Rich Lazurite, Ideally Na7Ca(Al6Si6O24)(SO4)(S3)⁃nH2O. American Mineralogist, 106(2): 226-234. https://doi.org/10.2138/am⁃2020⁃7317 Shi, L., 2014. Petrogenesis of K⁃Rich Volcanic Rocks of Niangniangshan Formation in Ningwu Basin(Dissertation). Hefei University of Technology, Hefei, 12, 26 (in Chinese with English abstract). Sørensen, H., 1962. On the Occurrence of Steenstrupine in the Ilímaussaq Massif, Southwest Greenland. Bulletin Grønlands Geologiske Undersøgelse, 32: 1-251. https://doi.org/10.34194/bullggu.v32.6566 Stoliaroff, A., Schira, R., Blumentritt, F., et al., 2021. Point Defects Modeling Explains Multiple Sulfur Species in Sulfur⁃Doped Na4(Al3Si3O12)Cl Sodalite. The Journal of Physical Chemistry C, 125(30): 16674-16680. https://doi.org/10.1021/acs.jpcc.1c02423 Suk, N. I., Kotel'nikov, A. R., Koval'skii, A. M., 2007. Mineral Thermometry and the Composition of Fluids of the Sodalite Syenites of the Lovozero Alkaline Massif. Petrology, 15(5): 441-458. https://doi.org/10.1134/S0869591107050025 Tao, K. Y., Huang, G. Z., Wang, M. X., 1979. Petrology and Origin of the Alkaline Volcanic Complex of Niangniang Shan, Nanjing. Acta Geologica Sinica, (00): 121-133, 143-144 (in Chinese with English abstract). Taylor, D., 1967. The Sodalite Group of Minerals. Contributions to Mineralogy and Petrology, 16(2): 172-188. https://doi.org/10.1007/BF00372796 Thomson, T., 1811. A Chemical Analysis of Sodalite, a New Mineral from Greenland. A Journal of Natural Philosophy, Chemistry, and the Arts, 29: 285-292. Tong, Q. L., Li, Z. Y., Fan, H. H., et al., 2023. Petrogenesis and Tectonic Implications of the Jabal Hadb Ad Dayheen Granitic Complex, Central Arabian Shield. Journal of Earth Science, 34(1): 20-36. https://doi.org/10.1007/s12583⁃020⁃1355⁃1 Uchida, E., Iiyama, J. T., 1981. On Kamaishilite, Ca2Al2SiO6(OH)2, a New Mineral Dimorphous (Tetragonal) with Bicchulite from the Kamaishi Mine, Japan. Proceedings of the Japan Academy, Series B, 57(7): 239-243. https://doi.org/10.2183/pjab.57.239 Van Peteghem, J., Burley, B. J., 1962. Studies on the Sodalite Group of Minerals. Transactions of the Royal Society of Canada. 56: 37-53. Van Peteghem, J., Burley, B. J., 1963. Studies on Solid Solution between Sodalite, Nosean and Hauyne. The Canadian Mineralogist, 7(5): 808-813. Wang, L. X., Marks, M. A. W., Keller, J., et al., 2014. Halogen Variations in Alkaline Rocks from the Upper Rhine Graben (SW Germany): Insights into F, Cl and Br Behavior during Magmatic Processes. Chemical Geology, 380: 133-144. https://doi.org/10.1016/j.chemgeo.2014.05.003 Webster, J. D., Holloway, J. R., 1990. Partitioning of F and Cl between Magmatic Hydrothermal Fluids and Highly Evolved Granitic Magmas. Geol. Soc. Am. Spec. Pap. 246: 21-34. https://doi.org/10.1130/SPE246⁃p21 Yuguchi, T., Nishiyama, T., 2007. Cooling Process of a Granitic Body Deduced from the Extents of Exsolution and Deuteric Sub⁃Solidus Reactions: Case Study of the Okueyama Granitic Body, Kyushu, Japan. Lithos, 97(3/4): 395–421. https://doi.org/10.1016/j.lithos.2007.01.005 Yu, Y. X., Liu, Z. G., Wang, C. M., et al., 2024. Preparation of Nano⁃Sodalite and Its Drug⁃Loading and Antibacterial Properties. Journal of North China University of Science and Technology (Natural Science Edition), 46(1): 89-96 (in Chinese with English abstract). Zhang, X., Liu, S. Q., Chen, L. F., et al., 2023. Preparation of Sodalite Crystals under Room⁃Temperature Condition, Characterization and Adsorption Performance to Lead Ion. Chemical Research and Application, 35(2): 419-426 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-1656.2023.02.025 Zhou, T. R., Xu, Y., 1996. Tianshan Blue: the Sodalite Deposit in Tianshan, China. Mineral Deposits, 15(S1): 40-41 (in Chinese). 常丽华, 陈曼云, 金巍, 等, 2006. 透明矿物薄片鉴定手册. 北京: 地质出版社, 10-12. 崔云昊, 2021. 矿物名称词源. 武汉: 中国地质大学出版社, 157, 427, 746-747, 1090. 何利, 2010. 川北坪河碱性杂岩体特征及其构造背景(硕士学位论文). 成都: 成都理工大学, 13-14. 黄蕴慧, 周秀仲, 1982. 江苏铜井娘娘山碱性火山杂岩体中黝方石之正名——蓝方石. 岩矿测试, 1(3): 25-30. 霍海东, 杨祝良, 洪文涛, 2024. 宁芜盆地娘娘山早白垩世黝方石响岩中黑云母逆反应边结构: 岩浆混合触发火山喷发的矿物学证据. 华东地质, 45(1): 115-133. 李明轩, 杜杨松, 李大鹏, 等, 2013. 宁芜盆地娘娘山组钾质火山岩的岩相学和矿物学特征及其地质意义. 矿物岩石, (1): 27-34. 刘昌实, 陈小明, 王汝成, 等, 2003. 广东从化石岭方钠石正长岩特征及其起源. 地质论评, 49(1): 28-29. doi: 10.3321/j.issn:0371-5736.2003.01.005 卢静文, 彭晓蕾, 2010. 金属矿物鉴定手册. 北京: 地质出版社, 62-65. 史磊, 2014. 宁芜盆地娘娘山组富钾火山岩的成因(硕士学位论文). 合肥: 合肥工业大学, 12, 26. 陶奎元, 黄光昭, 王美星, 1979. 南京南部娘娘山碱性火山杂岩及其成因. 地球学报, (00): 121-133, 143-144. 于亚鑫, 刘志刚, 王春梅, 等, 2024. 纳米方钠石的制备及其载药抗菌性能. 华北理工大学学报(自然科学版), 46(1): 89-96. 张旭, 刘苏琪, 陈利锋, 等, 2023. 室温下方钠石的制备、表征及其对Pb2+的吸附性能. 化学研究与应用, 35(2): 419-426. doi: 10.3969/j.issn.1004-1656.2023.02.025 邹天人, 徐珏, 1996. 天山蓝——中国天山方钠石矿床. 矿床地质. 15(S1): 40-41. -
梁馨心附图1-方钠石族矿物分布.docx
梁馨心附件1-方钠石族矿物结晶学特征.docx
梁馨心附件2-测试分析方法.docx
梁馨心附表.xlsx
-




下载: